铸件的凝固时间和凝固速度
铸件的凝固方式

铸件的凝固方式以铸件的凝固方式为标题,我们来探讨一下铸件凝固时的过程和方式。
铸件的凝固方式对于最终产品的质量和性能有着重要的影响。
铸件凝固是指熔融金属在注入模具后逐渐冷却固化的过程。
在此过程中,熔融金属从液态逐渐转变为固态,并逐渐形成所需的形状和结构。
铸件的凝固方式主要有两种,分别是自由凝固和受限凝固。
1. 自由凝固自由凝固是指铸件在凝固过程中没有受到外界约束,自由地冷却和凝固。
在自由凝固中,铸件的形状和结构往往受到凝固前液态金属的流动和自由收缩的影响。
自由凝固的特点是凝固开始于模具壁面,然后逐渐向内部传导。
在凝固过程中,熔融金属的温度降低,密度增加,体积收缩,因而产生固态铸件的收缩缺陷。
这种缺陷一般分布于铸件的中央位置,形成所谓的中央收缩孔。
自由凝固的优点是凝固速度较快,易于操作和控制。
缺点是容易产生缺陷,需要进行后续处理和修复。
2. 受限凝固受限凝固是指在铸件凝固过程中,铸件受到外界约束,不能自由冷却和凝固。
在受限凝固中,铸件的形状和结构往往受到模具的限制和约束。
受限凝固的特点是凝固开始于模具壁面,然后沿着模具内部的特定路径逐渐向内部传导。
在凝固过程中,熔融金属的温度降低,密度增加,体积收缩,因而产生固态铸件的收缩缺陷。
与自由凝固不同的是,受限凝固可以通过模具的限制来控制和减少收缩缺陷的产生。
受限凝固的优点是可以减少或避免收缩缺陷的产生,提高铸件的质量和性能。
缺点是凝固速度较慢,需要更长的时间来完成凝固过程。
除了自由凝固和受限凝固外,还有一些特殊的凝固方式,如定向凝固和等温凝固。
定向凝固是在凝固过程中通过外界手段来控制和定向熔融金属的凝固方向。
通过定向凝固可以使铸件的晶粒结构和力学性能得到改善。
等温凝固是指在凝固过程中保持一定温度的状态,使铸件的温度保持不变。
等温凝固可以使铸件的晶粒细化,提高铸件的强度和韧性。
铸件的凝固方式对于最终产品的质量和性能有着重要的影响。
自由凝固和受限凝固是常见的凝固方式,它们分别具有不同的特点和优缺点。
压铸原理及工艺参数选择

压铸原理及工艺参数选择压铸是一种制造零件的工艺方法,它通过将熔化的金属注入到金属模具中,在模具中冷却凝固后,得到所需的零件形状。
压铸可以制造复杂的零件形状,具有高精度、高表面质量和高生产效率的优点。
压铸工艺参数的选择对于获得优质的铸件至关重要。
压铸工艺参数的选择1.熔化温度:熔化温度应根据所用材料的熔点确定。
在选择熔化温度时,要考虑到合金的液体流动性和凝固性能。
熔点高的合金可使用高熔点温度,但要注意避免烧结和气孔的产生。
2.注射速度:注射速度决定了金属液体进入模腔的速度。
过高的注射速度可能引起金属喷溅和模具损坏,过低的注射速度则可能造成流道不充分填充。
注射速度的选择应根据材料的液流性和零件的形状确定。
3.注射压力:注射压力决定了金属液体通过流道和进入模腔的压力。
过高的注射压力可能导致模具磨损和零件变形,过低的注射压力则可能造成流道不充分填充。
注射压力的选择应根据材料的流动性和零件的形状确定。
4.模具温度:模具温度决定了金属液体的凝固速度和铸件的质量。
较高的模具温度有助于加速凝固速度并减小变形,但可能导致金属液体的酸蚀和模具磨损。
较低的模具温度有助于避免气孔和减小脱漏的可能性,但可能导致金属液流动不畅。
模具温度的选择应根据材料的凝固性能和零件的形状确定。
5.冷却时间:冷却时间决定了金属液体的凝固时间和铸件的质量。
较短的冷却时间有助于提高生产效率,但可能导致金属液体的凝固不完全和热裂纹的产生。
较长的冷却时间有助于提高铸件的密度和表面质量,但可能导致产量降低。
冷却时间的选择应根据材料的凝固性能和零件的形状确定。
总结压铸是一种高效、高精度的制造方法,工艺参数的选择对于获得优质的铸件至关重要。
在选择工艺参数时,要综合考虑材料的性质、零件的形状和制造要求,以及设备和模具的性能。
通过合理选择工艺参数,可以提高铸件的质量和生产效率,降低生产成本。
铸件的凝固

C4 铸件的凝固与补缩本章内容:铸件的凝固过程、凝固特性对铸件质量的影响,缩孔、缩松的形成机理、防止措施以及冒口和冷铁的应用。
§1 铸件的凝固一铸件的凝固方式1 凝固区域除纯金属和共晶合金外,铸件凝固过程中断面有三区:固相区+凝固区+液相区,见下图。
图4-1铸件某一瞬间凝固区域温度场T:指铸件断面上某瞬时的温度分布曲线固相等温面:Ⅰ-Ⅰ’液相等温面:Ⅱ-Ⅱ’固相区:合金已凝固成固相的区域;液相区:尚未开始凝固的区域;凝固区:凝固和液固相并存的区域。
2 凝固方式根据铸件凝固时其断面上凝固区域的大小,凝固方式分三种:逐层凝固、糊状凝固(体积凝固)、中间凝固。
铸件断面凝固区域的宽度δ由合金的结晶温度范围⊿tc和铸件断面上的温度梯度δt决定的。
当温度梯度相同时,取决于合金的结晶温度范围;当合金成分一定时,则取决于温度梯度。
温度梯度较大时,可使凝固区域变窄。
1)逐层凝固⊿tc=0,δ=0恒温下结晶的合金,在凝固过程中其铸件断面上凝固区宽度等于零,断面上的固体和液体由一条界线清楚分开。
随温度下降,凝固层逐渐加厚直至铸件凝固结束。
包括纯金属、共晶合金、结晶温度范围很小或断面上温度梯度很大的情况。
逐层凝固糊状凝固中间凝固左:纯金属或共晶合金左:结晶温度范围很宽左:结晶温度范围较窄右:窄结晶温度范围右:温度场平坦右:温度梯度较大凝固特点:易形成缩孔、热裂倾向小、较好的流动能力。
(这类合金的补缩性良好,可以采取工艺措施,如设置冒口,来消除缩孔)。
合金种类:纯金属、共晶合金、低碳钢、高合金钢、铝青铜、窄结晶温度范围黄铜等。
2)糊状凝固铸件凝固过程中,铸件断面上的凝固区域很宽,在某一段时间内,凝固区域甚至会贯穿于铸件的整个断面,铸件表面尚未出现固相区,铸件中心已开始结晶,出现了固相。
凝固特点:补缩性差(易形成缩松)、热裂倾向大、流动能力差。
合金种类:高碳钢、球铁、锡青铜、铝镁合金及某些结晶温度范围宽的黄铜。
3)中间凝固铸件断面上凝固区域宽度介于逐层凝固和糊状凝固之间。
2 压铸过程原理-32(1)

2 压铸过程原理压铸的主要特点是金属液在高压、高速下充填压铸模型腔,并在高压下成型、结晶。
因此,压铸过程中压力和速度的变化及其作用是至关重要的,它们直接影响金属充填形态和金属液在型腔中的运动,从而影响压铸件的质量。
2.1 压铸压力2.1.1四级压射的概念压铸压力是压铸工艺中主要的参数之一。
压铸过程中的压力是由压铸机的压射机构产生的,压射机构通过工作液体将压力传递给压射活塞,然后由压射活塞经压射冲头施加于压室内的金属液上。
作用于金属液上的压力是获得组织致密和轮廓清晰的铸件的主要因素,所以,必须了解并掌握压铸过程中作用在金属液上的压力的变化情况,以便正确利用压铸过程中各阶段的压力,并合理选择压力的数值。
压铸过程中的压力可以用压射力和压射压力两种形式来表示。
压铸机压射缸内的工作液作用于压射冲头,使其推动金属液充填模具型腔的力,称为压射力。
其大小随压铸机的规格而不同,它反映了压铸机功率的大小。
压射压力是指压射过程中,压室内单位面积上金属液所受到的静压力。
压射力和压射压力的关系如下:24D FA F p π==(2-1)式中 p ——压射压力(Pa );F ——压射力(N );A ——压射冲头截面积(近似等于压室截面积)(m2); D ——压射缸直径(m )。
由式(2-1)可知,压射压力与压射力成正比,而与压射冲头的截面积成反比。
所以,压射压力可以通过调整压射力和更换不同直径的压射冲头来实现。
如果既考虑压射力又考虑压射压力,会把问题复杂化,而且压射压力更能反映压铸过程中金属液在充填时的各个阶段以及金属液流经各个不同截面时的力的概念,因此,压铸压力通常指的是压射压力。
在压铸过程中,作用在金属液上的压射压力并不是一个常数,而是随着压射阶段的变化而改变。
金属液在压室与压铸模型腔中的运动可分解为四个阶段,图2-1表示在不同阶段,压射冲头的运动速度与金属液所受的压力(压射压力)曲线。
图2-1压铸不同阶段,压射冲头的运动速度与金属液所受压力的变化情况τ-压铸的各个阶段v-压射冲头的运动速度p-压射压力第一阶段τ1压射冲头以慢速v1前进,封住浇口,金属液被推动,其所受压力p1也较低,此时p1仅用于克服压室与液压缸对运动活塞的摩擦阻力。
铸造工程基础习题及答案

铸造工程基础习题及答案一、砂型铸造部分 (一)填空及名词解释1(设置冒口、冷铁和铸肋的主要目的是(防止缩孔、缩松、裂纹和变形等铸造缺陷)。
(stripping time):指从混砂结束开始,在芯盒内制的砂芯(或未脱2(脱模时间模的砂型)硬化到能满意地将砂芯从芯盒中取出(或脱模),而不致发生砂芯(或砂型)变形所需的时间间隔。
3。
补贴:为实现顺序凝固或加强补缩效果,在靠近冒口的铸件壁厚上补加的倾斜的金属块。
4( 水玻璃是各种硅酸盐的统称。
在铸造上常用的有钠水玻璃、钾水玻璃、锂水玻璃,分别为(硅酸钠、硅酸钾、硅酸锂)的水溶液,其化学式分别为(NaO。
2mSiO 。
nHO、KO。
mSiO。
nHO、LiOmSiO2。
nHO)。
22222 225(流动性:型砂在外力或自重作用下,沿模样与砂粒之间相对移动的能力称为流动性。
6(气硬冷芯盒法(vapor cold box process):将混好的双组份树脂砂填入芯盒,然后在室温下通过吹气硬化制成砂芯的方法。
7.型、芯砂:将原砂或再生砂+粘结剂+其它附加物等所混制成的混合物为型砂或芯砂(其中将其用于铸型者被称为型砂,用于制砂芯者称为芯砂)。
8(可使用时间(bench life,working time):指自硬树脂砂(其它化学粘结剂也相同)混砂后能够制出合格砂芯的那一段时间。
9。
冷铁:为增加铸件局部冷却速度,在型腔内部及工作表面安放的金属块。
10(热芯盒法(hot-box process):用液态热固性树脂粘结剂和催化剂配制成的芯砂,吹射入加热到一定温度的芯盒内(180-250C),贴近芯盒表面的砂芯受热,其粘结剂在很短时间即可缩聚而硬化而制成砂芯的方法。
(二)问答题1. 铸铁件、铸钢件和铸造非铁合金件用的湿型砂各具有什么特点, 答题要点:由于铸铁件、铸钢件和铸造非铁合金件的合金特性和浇注温度不同,因此它们用的湿型砂不宜一样。
铸铁件的合金熔点较高(略低于铸钢),浇注温度一般在1200?一1400?左右,因此对湿型砂耐火度的要求可比铸钢件低。
快速凝固

(1)金属熔液必须被分散成液流或液滴,而且至少在一个方向上的尺寸极小,以便散热;
(2)必须有能带走热量的冷却介质。
满足上述条件的途径各有三条:熔液可分散成细小液滴、接近圆形断面的细流或极薄的矩形断面液流;散热冷却可借助于气体、液体或固体表面。几乎所有实际的快速凝固工艺都遵循这些途径。图2给出了它们之间的组合,以构成快速凝固生产工艺。其中七种组合是切实可行的工艺。只有薄带状液流与液体和气体冷却介质的组合没有成功,因为在快速流动的流体中要使液流保持矩形断面是极其困难的。
快速凝固的金属冷却速度一般要达到104~109 ℃/S。经过快速凝固的合金,会出现一系列独特的结构与组织现象。1960年美国加州理工学院Duwez等人采用一种特殊的熔体急冷技术,首次使液态合金在大于107℃/S的冷却速度下凝固。他们发现,在这样快的冷却速度下,本来是属于共晶系的Cu-Ag合金中,出现了无限固溶的连续固溶体;在Ag-Ge 合金系中,出现了新的亚稳相;而共晶成分Au-Si (XSi=25%)合金竟然凝固为非晶态的结构,因而可称为金属玻璃。这些发现,在世界物理冶金和材料科学工作者面前展现了一个新的广阔的研究领域。
快速定向凝固固液界面稳定性理论
Chalmers等在成分过冷理论中指出,定向凝固过程中固液界面形态由G1/R值决定,当G1/RФΔT0/D1时,为平面状界面;当G1/R值逐渐减小时,平界面失稳,逐渐发展为胞状至树枝状和等轴晶。上式中:G1为固液界面前沿液相中的温度梯度,R为凝固速度,ΔT0为结晶温度间隔,D1液相扩散系数。快速凝固新领域的出现,发现上述理论已不能适用。因为快速凝固时,R值很大,按成分过冷理论G1/R值愈来愈小,更应出现树枝晶,但实际情况是快速凝固后,固液界面反而稳定起来产生无特征无偏析的组织,得到成分均匀的果已知凝固过冷度ΔT,可以根据经验公式牶R=A(ΔT2求出R,式中A是与合金成分有关的常数。如果假设凝固长大动力学过程近似是线性的,则上式还可以近似为R=m(ΔT。
凝固复习

结构起伏(相起伏):不断变换着的近程有序原子集团,大小不等,时而产生,时而消失,此起彼伏,与无序原子形成动态平衡,这种结构不稳定现象称为结构起伏。
温度越低,结构起伏尺寸越大。
过冷度(ΔT):理论凝固温度与实际开始凝固温度之差,即Tm-Tn。
液、固两相的自由能差值是两相间发生相转变(L-S〉的驱动力。
均匀形核是在过冷液相中完全依靠相起伏和能量起伏而实现的形核。
体积自由能和表面自由能的相对大小,决定着临界晶核半径的大小。
非均匀形核是利用液相中的活性质点或固体界面作基底,同时依靠液相中的相起伏和能量起伏来实现的形核。
临界形核功相当于表面能的1/3,这意味着固、液之间自由能差只能供给形成临界晶核所需表面能的2/3,其余1/3的能量靠能量起伏来补足。
临界形核半径与晶核的单位表面能成正比,与过冷度成反比,过冷度越大,临界形核半径越小。
凹面形核功最小。
晶体长大的要点具有粗糙固-液界面的金属,其成长机理为在固相界面上各点呈垂直式凝聚液态原子而成长,界面的动态过冷度很小(约为0.01~0.05℃,成长速率很快。
具有平滑界面的晶体,其成长机理可能有两种方式:a.如果是在晶体学完整的界面上成长,则需要先在晶面上形成二维晶核,再在侧面进行台阶式成长,如此反复进行。
b.如果界面上存在螺型台阶或孪晶台阶,成长则连续地按台阶式进行,界面动态过冷度较大(约为1~2℃)。
晶体成长的界面形态主要决定于界面前沿液体中的温度梯度。
在正温度梯度下成长时,两种界面结构均成平直界面;在负温度梯度下成长时,一般金属的界面都呈树枝状,只有那些值较高的物质仍保持平直界面形状。
通常用晶粒的平均面积或平均直径来表示晶粒的大小,称为晶粒度。
标准晶粒度共分为8级。
细化晶粒的方法:增加过冷度;变质处理;振动结晶等。
正的温度梯度是指在液相中的温度随至界面距离的增加而提高的温度分布状况。
负的温度梯度是指液相中的温度随至界面距离的增加而降低的温度分布状况。
一般金属具有粗糙界面结构,而且往往具有较大的结晶潜热,所以在结晶时,均以树枝状的生长方式长大。
凝固科学基础4.4凝固时间

+35π(152+12.52+15x12.5)/3=45390cm3, 散热面积S = 2π(25/2)50 +π(25/2) 2 +
π[(15-12.5) 2+352] 1/2 (15+12.5)= 7449 cm2, V/S = 6.09cm; 故τ= (V/S)2/K2 = (6.09/0.9) 2 = 45.8 min. 不计算冒口时:请自行完成。
8
例题1: 比较同样体积大小的球状、块状、板状铸件的 凝固时间。
9
例题1: 比较同样体积大小的球状、块状、板状铸件的 凝固时间。
解:V球=V块=V板
S球<S块<S板
R=V/S, R球>R块>R板
根据:
RK
Байду номын сангаас,有
( R )2
K
则:τ球> τ块> τ板
10
例题2 砂型铸造圆柱形铸钢件(单位为mm)。根据工艺需 要加设冒口。如凝固系数为0.9cm/min1/2,分别估算计算 和不计算冒口时,铸件凝固完毕所需的时间。
2
A
如设 R V A
R
2
K
或
RK
R-折算(当量)厚度或模数,凝固时间θ,凝固系数K
圆柱体和球相当精确;一般铸件最大误差为20%; 可以根据需要,计算铸件的某一部分; 无论铸件重量如何,只要R相等,凝固时间大致相等;
7
Chvorinov法则的实验根据
1. 10x400x400mm板 5. 30x400x400mm板 6. 50x400x400mm板 7. 直径153mm球 8.直径150x800mm圆柱 9.直径229mm球 10.直径200x800mm圆柱 13.直径400x800mm圆柱 16. 350x1800x2400mm板 19. 65吨机座板
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铸件的凝固时间和凝固速度
铸件的凝固时间是指从液态金属充满铸型后至凝固完毕所需要的时间,单位
时间凝固层增长的厚度则称为凝固速度。
铸件的凝固时间是设计冒口尺寸的依据。
合理地确定冒口和冷铁的位置,控制铸件各部分的凝固速度,使其按一定的顺序或方向进行凝固,是获得致密健全铸件的重要条件。
另外,对大型或重要铸件,为了控制开箱时间,需对凝固时间和凝固速度进行估算。
下面介绍两种计算方法。
(1)平方根定律对铸件的凝固过程进行传热计算,可以推导出凝固层厚度随时间的变化规律:
2
0 K.、t或t丄
K2 d o K (1)
(2)
dt 2\t 式中S 0 -凝固层厚度(cm);
K 凝固系数(cm/min );
t —凝固时间(min);
U 凝固速度(cm/min)。
式(1)就是平方根定律,表明在砂型或金属型铸造条件下凝固层厚度S 0与凝固时间t的平方根成正比。
凝固系数K值与许多因素有关,实际中常用实验方法测得,见表1。
铸件凝固完毕,凝固层厚度到达壁厚中心,将壁厚的一半(S。
/2)代入式(1),即可求得凝固时间。
1
平方根定律的推导,本身对铸件的凝固过程作了一些假设,故其仅适用于大 型平板类结晶温度间隔较小的合金铸件,求得近似值。
(2)模数法 当合金、铸型和浇注条件确定之后,铸件凝固时间决定于铸件的 体积与散
热表面积之比,即铸件的模数 可以推出
2
V C
S --- 铸件散热表面积; M C ——铸件模数。
图1实测凝固时间与模数的关系
模数法由于考虑了铸件结构形状的影响,使计算值更接近于实际。
由模数法可知,即使铸件的体积和重量相等,如果其几何形状不同,则铸件 模数及其凝固时间均不相等。
反之,不论铸件的体积和形状如何,只要其模数相 等,则凝固时间相近。
M C (M C = V C / S),也称折算厚度或当量厚度。
M C
式中t ——铸件凝固时间;
铸件体积;
V C
图1是各种形状的铸钢件
10kg 到65t )实测凝固时间与模数的关系。
(重量从 铸件摸散
w c /mm
应用模数法计算铸件凝固时间时,可将复杂的铸件化为简单的平板、圆柱、
球、长方体及立方体的组合,分别计算各简单体的模数M其中M最大的简单体的凝固时间即为铸件的凝固时间。
模数法是近似的计算方法,对于大平板类较准确,对于短而粗的杆、立方体、圆柱形和球形铸件,由于边缘和棱角散热效应的影响较大,计算结果一般要比实际凝固时间长10%-50%如果被金属包围的型芯,其直径或厚度较小时,由于型芯很快达到热饱和,与型芯接触的铸件表面,可不纳入铸件散热面积。
在实际生产中,为了控制铸件的凝固方向,并不需要计算出铸件结构上各部分的凝固时间,只比较它们的模数即可。
同样,在设计冒口时,也不需要计算被补缩部位和冒口的凝固时间,只要它们的模数满足一定比例关系即可。