纳米粒子的制备方法综述
纳米粒子的制备方法及应用

纳米粒子的制备方法及应用纳米粒子的制备方法分为物理方法和化学方法。
物理方法主要包括雾化法、机械合金法、燃烧法等,化学方法主要包括溶胀法、微乳液法、共沉淀法、水热法等。
以下是关于纳米粒子的常见制备方法及其应用的详细介绍。
1. 雾化法:将物质通过高温、高压的气体和固液混合物的喷雾,使其迅速冷却固化,形成纳米粒子。
这种方法的特点是造粒速度快、控制性好,应用广泛。
例如,铜纳米粒子制备后可以应用于导电涂料、导电油墨等领域。
2. 机械合金法:通过机械能强化作用,将材料在高能物理场中研磨、冲击或研磨脱臭,使其形成纳米粒子。
这种方法能够制备高纯度的纳米材料,并且可以控制纳米颗粒的形貌和粒度。
例如,铁-铁氧化物纳米复合粒子可以应用于催化剂、磁性材料等领域。
3. 燃烧法:通过在适当的氧气中燃烧金属颗粒或金属盐溶液,使其生成纳米颗粒。
这种方法具有操作简单、制备快速的优点。
例如,钛纳米颗粒可以应用于太阳能电池、生物材料等领域。
4. 溶胀法:利用高分子溶胀、凝胶与干燥法,通过控制溶胀度和架链密度,形成纳米颗粒。
这种方法制备的纳米粒子具有较大的比表面积和较高的孔隙度,适用于吸附、分离等领域。
5. 微乳液法:利用表面活性剂和油水体系,通过溶胶-凝胶转化或乳化反应制备纳米颗粒。
这种方法具有制备精密、单分散的纳米颗粒的优点,例如,二氧化钛纳米颗粒可以应用于催化剂、阳光防护剂等领域。
6. 共沉淀法:将溶液中的金属离子还原后,通过慢慢加热和搅拌,使其形成纳米颗粒。
这种方法的优点是制备过程简单、成本低廉,适用于大批量生产。
例如,氧化铁纳米颗粒可以应用于医学成像、磁性流体等领域。
7. 水热法:将溶液放入高温高压设备中,在水的超临界状态下进行溶解、析出和固化,形成纳米颗粒。
这种方法制备的纳米材料具有优异的结晶度和热稳定性,广泛应用于催化剂、电池材料等领域。
纳米粒子具有特殊的物理、化学和光学性质,因此在众多领域中有重要的应用。
以下是几个典型的应用领域:1. 生物医学:纳米粒子在生物医学领域中具有广泛的应用,如药物载体、分子成像、肿瘤治疗等。
纳米粒子的制备

三、老化
沉淀产品在母液中静置 , 由于Gibbs- Thomson效 应 , 将发生小粒子溶解消失和大粒子长大现象 , 即Ostwald熟化。另外, 在反应沉淀过程中 , 首先 析出的常是介稳的固体相态, 尔后介稳相才转化 为更稳定的固体相态, 发生二次相转化, 如由一种 晶型转化为另一晶型, 由一种水化物转化为另一 种水化物 , 或由无定形沉淀物转化为晶型产品等。
聚结生长:微小晶粒形成后 , 液相体系成为两相 混合系统, 固相将向表面能最小的方向发展, 发生 聚结( aggregation)生长 , 属于扩散控制生长机理, 特点为生长基元 ( 0. 01—0. 1μ m)远大于单个原子 或分子。包括三个步骤 [ 7 ] : 由于 Brownian 运动 和流体剪切, 粒子间发生碰撞;通过弱作用力 ( Van derWarrs力 、 溶剂化力等)相互粘附 ;通过晶体 生长产生化学键而固化。纳米粒子之间 , 通常溶 剂化力等短程作用力占据主导地位。
一、成核
过程特征
成核热力学:根据经典成核理论,在均相成核过 程中存在临界晶核,只有半径r大于临界晶核r*的 晶胚,才能继续生长,以降低自由能,并最终形 成稳定晶核;而r<r*的晶胚,则将溶解。 r*=2βaσV/(3βvkBTlnS) 式中βv为晶核体积因子;βa为晶核面积因子; V为晶胚分子体积;σ为比表面自由能;kB为 Boltamann常数;S为饱和度比。 可见,提高饱和度比和降低表面自由能,均 能使r*减小,有利于制得纳米粒子。
谢谢
2017/2/28
二、生长Байду номын сангаас
界面生长:晶体界面生长,是生长基元不断从流 体相通过界面进入晶格位置的过程, 也是晶体和 流体界面不断向流体中推移的过程 。界面的微观 结构决定了晶体的生长机制, 而晶体的生长机制 又决定了其遵循的动力学规律。
纳米粒子的制备方法及应用

纳米粒子的制备方法及应用当粒子尺寸达到纳米量级时,粒子将具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应,因而表现出许多特有的性质,在催化、滤光、光吸收、医学、磁介质及新材料方面有广阔的应用前景。
综述了纳米粒子的制备方法,按研究纳米粒子的学科分类,可将其分为物理方法、化学方法和物理化学方法。
关键词:纳米粒子;制备方法;物理方法;化学方法;物理化学方法中图法分类号TF123纳米粒子指的是粒径比光波短(100nm以下)而性质处于本体和原子之间的物质。
纳米制备技术是20世纪80年代末诞生并崛起的新技术,其基本涵义是:纳米尺寸范围(10-9~10-7m)内认识和改造自然,通过直接操作和安排原子、分子创造新物质[1]。
由于纳米材料具有奇特的力学、电学、磁学、热学、化学性能等,目前正受到世界各国科学家的高度重视[2]。
1制备纳米粒子的物理方法1.1机械粉碎法机械粉碎就是在粉碎力的作用下,固体料块或粒子发生变形进而破裂,产生更微细的颗粒。
物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。
一般的粉碎作用力都是这几种力的组合,如球磨机和振动磨是磨碎与冲击粉碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。
理论上,固体粉碎的最小粒径可达0.01~0.05 µm。
然而,用目前的机械粉碎设备与工艺很难达到这一理想值。
粉碎极限取决于物料种类、机械应力施加方式、粉碎方法、粉碎工艺条件、粉碎环境等因素。
比较典型的纳米粉碎技术有:球磨、振动磨、搅拌磨、气流磨和胶体磨等。
其中,气流磨是利用高速气流(300~500m/s)或热蒸气(300~450℃)的能量使粒子相互产生冲击、碰撞、摩擦而被较快粉碎。
气流磨技术发展较快,20世纪80年代德国Alpine公司开发的流化床逆向气流磨可粉碎较高硬度的物料粒子,产品粒度达到了1~5µm。
降低入磨物粒度后,可得平均粒度1µm的产品,也就是说,产品的粒径下限可达到0.1µm以下。
纳米粒子在药物传递上的应用

纳米粒子在药物传递上的应用引言:纳米技术的发展为药物传递领域带来了前所未有的机遇。
纳米粒子作为一种特殊的载体,具有小尺寸、大比表面积、可以调控药物释放等特点,被广泛应用于药物传递系统中。
本文将就纳米粒子在药物传递上的应用进行介绍,并探讨其在治疗疾病中的潜力。
一、纳米粒子的制备方法纳米粒子的制备方法多种多样,常见的有溶剂沉淀法、胶体溶胶法、乳化法、微乳化法等。
这些方法能够合成具有不同形貌、稳定性和药物包载能力的纳米粒子,为药物传递系统的建立提供了技术基础。
二、纳米粒子在药物传递中的优势1. 提高药物的溶解度和稳定性:纳米粒子可以提高药物的溶解度,增加其表面积,从而增强药物的溶解度并提高稳定性。
2. 延长药物的血浆半衰期:纳米粒子作为一种优良的药物载体,可以延长药物在体内的停留时间,减少药物的代谢和排泄,提高药物的生物利用度。
3. 进行靶向传递:纳米粒子可以通过表面修饰或控制释放速率来实现药物的靶向传递,减少对健康组织的损伤,提高药物的疗效。
4. 控制释放速率:纳米粒子可以通过调整其制备方法和材料组成来控制药物的释放速率,实现持续、缓释的药物释放,提高药物的疗效。
三、纳米粒子在治疗疾病中的应用1. 癌症治疗:纳米粒子可以通过增加药物在肿瘤组织中的积累从而提高药物的治疗效果。
此外,纳米粒子还可以通过光动力疗法和热疗法等进行肿瘤靶向治疗,提高治疗效果并减少对健康组织的损伤。
2. 炎症治疗:纳米粒子可以用于传递抗炎药物,通过靶向输送药物到炎症灶点,减轻炎症反应,缓解炎症症状。
3. 神经疾病治疗:纳米粒子可以提供针对中枢神经系统的靶向传递系统,增加药物穿越血脑屏障的机会,用于治疗神经疾病,如阿尔茨海默病和帕金森病等。
四、纳米粒子在药物传递中的挑战及解决方案1. 生物相容性问题:纳米粒子在体内存在一定的生物相容性问题,可能引起免疫反应或毒性反应。
为了解决这一问题,可以进行材料表面修饰,减少对机体的损伤。
2. 药物稳定性问题:纳米粒子对药物的稳定性要求较高,需要选择适合的包载材料和包载方法,确保药物能够稳定地存在于纳米粒子内。
纳米粒子合成及制备方法详解

纳米粒子合成及制备方法详解引言:纳米科学与技术作为近年来迅速发展的一门跨学科前沿科技,已经在能源、信息、材料等诸多领域展示出巨大潜力和广阔前景。
纳米粒子作为纳米科学的基本研究对象和应用载体,在纳米技术的发展中发挥着重要的作用。
本文将详细介绍纳米粒子的合成及制备方法,希望能对相关领域的研究者和科技工作者有所帮助。
一、纳米粒子的概念和应用纳米粒子是指其尺寸在纳米尺度范围内的微观颗粒,一般指的是直径小于100纳米的粒子。
由于纳米颗粒具有较大的比表面积和特殊的物理、化学性质,因此在材料科学、生物医学、环境科学等领域具有广泛的应用潜力。
例如,纳米金属颗粒可用于催化、传感、光学等领域;纳米二氧化硅颗粒可应用于材料增强剂、药物传递等领域。
因此,精确控制纳米粒子的合成具有重要意义。
二、纳米粒子的合成方法纳米粒子的合成方法包括物理法、化学法和生物法三种。
下面将详细介绍各种方法的原理和应用。
1. 物理法物理法合成纳米粒子主要包括溅射、热蒸发、气相法等。
其中,溅射法是通过高能束流轰击目标材料,使其产生离子、激发原子等,然后粒子重新沉积到基底上形成纳米粒子。
热蒸发则是将目标材料加热蒸发,蒸发产生的蒸汽凝结成纳米粒子。
气相法是通过控制气体中原子或分子的浓度等条件,使其发生聚集形成纳米粒子。
2. 化学法化学法合成纳米粒子常用的方法有溶胶-凝胶法、沉积法、还原法等。
溶胶-凝胶法是将溶胶中的金属离子或化合物在合适的条件下凝胶成固体,然后通过烧结或后处理得到纳米粒子。
沉积法是通过在基底上沉积材料薄膜后,利用溶剂或气体处理得到纳米粒子。
还原法是通过还原剂将金属离子还原为金属纳米粒子的方法。
3. 生物法生物法合成纳米粒子是利用生物体内的生物酶、微生物、植物等作为催化剂,通过调控生物体内的酶活性和环境条件,合成纳米粒子。
生物法合成纳米粒子具有绿色、环保的特点,并且操作简便、成本低廉。
三、纳米粒子的制备方法纳米粒子的制备方法主要包括溶剂法、凝胶法、气相法等。
聚合物纳米粒子的制备、表征以及作为药物载体的初步应用

聚合物纳米粒子的制备、表征以及作为药物载体的初步应用一、本文概述本文旨在探讨聚合物纳米粒子的制备技术、表征方法,以及它们作为药物载体的初步应用。
随着纳米科技的快速发展,聚合物纳米粒子作为一种新型的纳米材料,已经在生物医药、药物递送、生物成像等领域展现出巨大的应用潜力。
本文将首先概述聚合物纳米粒子的基本特性,包括其尺寸、形貌、表面性质等,然后详细介绍其制备方法,包括乳液聚合法、溶剂挥发法、自组装法等。
接着,本文将阐述聚合物纳米粒子的表征技术,如透射电子显微镜(TEM)、动态光散射(DLS)、原子力显微镜(AFM)等,并讨论这些技术在聚合物纳米粒子表征中的应用。
本文将初步探讨聚合物纳米粒子作为药物载体的可行性,包括其在药物包封、药物释放、细胞摄取和生物相容性等方面的研究进展,以期为未来聚合物纳米粒子在药物递送领域的应用提供有益的参考。
二、聚合物纳米粒子的制备方法聚合物纳米粒子的制备方法多种多样,主要包括乳液聚合法、微乳液聚合法、纳米沉淀法、自组装法等。
这些方法的选择主要依赖于所需的纳米粒子尺寸、形态、稳定性以及功能化需求。
乳液聚合法是一种常用的制备聚合物纳米粒子的方法。
该方法通常在含有乳化剂的水相中进行,将单体分散在水相中形成乳液,然后通过引发剂引发单体聚合,最终得到聚合物纳米粒子。
通过调整乳化剂的类型和浓度、单体浓度、引发剂种类和浓度等因素,可以控制纳米粒子的尺寸和形态。
微乳液聚合法是乳液聚合法的改进,其中单体和引发剂在表面活性剂形成的微乳液滴中进行聚合。
这种方法可以获得尺寸更小、分布更均匀的纳米粒子。
通过调整微乳液的组成和聚合条件,可以实现对纳米粒子尺寸和形态的精确控制。
纳米沉淀法是一种简单而有效的制备聚合物纳米粒子的方法。
该方法通常是将聚合物溶解在良溶剂中,然后逐渐加入不良溶剂或改变溶液pH值,使聚合物从溶液中沉淀出来形成纳米粒子。
通过控制沉淀条件和后续处理,可以得到不同尺寸和形态的纳米粒子。
纳米技术中的纳米粒子

纳米技术中的纳米粒子纳米技术是一种跨学科的技术,可应用于医学、材料科学、计算机科学、能源等领域。
纳米粒子作为纳米技术的重要组成部分,具有其独特的优势和应用。
一、纳米粒子的定义和性质纳米粒子是一种直径在1到100纳米之间的粒子,其直径小于一百分之一的毫米。
纳米粒子比其它大分子更易溶解和稳定,具有高比表面积和特殊的物理和化学性质。
与大颗粒相比,纳米粒子具有更高的反应速率、更高的催化活性和更强的光学特性,因此具有非常广泛的应用前景。
二、纳米粒子的制备方法纳米粒子的制备方法包括物理法、化学法和生物法三种。
物理法主要通过高能球磨、蒸发凝结、溅射和激光等方法制备纳米材料;化学法主要通过共沉淀、溶胶-凝胶、沉淀、还原等方法制备纳米材料;生物法则利用生物学原理获得纳米材料。
三、纳米粒子的应用1. 医学应用纳米粒子可以用于制备新型的药物递送系统,用于传递药物以达到更好的治疗效果。
同时,纳米粒子还可以应用于基因治疗、细胞成像、生物传感等方面。
2. 环境治理纳米粒子可以用于污染物的检测和净化,也可以用于修复环境污染。
比如,利用TiO2 纳米粒子可以提高污水的净化速度,利用Fe3O4 纳米粒子可以去除水中的重金属等有害物质。
3. 材料科学纳米粒子可以用于改善材料的性能,制备出更为优越的材料。
比如纳米金属材料具有良好的导电特性和光学特性,能够用于制作太阳能电池和化学传感器等领域。
4. 能源纳米粒子可以用于提高电池和储能器的性能,同时也可以用于制备高性能的光电转换材料。
在可再生能源方面,利用纳米粒子可以有效的提高太阳能电池的转化效率。
四、纳米粒子的安全性纳米粒子的安全性一直是人们关注的一个问题。
作为一种新型材料,目前对纳米粒子的毒性研究还没有太多的数据支持,但是近年来对其安全性的研究和探索已经逐渐开展,需要进一步深入的研究。
五、结语纳米粒子作为一种重要的纳米技术应用材料,具有许多优势和应用前景。
随着纳米技术的深入研究和应用,我们相信纳米粒子一定会在更多领域发挥其重要的作用。
核壳纳米粒子的合成方法及性质研究综述

科教论坛ScienceandEducationForum核壳纳米粒子的合成方法及性质研究综述文/江健林 刘松 吴昱均 王铭樟 田雪梅 王晓芳摘要:基于核壳纳米粒子优越的性能,其可控的制备以及相应的性质是现代材料科学的研究热点,本课题主要综述了机械混合反应法、新型溶胶-凝胶法、微乳液聚方式、氧化还原-重金属化法、沉淀法等核壳纳米粒子合成方法,并以核壳TiO2纳米颗粒为例,综述了对其光电催化性能的研究成果。
关键词:核壳纳米粒子;氧化还原;TiO2。
1 前言在20世纪初,美国国家纳米技术计划(NNI)预测纳米技术的发展将处于两个基本阶段。
首先,通过合并简单的纳米结构并发现其新的纳米级性能来改善现有产品。
其次,开发兼具安全性和多功能性的新型复杂纳米系统。
如今,纳米粒子和纳米结构的发展已在各个层面上广泛开展,其影响已广泛传播到几乎所有科学技术领域,例如材料科学,光学,电子,传感器,能源,太阳能电池,医学,药物输送和生物应用。
开发纳米颗粒多功能性的一种常见方法是将各种形式的材料组合在一起,例如有机-有机、有机-无机、无机-无机、有机-生物等形式作为双金属纳米复合材料或核壳纳米颗粒。
核壳纳米粒子是成功的多组分纳米材料,其中包括众多功能,具有较好的发展前景,受到人们关注[6–8]。
因此,本文对核壳纳米粒子的部分研究成果进行分析,对其合成方法做了简要综述,并重点总结了核壳TiO2纳米例子及其光电催化性能的研究成果。
2 核壳纳米结构粒子的相关合成方法2.1 机械混合反应法与大多数传统合成方法相反,机械混合反应能在不高温、不复杂的条件下合成核壳纳米粒子,具有简单,高效、快速的特点。
2016年Mojgan Ghanbar采用新型的机械混合反应物法合成制备并表征了TiCdI3纳米结构。
选择了硝酸铊、硝酸镉和碘化锂作为起始试剂,在室温条件下制备了用于合成TiCdI3的CdI2和TiI。
TiCdI3的形貌、相结构和相纯度可以由TiI:CdI2的比例控制,也可以通过调节表面活性剂的种类来控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米粒子的制备方法综述
摘要:
纳米材料是近期发展起来的一种多功能材料。
在纳米材料的当前研究中,其制备方法占有极其重要的地位,新的制备工艺过程的研究与控制对纳米材料的微观结构和性能具有重要的影响。
本文主要概述了纳米材料传统的及最新的制备方法。
纳米材料制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。
[1]
Abstract :
Nanometer material is a kind of multi-functional material which was developed in recend . In the current study of it , its produce-methods occupy the important occupation . New methods’ reseach and control have an important influence on Nanometer materials’microstructure and property .This title mainly introduces nanometer materials’traditional and new method of producing . The key of the nanometer material s’ producing Is how to control the grain size and get the narrow and uniform size distribution .
关键词:
纳米材料制备方法
Key words :
Nanometer material produce-methods
正文:
纳米材料的制备方法主要包括物理法,化学法和物理化学法等三大类。
下面分别从三个方面介绍纳米材料的制备方法。
物理制备方法
早期的物理制备方法是将较粗的物质粉碎,其最常见的物理制备方法有以下三种:
1.真空冷凝法
用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。
其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。
1.物理粉碎法
通过机械粉碎、电火花爆炸等方法得到纳米粒子。
其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。
2.机械球磨法
采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。
其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀[2]。
近年来一些新的制备纳米材料的物理方法被发现,如旋转涂层法将聚苯乙烯微球涂敷到基片上,由于转速不同,可以得到不同的空隙度。
然后用物理气相沉积法在其表面上沉积一层银膜,经过热处理,即可得到银纳米颗粒的阵列。
中科院物理所开发了对玻璃态合金进行压力下纳米晶化的方法。
例如:ZrTiCuBeC玻璃态合金在6GPa和623K的条件下进行晶化,可以制备出颗粒尺寸小于5nm的纳米晶。
[3]
化学制备方法
1.固相法
固相法包括固相物质热分解法和物理粉碎法。
固相物质热分解法是利用金属化合物的热分解来制备超微粒,但其粉末易固结,还需再次粉碎,成本较高。
物理粉碎是通过机械粉碎、电火花爆炸等法制得纳米粒子。
其原理是利用介质和物料间相互研磨和冲击,以达到微粒的超细化,但很难使粒径小于100纳米。
机械合金法(MA)是1970年美国INCO公司Benjamin为制作镍的氧化物粒子弥散强化合金而研制成功的一种新工艺。
[4] 该法工艺简单,制备效率高,并能制备出常规法难以获得的高熔点金属或合金纳米材料,成本较低但易引进杂质,降低纯度,颗粒分布也不均匀。
近年来,助磨剂物理粉碎法和超声波粉碎法的采用,可制得粒径小于100纳米的微粒。
但仍然存在上述不足,故固相法还有待继续深入研究。
2.气相法
气相法在纳米微粒制造技术中占有重要地位,利用此法可以制造出纯度高、颗粒分布性好、粒径分布窄而细的纳米超微粒。
尤其是通过控制气氛,可制备出液相法难以制备的金属碳化物、硼化物等非氧化物的纳米超微粒.该法主要包括:
3.真空蒸发—冷凝法
在高纯惰性气氛下(Ar、He) ,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。
在1987年,Biegles等采用此法又成功制备了纳米级TiO2陶瓷材料。
4.高压气体雾化法
该法是利用高压气体雾化器将- 2 0~40℃的氢气和氩气以3倍于音速的速度射入熔融材料的液体内,熔体被破碎成极细颗粒的射流然后急剧骤冷得到超微粒。
采用此法可得到粒度分布窄的纳米材料。
5.高频感应加热法
以高频感应线圈作热源,使坩埚内的物质在低压(1~10kPa)的He、N2等惰性气体中蒸发,蒸发后的金属原子与惰性气体原子相碰撞,冷却凝聚成颗粒.该法的优点是产品纯度高,粒度分布窄,保存性好,但成本较高,难以蒸发高沸点的金属.
此外,还有溅射法、气体还原法、化学气相沉淀法和粒子气相沉淀法。
作为特殊方法,用爆炸法可制备纳米金刚石,用低压燃烧法制备SiO2、Al2O3等多种纳米材料。
[5]
6.液相法
80年代以来,随着对材料性能与结构关系的深入研究,出现了液相法实现纳米“超结构过程”的基本途径。
这是依据化学手段,在不需要复杂仪器的前提下,通过简单的溶液过程就可对性能进行“剪裁”。
液相法主要有以下几种:
7.沉淀法
该法包括直接沉淀法、均匀沉淀法和共沉淀法。
直接沉淀法是仅用沉淀操作从溶液中制备氧化物纳米微粒的方法。
均匀沉淀法通过控制生成沉淀的速度,减少晶粒凝聚,可制得高纯度的纳米材料。
共沉淀法是把沉淀剂加入混合后的金属溶液中,然后加热分解获得超微粒。
8.溶胶—凝胶法
溶胶—凝胶法可制备传统制备方法不能制得的产物,尤其对制备非晶态材料显得尤为重要,溶胶—凝胶法包括金属醇盐和非醇盐两种方法。
[6]
9.水解反应法
依据水热反应的类型不同,可分为水热氧化、还原、合成、分解和结晶等几种。
其原理是在水热条件下加速粒子反应和促进水解反应。
10.胶体化学法
采用粒子交换法、化学絮凝法、胶溶法制得透明性金属氧化物的水凝胶,以阴粒子表面活性剂[如DBS]进行憎水处理,然后用有机溶剂冲洗制得有机胶体,经脱水和减压蒸馏,在低于表面活性剂的热分解温度的条件下,制得无定性球状纳米材料。
11.溶液蒸发和热分解法
该法包括喷雾干燥、燃烧等方法,它用于盐溶液快速蒸发、升华、冷凝和脱水过程,避免了分凝作用,能制得均匀盐类粉末。
若将一定配比的金属盐溶液用粒子喷雾器在干燥室内与不同浓度的气流接触,快速蒸发分解该盐溶液,即可得到纳米微粒。
物理化学方法
1.热等离子体法
该法是用等离子体将金属等粉末熔融、蒸发和冷凝以制成纳米微粒,是制备高纯、均匀,粒径小的氧化物、氮化物、碳化物系列,金属系列和金属合金系列纳米微粒的最有效方法;同时为高沸点金属的各种系列纳米微粒以及含有挥发性组分合金的制备开辟了前景。
新开发出的电弧法混合等离子体法弥补了传统等离子体法存在的等离子枪寿命短、功率小、热效率低等缺点。
2.激光加热蒸气法
以激光为快速加热热源,使气相反应物分子内部很快地吸收和传递能量,在瞬间完成气体反应的成核、长大和终止。
该法可迅速生成表面洁净、粒径小于50纳米,粒度均匀可控的纳米微粒。
3.电解法
它包括水溶液和熔盐电解两种方法。
用此法可制得高纯金属超微粒,尤其是电负性大的金属粉末。
4.辐射合成法
用辐射合成法制备纳米材料具有明显的特点:一般采用γ射线辐照较大浓度的金属盐溶液。
[7]制备工艺简单,可在常温常压下操作,制备周期短,产物粒
度易控制,一般可得 1 0纳米左右的粉末,产率较高,不仅可制备纯金属粉末,还可制备氧化物、硫化物纳米粒子及纳米复合材料。
通过控制条件可制备非晶粉末.所以纳米材料的辐射法制备近年来得到了很大的发展。
纳米微粒的制备除上述方法外,还有一些其他新方法,如模板合成法,利用纳米多孔材料的纳米孔或纳米管道为模板,可获得粒径可控,易掺杂和反应易控制的纳米粒子;自组装法,用此法可制造中空的纳米球或纳米管。
[8]另外,利用多孔模板用自组装法制出了较大的纳米金属团簇和纳米金属线,外层有配体起到稳定化的作用;有序LB膜法,用还原法制备金属颗粒和贵金属纳米颗粒;用DVA特异功能制备纳米颗粒等方法。
参考文献:
[1] 张立德,牟季美.纳米材料和纳米结构[M].科学出版社,2001.2.
[2] 张飞虎等. ELID 磨削—硬脆材料精密和超精密加工的新技术[J].宇航材料工艺, 1999(1):57
[3] 陈壹华等. 碳纳米材料制备方法及其应用特性[J]. 炭素技术2008 (6):28-32.
[4] 徐国才, 张立德. 纳米复合材料[M].北京: 化学工业出版社,2002:92- 94.
[5] Yamamoto K,koga Y,FujiwaraS ,etal.New method of carbon nanotube growth by ion-beam irradition [J] . Applphys Lett,1996, 69(27):4171- 4179.
[6]倪星元等.纳米材料制备技术.化学工业出版社,2008.1
[7] 殷亚东,张志成.纳米材料的辐射合成法制备[J]化学通报,1998(12) :21-24.
[8] 马如璋,蒋民华等. 功能材料学概论[M] .冶金工业出版社,1999.。