集合的概念与集合的表示方法习题

合集下载

完整版)人教版高一数学必修一集合知识点以及习题

完整版)人教版高一数学必修一集合知识点以及习题

完整版)人教版高一数学必修一集合知识点以及习题高一数学必修第一章集合1.集合的概念集合是指一定范围内、确定的、可区别的事物,将其作为一个整体来看待,就叫做集合,简称集。

其中的各事物叫作集合的元素或简称元。

集合的元素具有三个特性:确定性、互异性和无序性。

确定性指元素是明确的,如世界上最高的山。

互异性指元素是不同的,如由HAPPY的字母组成的集合{H,A,P,Y}。

无序性指元素的排列顺序不影响集合的本质,如{a,b,c}和{a,c,b}是同一个集合。

集合可以用大括号{…}表示,如{我校的篮球队员}、{太平洋,大西洋,印度洋,北冰洋}。

集合也可以用拉丁字母表示,如A={我校的篮球队员},B={1,2,3,4,5}。

集合的表示方法有列举法和描述法。

常用的数集及其记法有:非负整数集(即自然数集)记作N,正整数集记作N*或N+,整数集记作Z,有理数集记作Q,实数集记作R。

2.集合间的关系集合间有包含关系和相等关系。

包含关系又称为“子集”,表示一个集合的所有元素都属于另一个集合。

如果集合A的所有元素都属于集合B,则称A是B的子集,记作A⊆B。

如果A和B是同一集合,则称A是B的子集,记作A⊆B。

反之,如果集合A不包含于集合B,或集合B不包含于集合A,则记作A⊈B或B⊈A。

相等关系表示两个集合的元素完全相同,记作A=B。

真子集是指如果A⊆B,且A≠B,则集合A是集合B的真子集,记作A⊂B(或B⊃A)。

如果XXX且B⊆C,则A⊆C。

如果XXX且B⊆A,则A=B。

空集是不含任何元素的集合,记为Φ。

规定空集是任何集合的子集,空集是任何非空集合的真子集。

3.集合的运算集合的运算包括交集、并集和补集。

交集是由所有属于A 且属于B的元素所组成的集合,记作A∩B。

并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B。

补集是由S中所有不属于A的元素所组成的集合,记作A的补集。

如果S是一个集合,A是S的一个子集,则A的补集为由S中所有不属于A的元素组成的集合。

集合的表示方法练习题

集合的表示方法练习题

集合的表示方法练习题集合是数学中一种基本概念,用于描述具有某种共同特征的对象的总体。

在数学和计算机科学中,我们通常使用不同的表示方法来表达集合。

下面是一些关于集合表示方法的练习题,帮助我们加深对集合概念的理解。

1. 请使用无穷集合的列举法表示下面的集合:a) 自然数集合b) 偶数集合c) 素数集合2. 请用条件法表示下面的集合:a) 正整数集合b) 能被3整除的正整数集合c) 能被5整除但不能被3整除的正整数集合3. 请使用描述法表示下面的集合:a) 奇数集合b) 包含元音字母的英文字母集合c) 包含元音字母但不包含辅音字母的英文字母集合4. 请写出下面集合的幂集:a) {1, 2}b) {a, b, c}c) {x, y, z}5. 请使用集合的运算给出下面集合的表达式:a) A∩B (表示两个集合的交集)b) A∪B (表示两个集合的并集)c) A-B (表示从集合A中减去集合B的元素)6. 给定集合A={1, 2, 3}和B={3, 4, 5},请使用集合的运算给出下面集合的表达式:a) A∩B - {3}b) (A∪B)- {1, 2}7. 请写出下面条件集合的对应的集合表示方式:a) {x | x是偶数,且x<10}b) {x | x是奇数,且x>5}c) {x | x是负整数,且|x|<5}这些练习题帮助我们通过不同的集合表示方法来加深对集合概念的理解和运用。

通过更多的实践和练习,我们可以更熟练地使用集合表示方法,并能够更好地解决相关问题。

总的来说,集合是数学中的基本概念,用于描述具有共同特征的对象的总体。

在数学和计算机科学中,我们可以使用不同的表示方法来表达集合。

这些练习题帮助我们加深对集合表示方法的理解,提高我们在解决问题时对集合运算和集合表达的熟练程度。

通过不断的练习和实践,我们可以更好地理解集合概念,并运用它们解决实际问题。

集合知识点总结及习题

集合知识点总结及习题

集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。

、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/nA A ABC A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。

、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。

真子集:若且(即至少存在但),则是的真子集。

集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩一、集合有关概念 1. 集合的含义2. 集合的中元素的三个特性: (1)元素确实定性如:世界上最高的山(2)元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.元素与集合的关系——〔不〕属于关系 〔1〕集合用大写的拉丁字母A 、B 、C …表示元素用小写的拉丁字母a 、b 、c …表示〔2〕假设a 是集合A 的元素,就说a 属于集合A,记作a ∈A;假设不是集合A 的元素,就说a 不属于集合A,记作a ∉A;4.集合的表示方法:列举法与描述法。

高中数学集合的含义及其表示练习题

高中数学集合的含义及其表示练习题

高中数学集合的含义及其表示练习题(含解析)数学必修1(苏教版)1.1 集合的含义及其表示一位渔民专门喜爱数学,但他如何也不明白集合的意义,因此他请教数学家:“尊敬的先生,请您告诉我,集合是什么?”集合是不定义的原始概念,数学家专门难回答那位渔民,有一天,他来到渔民的船上,看到渔民撒下鱼网,轻轻一拉,许多鱼虾在网上跳动,数学家专门兴奋,快乐地告诉渔民:“这确实是集合!”你能明白得数学家的话吗?基础巩固1.下列说法正确的是()A.我校爱好足球的同学组成一个集合B.{1,2,3}是不大于3的自然数组成的集合C.集合{1,2,3,4,5}和{5,4,3,2,1}表示同一集合D.数1,0,5,12,32,64,14组成的集合有7个元素答案:C2.若集合A={-1,1},B={0,2},则集合{z|z=x+y,xA,yB}中的元素个数为()A.5个B.4个C.3个D.2个答案:C3.下列四个关系中,正确的是()A.a{a,b} B.{a}{a,b}C.a{a} D.a{a,b}答案:A4.集合M={(x,y)|xy0,xR,yR}是()A.第一象限内的点集B.第三象限内的点集C.第四象限内的点集D.第二、四象限内的点集解析:集合M为点集且横、纵坐标异号,故是第二、四象限内的点集.答案:D5.若A={(2,-2),(2,2)},则集合A中元素的个数是()A.1个B.2个C.3个D.4个答案:B6.集合M中的元素差不多上正整数,且若aM,则6-aM,则所有满足条件的集合M共有()A.6个B.7个C.8个D.9个解析:由题意可知,集合M中包含的元素能够是3,1和5,2和4中的一组,两组,三组,即M可为{3},{1,5},{2,4},{3,1,5},{3,2,4},{1,5,2,4},{3,1,5,2,4},共7个.答案:B7.下列集合中为空集的是()A.{xN|x2 B.{xR|x2-1=0}C.{xR|x2+x+1=0} D.{0}答案:C8.设集合A={2,1-a,a2-a+2},若4A,则a=()A.-3或-1或2 B-3或-1C.-3或2 D.-1或2解析:当1-a=4时,a=-3,A={2,4,14};当a2-a+2=4时,得a =-1或2,当a=-1时,A={2,2,4},不满足互异性,当a=2时,A={2,4,-1}.a=-3或2.答案:C9.集合P={x|x=2k,kZ},Q={x|x=2k+1,kZ},M={x|x=4k+1,kZ},若aP,bQ,则有()A.a+bPB.a+bQC.a+bMD.a+b不属于P、Q、M中任意一个解析:∵aP,bQ,a=2k1,k1Z,b=2k2+1,k2Z,a+b=2(k1+k2)+1,k1,k2Z,a+bQ.答案:B10.由下列对象组成的集体,其中为集合的是________(填序号).①不超过2的正整数;②高一数学课本中的所有难题;③中国的高山;④平方后等于自身的实数;⑤高一(2)班中考500分以上的学生.答案:①④⑤11.若a=n2+1,nN,A={x|x=k2-4k+5,kN},则a与A的关系是________.解析:∵a=n2+1=(n+2)2-4(n+2)+5,且当nN时,n+2N.答案:aA12.集合A={x|xR且|x-2|5}中最小整数为_______.解析:由|x-2|-5x-2-37,最小整数为-3.答案:-313.一个集合M中元素m满足mN+,且8-mN+,则集合M的元素个数最多为________.答案:7个14.下列各组中的M、P表示同一集合的是________(填序号).①M={3,-1},P={(3,-1)};②M={(3,1)},P={(1,3)};③M={y|y=x2-1,xR},P={a|a=x2-1,xR};④M={y|y=x2-1,xR},P={(x,y)|y=x2-1,xR}.答案:③能力提升15.已知集合A={x|xR|(a2-1)x2+(a+1)x+1=0}中有且仅有一个元素,求a的值.解析:(1)若a2-1=0,则a=1.当a=1时,x=-12,现在A=-12,符合题意;当a=-1时,A=,不符合题意.(2)若a2-10,则=0,即(a+1)2-4(a2-1)=0a=53,现在A=-34,符合题意.综上所述,a=1或53.16.若集合A=a,ba,1又可表示为{a2,a+b,0},求a2021+b202 1的值.解析:由题知a0,故ba=0,b=0,a2=1,a=1,又a1,故a=-1.a2021+b2021=(-1)2021+02021=1.17.设正整数的集合A满足:“若xA,则10-xA”.(1)试写出只有一个元素的集合A;(2)试写出只有两个元素的集合A;(3)如此的集合A至多有多少个元素?解析:(1)令x=10-xx=5.故A={5}.(2)若1A,则10-1=9A;反过来,若9A,则10-9=1A.因此1和9要么都在A中,要么都不在A中,它们总是成对地显现在A中.同理,2和8,3和7,4和6成对地显现在A中,故{1,9}或{2,8}或{3,7}或{4,6}为所求集合.(3)A中至多有9个元素,A={1,9,2,8,3,7,4,6,5}.18.若数集M满足条件:若aM,则1+a1-aM(a0,a1),则集合M中至少有几个元素?解析:∵aM,1+a1-aM,1+1+a1-a1-1+a1-a=-1aM,与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。

高中数学新教材A版1.1 集合及其表示方法经典练习题

高中数学新教材A版1.1 集合及其表示方法经典练习题

1.1 集合及其表示方法1.集合的基本概念;2. 元素和集合的关系;3. 用列举法表示集合;4. 用描述法表示集合;5. 集合中元素的互异性;6.集合中元素的个数;7. 集合的新定义问题一、单选题1.(2020·浙江高一课时练习)下列四组对象中能构成集合的是( ). A .本校学习好的学生 B .在数轴上与原点非常近的点 C .很小的实数D .倒数等于本身的数2.(2020·朝阳吉林省实验高二期末(文))集合{|32}x x ∈-<N 用列举法表示是 A .{1,2,3,4} B .{1,2,3,4,5} C .{0,1,2,3,4,5}D .{0,1,2,3,4}3.(2020·浙江高二学业考试)已知集合{}13A x R x =∈<<,则下列关系正确的是( ) A .1A ∈B .2A ∉C .3A ∈D .4A ∉4.(2020·宁夏兴庆银川一中高二期末(文))已知集合{}|21,A x x x Z =-<≤∈,则集合A 中元素的个数为( ) A .0B .1C .2D .35.(2020·全国高三专题练习(文))设集合{0,1,2,3}A =,{},1B x x A x A =-∈-∉,则集合B 中元素的个数为( ) A .1 B .2 C .3D .46.(2020·浙江高一课时练习)已知集合{},A x x a π==∣,则a 与集合A 的关系是( ).A .a A ∈B .a A ∉C .a A =D .{}a A ∈7.(2020·浙江高一课时练习)下面四个命题正确的个数是( ). ①集合*N 中最小的数是1; ②若*N a -∈,则*N a ∈;③若**N ,N a b ∈∈,则+a b 的最小值是2; ④296+=x x 的解集是{}3,3. A .0B .1C .2D .38.(2020·全国高一)有下列四个命题: ①{0}是空集;②若a N ∈,则a N -∉;③集合2{|210}A x R x x =∈-+=有两个元素; ④集合6B x NN x ⎧⎫=∈∈⎨⎬⎩⎭是有限集. 其中正确命题的个数是( ) A .0B .1C .2D .39.(2020·朝阳吉林省实验高二期末(文))已知非零实数a ,b ,c ,则代数式||||||a b cb ac ++表示的所有的值的集合是( ) A .{3}B .{3}-C .{3,3}-D .{3,3,1,1}--10.(2020·吴起高级中学高二月考(文))若{}22111a a ∈++,,,则a =( ) A .2 B .1或-1C .1D .-1二、多选题11.(2019·全国高一课时练习)下列表示正确的是( ) A .0∈NB .27∈Z C .3-∉Z D .π∉Q E.13∈Q12.(2019·全国高一课时练习)(多选)下面四个说法中错误的是( ) A .10以内的质数组成的集合是{}2,3,5,7B .由1,2,3组成的集合可表示为{}1,2,3或{}3,1,2C .方程2210x x -+=的所有解组成的集合是{}11,D .0与{}0表示同一个集合13.(2019·全国高一课时练习)下列是集合{(,)|1,,}M x y x y x y =+≤∈∈N N 中元素的有( ) A .(0,0)B .(0,1)C .(1,0)D .(2,1)-E.(1,2)-14.(2020·全国高一课时练习)实数1是下面哪一个集合中的元素( ) A .整数集Z B .{||||x x x =C .{|11}x x ∈-<<ND .1|01x x x -⎧⎫∈≤⎨⎬+⎩⎭R E.1|01x x x +⎧⎫∈≤⎨⎬-⎩⎭R 三、填空题15.(2020·浙江高一课时练习)已知集合6{|N ,}5A x x Z x*=∈∈-,用列举法表示为____________. 16.(2020·全国高一)已知集合(){}21,1A m m =+-,若1A ∈,则m =______.17.(2020·全国高一课时练习)用符号“∈”或“∉”填空:(1)2_____N ;(2Q ;(3)13______Z ;(4)3.14______R ;(5)3-______N ;(6Q . 18.(2020·全国高一课时练习)用符号“∈”或“∉”填空: (1)0______∅;(2)2-_______2{|5}x x <;(3)(2,3)_______{(,)|23}x y x y +=;(4)2017_______{|41,}x x n n =-∈Z .19.(2019·海口市第四中学高一月考)用列举法表示集合**{(,)|5,,}A x y x y x y =+=∈∈N N 是_____________________;用描述法表示“所有被4除余1的整数组成的集合”是_____________________.20.(2019·全国高一课时练习)由实数x ,x -,x 所组成的集合中最多含______个元素,最少含______个元素.21.(2020·全国高一课时练习)(1)若23{1,3,1}m m m ∈--,则实数m =_____;(2)若2{|0}x x a ∉->,则实数a 的取值范围是______. 四、解答题22.(2020·全国高一)用列举法表示下列集合: (1){}2|9A x x ==; (2){|12}B x N x =∈≤≤;(3){}2|320C x x x =-+=.23.(2020·浙江高一课时练习)试说明下列集合各表示什么?1|A y y x ⎧⎫==⎨⎬⎩⎭;{|B x y ==;()1,|C x y y x ⎧⎫==⎨⎬⎩⎭(),|13y D x y x ⎧⎫==⎨⎬-⎩⎭;{}0,1E x y ===;{}1,1F x y x y =+=-=-.24.(2020·全国高一)用合适的方法表示下列集合,并说明是有限集还是无限集. (1)到A 、B 两点距离相等的点的集合 (2)满足不等式21x >的x 的集合 (3)全体偶数 (4)被5除余1的数 (5)20以内的质数(6){(,)|6,,}x y x y x N y N **+=∈∈ (7)方程()0,x x a a R -=∈的解集25.(2020·全国高一)已知22{1,251,1}A a a a a =-+++,2A -∈,求实数a 的值.26.(2020·上海高一课时练习)当实数a 、b 满足什么条件时,集合{}0A x ax b =+=是有限集、无限集、空集?27.已知集合A ={x |ax 2-3x +2=0}. (1)若A 是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.1.1 集合及其表示方法1.集合的基本概念;2. 元素和集合的关系;3. 用列举法表示集合;4. 用描述法表示集合;5. 集合中元素的互异性;6.集合中元素的个数;7. 集合的新定义问题一、单选题1.(2020·浙江高一课时练习)下列四组对象中能构成集合的是( ). A .本校学习好的学生 B .在数轴上与原点非常近的点 C .很小的实数 D .倒数等于本身的数【答案】D 【解析】集合中的元素具有确定性,对于,,A B C ,学习好、非常近、很小都是模糊的概念,没有明确的标准,不符合确定性;对于D ,符合集合的定义,D 正确. 故选:D .2.(2020·朝阳吉林省实验高二期末(文))集合{|32}x x ∈-<N 用列举法表示是 A .{1,2,3,4} B .{1,2,3,4,5} C .{0,1,2,3,4,5} D .{0,1,2,3,4}【答案】D 【解析】分析:解出不等式得5x <,小于5的自然数有5个. 详解:由题意5x <,又x ∈N ,∴集合为{0,1,2,3,4}.3.(2020·浙江高二学业考试)已知集合{}13A x R x =∈<<,则下列关系正确的是( ) A .1A ∈ B .2A ∉C .3A ∈D .4A ∉【答案】D 【解析】因为集合{}13A x R x =∈<<,所以1A ∉,2A ∈,3A ∉,4A ∉ 故选:D4.(2020·宁夏兴庆银川一中高二期末(文))已知集合{}|21,A x x x Z =-<≤∈,则集合A 中元素的个数为( ) A .0 B .1C .2D .3【答案】D 【解析】{}{}|21,1,0,1A x x x Z =-<≤∈=-,所以集合A 中元素的个数为3.5.(2020·全国高三专题练习(文))设集合{0,1,2,3}A =,{},1B x x A x A =-∈-∉,则集合B 中元素的个数为( ) A .1 B .2 C .3 D .4【答案】A 【解析】因为x ∈B ,-x ∈A ,故x 只可能是0,-1,-2,-3,又1-x ∉A ,则 当0∈B 时,1-0=1∈A ,不符合题意; 当-1∈B 时,1-(-1)=2∈A ,不符合题意; 当-2∈B 时,1-(-2)=3∈A ,不符合题意; 当-3∈B 时,1-(-3)=4∉A ,符合题意. 所以{3}B =-,故集合B 中元素的个数为1. 故选:A6.(2020·浙江高一课时练习)已知集合{},A x x a π==∣,则a 与集合A 的关系是( ).A .a A ∈B .a A ∉C .a A =D .{}a A ∈【答案】B 【解析】1.732≈≈ 3.146≈π>,∴a A ∉.故选:B.7.(2020·浙江高一课时练习)下面四个命题正确的个数是( ). ①集合*N 中最小的数是1; ②若*N a -∈,则*N a ∈;③若**N ,N a b ∈∈,则+a b 的最小值是2; ④296+=x x 的解集是{}3,3. A .0B .1C .2D .3【解析】*N 是正整数集,最小的正整数是1,故①正确;当0a <时,*a N -∈,但*a N ∉,故②错误;若*a N ∈,则a 的最小值为1.又*b N ∈,则b 的最小值为1,当a 和b 都取最小值时,+a b 取最小值2,故③正确;由集合中元素的互异性知④错误. 故选:C8.(2020·全国高一)有下列四个命题: ①{0}是空集;②若a N ∈,则a N -∉;③集合2{|210}A x R x x =∈-+=有两个元素; ④集合6B x NN x ⎧⎫=∈∈⎨⎬⎩⎭是有限集. 其中正确命题的个数是( ) A .0 B .1C .2D .3【答案】B 【解析】①{0}中有一个元素0,不是空集,不正确; ②中当0a =时不成立,不正确;③中2210x x -+=有两个相等的实数根,因此集合只有一个元素,不正确; ④中集合6{|}{1,2,3,6}B x N N x=∈∈=是有限集,正确, 故选:B9.(2020·朝阳吉林省实验高二期末(文))已知非零实数a ,b ,c ,则代数式||||||a b c b a c ++表示的所有的值的集合是( ) A .{3}B .{3}-C .{3,3}-D .{3,3,1,1}--【解析】当,,a b c 都为正数时,1||||||a b a b c c ===; 当,,a b c 都为负数时,1||||||a b c a b c ===-. 因此,若,,a b c 都为正数,则3||||||a b c a b c ++=; 若,,a b c 两正一负,则1||||||a b a b c c ++=; 若,,a b c 一正两负,则1||||||a b c a b c ++=-; 若,,a b c 都为负数,则3||||||a b c a b c ++=-. 所以代数式||||||a b c b a c ++表示的所有的值的集合是{3,1,1,3}--. 故选:D.10.(2020·吴起高级中学高二月考(文))若{}22111a a ∈++,,,则a =( ) A .2 B .1或-1 C .1 D .-1【答案】D 【解析】当212a +=时,1a =±,当1a =时,集合为{}1,2,2不满足互异性,舍去,当1a =-时,集合为{}1,2,0,满足;当12a +=时,1a =,不满足互异性,舍去. 故选:D . 二、多选题11.(2019·全国高一课时练习)下列表示正确的是( ) A .0∈N B .27∈Z C .3-∉ZD .π∉Q E.13∈Q【答案】ADE对于A,0是自然数,则0∈N ,故A 正确;对于B,27不是整数,则27∉Z ,故B 错误;对于C,3-是整数,则3-∈Z ,故C 错误;对于D,π是无理数,则π∉Q ,故D 正确; 对于E,13是有理数,则13∈Q ,故E 正确 故选:ADE12.(2019·全国高一课时练习)(多选)下面四个说法中错误的是( ) A .10以内的质数组成的集合是{}2,3,5,7B .由1,2,3组成的集合可表示为{}1,2,3或{}3,1,2C .方程2210x x -+=的所有解组成的集合是{}11,D .0与{}0表示同一个集合 【答案】CD 【解析】10以内的质数组成的集合是{}2,3,5,7,故A 正确;由集合中元素的无序性知{}1,2,3和{}3,1,2表示同一集合,故B 正确;方程2210x x -+=的所有解组成的集合是{}1,故C 错误;由集合的表示方法知0不是集合,故D 错误.故选CD.13.(2019·全国高一课时练习)下列是集合{(,)|1,,}M x y x y x y =+≤∈∈N N 中元素的有( ) A .(0,0) B .(0,1)C .(1,0)D .(2,1)-E.(1,2)-【答案】ABC 【解析】∵{(,)|1,,}M x y x y x y =+≤∈∈N N ,∴00x y =⎧⎨=⎩或01x y =⎧⎨=⎩或10x y =⎧⎨=⎩, ∴{(0,0),(0,1),(1,0)}M = 故选:ABC14.(2020·全国高一课时练习)实数1是下面哪一个集合中的元素( )A .整数集ZB .{||||x x x =C .{|11}x x ∈-<<ND .1|01x x x -⎧⎫∈≤⎨⎬+⎩⎭R E.1|01x x x +⎧⎫∈≤⎨⎬-⎩⎭R 【答案】ABD 【解析】1是整数,因此实数1是整数集Z 中的元素,故A 选项正确;由||x x =得0x =或1x =,因此实数1是集合{|||}x x x =中的元素,故B 选项正确;1不满足11x -<<,因此实数1不是集合{|11}x x ∈-<<N 中的元素,故C 选项不正确;当1x =时,101x x -=+,因此实数1是集合1|01x x x -⎧⎫∈≤⎨⎬+⎩⎭R 中的元素,故D 选项正确;当1x =时,11x x +-无意义,因此实数1不是集合1|01x x x +⎧⎫∈≤⎨⎬-⎩⎭R 中的元素,故E 选项不正确. 故选:ABD. 三、填空题15.(2020·浙江高一课时练习)已知集合6{|N ,}5A x x Z x*=∈∈-,用列举法表示为____________. 【答案】{}1,2,3,4- 【解析】 由6N ,5x Z x*∈∈-,得51,2,3,6,4,3,2,1x x -=∴=-, {1,2,3,4}A =-.故答案为:{}1,2,3,4-.16.(2020·全国高一)已知集合(){}21,1A m m =+-,若1A ∈,则m =______.【答案】2 【解析】依题意11m +=或()211m -=, 解得0m =或2m =;由集合中元素的互异性可知当0m =时,集合的两个元素相等,不合题意; 所以2m =.故答案为:2.17.(2020·全国高一课时练习)用符号“∈”或“∉”填空:(1)2_____N ;(2Q ;(3)13______Z ;(4)3.14______R ;(5)3-______N ;(6Q .【答案】∈ ∉ ∉ ∈ ∉ ∈【解析】【分析】N 为自然数集,Q 为有理数,Z 为整数集,R 为实数集,判断元素与集合之间的关系用相应的符号填写即可.【详解】(1)N 为自然数集,2是自然数,所以2N ∈;(2)Q Q ;(3)Z 为整数集,13是分数,所以13Z ∉;(4)R 表示实数集,所以3.14R ∈;(5) N 为自然数集,-3不是自然数,所以3N -∉;(6) Q 3=Q .18.(2020·全国高一课时练习)用符号“∈”或“∉”填空:(1)0______∅;(2)2-_______2{|5}x x <;(3)(2,3)_______{(,)|23}x y x y +=;(4)2017_______{|41,}x x n n =-∈Z .【答案】∉ ∈ ∉ ∉【解析】(1)∅为不含有任何元素的集合,所以0∉∅;(2)2(2)45-=<,2{|52}x x -<∴∈; (3) 2238,(2,3){(,)|23}.x y x y +⨯=∴∉+=(4)因为2017不能被表示为41n -的形式,所以2017{|41,}x x n n ∉=-∈Z ;19.(2019·海口市第四中学高一月考)用列举法表示集合**{(,)|5,,}A x y x y x y =+=∈∈N N 是_____________________;用描述法表示“所有被4除余1的整数组成的集合”是_____________________.【答案】()()()(){}1,42,33,24,1,,, {}41z x z x k k ∈=+∈,【解析】分析:由5x y +=,且,*x y N ∈,则x 取值只能为1,2,3,4,求出对应的y 可得集合A 中的各元素,被4除余1的整数可表示为41k +(k Z ∈)形式.详解:由题意{(1,4),(2,3),(3,2),(4,1)}A =,所有被4除余1的整数组成的集合为{|41,}x Z x k k Z ∈=+∈. 故答案为:{(1,4),(2,3),(3,2),(4,1)};{|41,}x Z x k k Z ∈=+∈20.(2019·全国高一课时练习)由实数x ,x -,x 所组成的集合中最多含______个元素,最少含______个元素.【答案】2 1【解析】x x ==±,x =-,且当0x =时,0x x x =-====,当0x ≠时,集合中有元素:x ,x -,∴由实数x ,x -,x 2个元素,最少含有1个元素.21.(2020·全国高一课时练习)(1)若23{1,3,1}m m m ∈--,则实数m =_____;(2)若2{|0}x x a ∉->,则实数a 的取值范围是______.【答案】4或2± {|2}a a ≥【解析】(1)由13m -=,得4m =,此时312m =,2115m -=,符合题意.由33m =,得1m =,此时2110m m -=-=,故舍去.由213m -=,得2m =±,当2m =时,11m -=,36m =,符合题意;当2m =-时,13m -=-,36m =-,符合题意,综上所述,m = 4或2±.(2)因为2{|0}x x a ∉->,所以2不满足不等式0x a ->,即2满足不等式0x a -≤,所以20a -≤,即2a .所以实数a 的取值范围是{|2}a a .故答案为:4或2±;{|2}a a ≥四、解答题22.(2020·全国高一)用列举法表示下列集合:(1){}2|9A x x ==;(2){|12}B x N x =∈≤≤;(3){}2|320C x x x =-+=.【答案】(1){3,3}-(2){1,2}(3){1,2}【解析】(1)由29x =得3x =±,因此{}2|9{3,3}A x x ===-.(2)由x ∈N ,且12x ≤≤,得1,2x =,因此{|12}{1,2}B x N x =∈≤≤=.(3)由2320x x -+=得1,2x =.因此{}2|320{1,2}C x x x =-+==.23.(2020·浙江高一课时练习)试说明下列集合各表示什么? 1|A y y x ⎧⎫==⎨⎬⎩⎭;{|B x y ==;()1,|C x y y x ⎧⎫==⎨⎬⎩⎭ (),|13y D x y x ⎧⎫==⎨⎬-⎩⎭;{}0,1E x y ===;{}1,1F x y x y =+=-=-. 【答案】答案见解析【解析】A 表示y 的取值集合,由1y x =知:0y ≠,{}0A y y ∴=≠;B 表示x 的取值集合,由220x x -≥知:0x ≤或2x ≥,{0B x x ∴=≤或}2x ≥; C 的代表元素为(),x y ,表示反比例函数1y x=上的点构成的点集;D 的代表元素为(),x y ,由13y x =-知:()33y x x =-≠, D ∴表示直线3y x =-上除了()3,0以外的点构成的点集;E 表示以方程“0x =”和“1y =”为元素的一个二元集.F 表示以方程“1x y +=”和“1x y -=-”为元素的一个二元集.24.(2020·全国高一)用合适的方法表示下列集合,并说明是有限集还是无限集.(1)到A 、B 两点距离相等的点的集合(2)满足不等式21x >的x 的集合(3)全体偶数(4)被5除余1的数(5)20以内的质数(6){(,)|6,,}x y x y x N y N **+=∈∈(7)方程()0,x x a a R -=∈的解集【答案】(1)集合{A =点}P PA PB =,无限集;(2)集合{}21B x x =>,无限集;(3)集合{}2,C x x k k Z ==∈,无限集;(4)集合{}51,D x x k k Z ==+∈,无限集;(5)集合{}2,3,5,7,11,13,17,19E =,有限集;(6)集合()()()()(){}1,5,2,4,3,3,4,2,5,1F =,有限集;(7)集合{}()0,G x x x a a R =-=∈,有限集.【解析】(1)因为到A 、B 两点距离相等的点P 满足PA PB =,所以集合{A =点}P PA PB =,无限集. (2)由题意可知,集合{}21B x x =>,无限集.(3)因为偶数x 能被2整除,所以集合{}2,C x x k k Z ==∈,无限集.(4)由题意可知,集合{}51,D x x k k Z ==+∈,无限集.(5)因为20以内的质数有2,3,5,7,11,13,17,19.所以集合{}2,3,5,7,11,13,17,19E =,有限集.(6)因为6,,x y x N y N **+=∈∈,所以方程的解为15x y =⎧⎨=⎩,24x y =⎧⎨=⎩,33x y =⎧⎨=⎩,42x y =⎧⎨=⎩,51x y =⎧⎨=⎩,所以集合()()()()(){}1,5,2,4,3,3,4,2,5,1F =,有限集. (7)由题意可知,集合{}()0,G x x x a a R =-=∈,有限集.25.(2020·全国高一)已知22{1,251,1}A a a a a =-+++, 2A -∈,求实数a 的值. 【答案】32-【解析】 因为2A -∈,所以有12,a -=-或22512a a ++=-,显然212a +≠-,当12a -=-时,1a =-,此时212512a a a -=++=-不符合集合元素的互异性,故舍去;当22512a a ++=-时,解得32a =-,1a =-由上可知不符合集合元素的互异性,舍去,故32a =-. 26.(2020·上海高一课时练习)当实数a 、b 满足什么条件时,集合{}0A x ax b =+=是有限集、无限集、空集?【答案】当0a ≠,b R ∈时,集合A 为有限集;当0a =,0b =时,集合A 为无限集;当0a =,0b ≠时,集合A 为空集【解析】当0,a b R ≠∈时,方程0ax b +=有唯一解b x a =-,此时集合{}b A a=-,集合A 为有限集; 当0a =,0b =时,0ax b +=有无穷多个解,集合A 为无限集;当0a =,0b ≠时,0ax b +=无解,集合A 为空集.27.已知集合A ={x |ax 2-3x +2=0}.(1)若A 是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.【答案】(1)当a =0时,A ={23},当a =98时,A ={43}.(2)a ≤98. 【解析】 (1)因为集合A 是方程ax 2-3x +2=0的解集,则当a =0时,A ={23},符合题意; 当a ≠0时,方程ax 2-3x +2=0应有两个相等的实数根,则Δ=9-8a =0,解得a =98,此时A ={43},符合题意. 综上所述,当a =0时,A ={23},当a =98时,A ={43}. (2)由(1)可知,当a =0时,A ={23}符合题意; 当a ≠0时,要使方程ax 2-3x +2=0有实数根,则Δ=9-8a ≥0,解得a ≤98且a ≠0.9综上所述,若集合A中至少有一个元素,则a≤8.。

集合的基本概念知识点总结及练习

集合的基本概念知识点总结及练习

集合的基本概念知识点总结及练习 (3) 差集﹕属于A ,但不属于B 的所有元素所成的集合,记作A B -,即{}|A B x x A x B -=∈∉但。

(4) 宇集﹕当我们所探讨的集合皆为某一个集合U 的一、集合:是由一些满足某些条件之事物所组成的整体,记作S 表示之。

二、元素:组成集合的每一事物即是。

三、(一)空集合:不含任何元素的集合,记作{}或φ。

(注) 空集合φ为任何集合的子集。

(二)子集合:若集合A 中的每一个元素都是集合B 的元素,则称A 为B 的子集,记作A B ⊂(读作A 包含于B )或B A ⊃(读作B 包含A )。

(三)相等集合﹕已知A B 、为两集合,若A B ⊂且B A ⊂,则称A B 、两集合相等,记作A B =。

四、集合与元素的关系:若a 为集合A 的一个元素,则称a 属于A ,通常记作a A ∈﹔若a 不为集合A 的元素,则称a 不属于A ﹐记作a A ∉。

五、集合表示法:(一)列举法﹕当集合的元素不多时﹐我们可以把集合的所有元素全部列出﹐再冠以大括号﹐表示此一集合。

如:掷骰子、12的所有正因子、小于10的正奇数、…等。

(二)描述法﹕在大括号内将元素的共同特性描述出来,再加一直杠﹐而直杠的后面界定出此集合中元素的属性。

如:{}2104C k k k =+≤≤,為整數六、集合的运算﹕设A B 、为两集合,则(1) 交集﹕同时属于A 且属于B 的所有元素所成的集合,称为A 与B 的交集,记作A B ,即{}|A B x x A x B =∈∈且。

(2) 联集﹕属于A 或属于B 的所有元素所成的集合称为A 与B 的联集,记作A B ﹐即{}|A B x x A x B =∈∈或。

子集,则U就称为宇集。

(5) 补集(余集)﹕属于U但不属于A的所有元素所成的集合,称为A的补集,记作A'U A=-﹒七、笛摩根定律(De Morgan Laws)﹕(1) ()=A B'A'B'A B'A'B'=(2) ()八、集合元素的计数﹕当集合A中所包含元素的个数为有限个时,我们以()n A 来表示集合A中的元素个数。

集合概念和练习题

集合概念和练习题

集合概念及练习题集合的概念必然范围的,确信的,能够区别的事物,看成一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。

集合的分类:并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}补集:属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}空集:包括于任何集合,但不能说“空集属于任何集合无穷集:概念:集合里含有无穷个元素的集合叫做无穷集有限集:令N*是正整数的全部,且N_n={1,2,3,……,n},若是存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。

集合元素的性质:1.确信性:每一个对象都能确信是不是某一集合的元素,没有确信性就不能成为集合,例如“个子高的同窗”“很小的数”都不能组成集合。

那个性质要紧用于判定一个集合是不是能形成集合。

2.互异性:集合中任意两个元素都是不同的对象。

如写成{1,1,2},等同于{1,2}。

互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作那个集合的一个元素。

3.无序性:{a,b,c}{c,b,a}是同一个集合。

4.纯粹性:所谓集合的纯粹性,用个例子来表示。

集合A={x|x<2},集合A 中所有的元素都要符合x<2,这确实是集合纯粹性。

5.完备性:仍用上面的例子,所有符合x<2的数都在集合A中,这确实是集合完备性。

完备性与纯粹性是遥相呼应的。

经常使用数集的符号:(1)全部非负整数的集合通常简称非负整数集(或自然数集),记作N (2)非负整数集内排除0的集,也称正整数集,记作N+(或N*) (3)全部整数的集合通常称作整数集,记作Z(4)全部有理数的集合通常简称有理数集,记作Q(5)全部实数的集合通常简称实数集,记作R(6)复数集合计作C集合的表示方式:经常使用的有列举法和描述法。

集合的含义与表示

集合的含义与表示

第一课时集合的含义与表示一考点分析1.集合的概念把研究对象统称为元素,把一些元素组成的总体叫做集合;高一(9)班的全体学生我国古代的四大发明2,4,6,8,10,12,142.集合的特性:确定性,互异性,无序性3.集合的表示方法:例举法,描述法,图示法;4.元素与集合的关系:属于ϵ,不属于∈5.集合的分类:有限集,无限集,空集¢6.常用数集的符号非负整数集N,正整数集N*或N+ ,整数集Z,有理数集Q,实数集R,复数集C二典型例题考点一集合的概念例题1 下列说法正确的是( C )A “整数集”可以写成{N}或{整数集}B {1,2,3,4}与{1,3,4,2}是两个不同的集合C 小于π的全体实数组成一个集合D 充分接近π的实数组成一个集合例题2 定义集合运算:A*B={z|z=xy ,x∈A,y∈B }设A={1,2},B={2,4},则集合A*B的所有元素之和为( C )A 2B 4C 14D 18,1},也可以表示为{ a2,a+b,0},则a2009+b2009= 例题 3 有三个实数的集合,既可以表示为{a,ba-1考点二集合的表示方法例题1 集合A={1,-3,5,-7,9,-11,。

}用描述法表示正确的是( D )①{x|x=2n±1,n∈N }②{x∣x=(-1)n(2n-1),n∈N }③{x∣x=(-1)n(2n+1),n∈N }④{x∣x=(-1)n-1(2n-1),n∈N }A 只有②④B ①④C ②④D ③④例题2 用列举法表示下列集合∈Z ,x∈Z}(1){x∣63−x(2){x∣x=b,a∈Z ,∣a∣<2,b∈N*且b≤3}a例题3 设集合M={m∣m≤2√3},又x=2√2,那么下列关系正确的是()A x ∉MB {x}∈MC x ∈MD 以上都不对 考点三 集合的分类例题1 在(1) {0},(2) { ¢ } (3){ x ∣3m<x<m } (4) {x ∣a+2<x<a} (5) {x ∣x 2+1=0, x ∈R}中表示空集的是(4) (5)当堂检测1.下列各项中,不可以组成集合的是( )A .所有的正数B .约等于2的数C .接近于0的数D .不等于0的偶数2.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3. 知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围 . 4. 已知}1,0,1,2{--=A ,},|{A x x y y B ∈==,则B = .5. 若}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B .6.数集A 满足条件:若1,≠∈a A a ,则A a∈+11. ①若2A ∈,则在A 中还有两个元素是什么; ②若A 为单元集,求出A 和a .7.用描述法表示图中的阴影部分(包括边界)第二课时 集合间的基本关系 一考点分析1. 子集和真子集对于两个集合A ,B ,如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合的概念与集合的表示方法习题
1.下列集合中,不同于另外三个的是( )
.A }1|{=x x .B }0)1(|{2=-y y .C }1{=x .D }1{
5. 下面命题:
① {2,3,4,2}是由四个元素组成的;②集合{0}表示仅一个数“零”组成的集合;
③集合{1,2,4}与{4,1,2}是同一集合;④集合{小于1的正有理数}是一个有限集。

其中正确的是( ) .A ③④ .B ②③ .C ①② .D ②
6.集合{=A 面积为1的矩形},{=B 面积为1的正三角形},则正确的是( )
A.B A ,都是无限集
B.B A ,都是有限集
C.A 是有限集B 是无限集
D.B 是有限集A 是无限集
7.用列举法表示集合:(){}=∈∈=-+N y N x y x y x ,,052|, ;
8.用描述法写出直角坐标系中,不在坐标轴上的点的坐标组成的集合 ;
9.设y x ,都是非零的实数, 则xy
xy y y x x ++的值组成的集合的元素个数为 ; 10. 集合{}
x x x -2,,1中的元素x 所应满足的条件是 ;
11.若集合}01|{2=++x ax x 有且只有一个元素,则实数a 的取值集合是 ;
12.设直线32+=x y 上的点集为P ,则 ,点(2,7)与P 的关系为(2,7) P 。

13. 已知},2|{N x k x x P ∈<<=,若集合P 中恰有3个元素,求
14. 已知 , , ,求
15. 已知集合A={x|x=a+b 2,a ,b ∈R},判断下列元素x 与集合A 之间的关系:
(1)x=0;(2)x=121
-;(3)x=231
+。

-----------------------------------------------综合提高-------------------------------------------------------
16. 设下面8个关系式{}00,,2.0,3∈∈∉∈+N Q Q R ,{}φφφφ==∉∈0,0,0,0其中正确的个数是( )
A.4个
B.3个
C.2个
D.1个
17. 集合M={(x ,y)|xy ≥0,x ∈R ,y ∈R}的意义是( )
A . 第一象限的点
B 第三象限的点
C . 第一和第三象限的点
D . 不在第二象限也不在第四象限的点
18.下列各式中错误..
的是( ) A ..-3{}Z k k x R x ∈-=∈∈,12| B .{}{}4,3,2,1,05|=<∈x N x
C .(){}(){}2,1,,2,1|,-=∈-==+R y x xy y x y x
D .Q ∈-23 19.}.,2|{Q b a b a x x M ∈+==,下列不属于M 的是( )
A .π21+
B .2611+
C .1
D .221
+
20.方程组⎩⎨⎧=-+=+-04201y x y x 的解集可表示为①)2,1(②(){}2,1 ③ {}2,1|,==y x y x ④
⎩⎨⎧==2
1y x ⑤ (){}2,1|,==y x y x 以上正确的个数是( ) .A 5 个 .B 4个 .C 3个 .D 2个
21.已知下列四个条件:
①数轴上到原点距离大于3的点的全体 ②大于10且小于100的全体素数 ③与3非常接近的实数的全体 ④实数中不是无理数的所有数的全体
其中能够组成集合的是 ;
22. 关于x 的方程0=+b ax ,当实数b a ,满足条件 时,方程的解集是有限集;当实数b a ,满足条件 时,方程的解集是无限集。

23.已知集合},7,3,2,0{=M },,,|{b a M b a ab x x P ≠∈==,用列举法表示=P ;
24.用特征性质描述法表示直角坐标平面内的横坐标与纵坐标相等的点的集合是 ;
25.已知},,0,1{2x x ∈ 求实数x 的值
26.已知集合},,512|
{Z x N x x A ∈∈-=用列举法表示集合A 。

27.已知集合A={}
R a x ax R x ∈=+-∈,023|2,若A 中元素至多只有一个,求实数a 的取值范围。

1. 已知集合22{,,}A x x m n m n Z ==-∈,求证:
(1)任何奇数都是A 的元素.(2)偶数42()k k Z -∈不属于A .
参考答案
------------------------------------集合的概念与集合的表示方法----------------------------------------
1.B
2.B
3. C
4. C
5. B
6. D
7. {(0,5),(1,3)(2,1)}
8. },,0|),{(R y R x xy y x ∈∈≠}9. {3,-1} 10. 251,2,0,1±≠≠≠≠x x x x 11. {0|=a a 或4
1=a } 12. },,32|),{(R y R x x y y x ∈∈+= ∈
13. 6 14. )7,4(312=⇒⎩
⎨⎧+=+=a x y x y 15. )1(令0,0==b a ,则x A ∈ (2) x=
121
-=12+,令1,1==b a 即可,x A ∈ (3) x=23231
+=+, x ∉A .
16.C 17. D 18.C 19. A 20. A 21. ①②④ 22. 0≠a 0,0==b a
23. {0,6,14,21}
24. {R y R x y x y x ∈∈=,,|),(}
25. 若,12=x 则,1.1=±=x x 不成立;,1-=x 成立;
若,02
=x 则,0=x 不成立;
若,2x x =则,0=x 或,1=x 均不成立。

综上所述,.1-=x
26. {-7,-1,1,2,3,4}
27. 若,0=a 满足题意; 若89,089,0≥
≤-=∆≠a a a 。

综上所述,,0=a 或89≥
a 。

相关文档
最新文档