天然气液化流程工艺优化研究
中原油田天然气液化工艺流程优化设计研究

的 国家 有 9个 ,依 次 是 卡塔 尔 (1. 0 3、印 309×18 ) m
度 尼 西 亚 (9 . 2 57×1 )、马 来 西 亚 (8 . 0 0 m3 2 04×1 8 m )、 阿 尔 及 利 亚 ( 4 . 。 2 68×1s )、 澳 大 利 亚 0 m3 (8 - 0 m。 1 03×1 )、尼 日利 亚 (7 . 158×1 3 、特 立 0 m) 尼 达 和 多 巴 哥 (6 . 125×1 ) 0 m3 、埃 及 (4 . 0 197×18 I。、阿曼 ( l . 0 m3。 n ) 1 54×1 )
天 然 气液 化 是 L G产业 中 的重要 一 环 ,包 括 净 N
液化 天 然气 ( N 是 以 甲烷 为主 要 组 分 的低 温 、 L G)
液态混合物 ,其体积仅为气态时 的 1 65 / 2 ,具有便
于运 输 、经 济 可靠 、储 存 效 率 高 、生产 使用 安 全 以 及 清 洁环 保 等 优 点 。其 不 仅 可 作 为 工 业 和 民用 燃 料 使用 ,同 时也 可作 为 L G汽 车 及 C G汽 车 的燃 料 , N N 而且对 它 所携 带 的低 温冷 量 可 以进行 多项 综合 利 用 , 如冷藏 、冷 冻 、空调 、低 温研磨 等 。
维普资讯
2 7钲 00
天 然 气 技 术
Na u a sTe h o o y t r lGa c n l g
Vo . . No6 1 1 .
De .2 7 c 0o
第 1 ・ 6期 卷 第
文章编号:1 7 — 0 5 (0 7 0 — 0 4 0 6 3 9 3 2 0) 6 0 6— 3
冷 剂 的液 化 工 艺 。其 过 程 是 天然 气 经 压 缩 , 向外 界 释 放 热 量 ,再 经 膨 胀 或 节 流 使 其 压 力 和 温 度 下 降 , 从而 使天 然气 部分 液化 ; 只有一 种 制冷剂 的液化工 ② 艺 ,包 括 氮 气 致 冷 剂循 环 和混 合 制 冷 剂 循 环 。其 过 程是 通 过 制 冷 剂 的压缩 、冷却 、节 流 获得 低 温 ,通 过 换热 使 天然气 液化 ;③ 多种 制冷 剂 的液化 工艺 ( 常 称 为 阶式 混 和制 冷或 复迭 式 制 冷工 艺) 。其 过 程是 选 用 蒸 发 温 度 成 梯 度 的一 组 制 冷 剂 ,如 丙烷 、乙烷 或 乙烯 、甲烷 ,通过 多个 制 冷 系统 分别 与 天 然气 换热 , 使 天然气 温 度逐 渐 降低达 到液 化温度 而 实现液 化 。
lng 工艺流程

lng 工艺流程LNG(液化天然气)工艺流程是将天然气转化为液态状态的过程。
液化天然气作为一种清洁、高效的能源,已广泛应用于工业、航运和能源供应等领域。
下面将详细介绍LNG的工艺流程。
LNG的工艺流程通常包括天然气处理、液化、储存和运输等环节。
首先,天然气处理是指将原始天然气中的杂质和杂质物质去除,并使之适合液化的过程。
这一环节对天然气进行除水、除硫、除酸等处理,以获得高纯度的天然气。
一般来说,除硫处理是天然气处理的关键步骤之一,其中最常见的方法是采用酸性氨法。
此外,还需要将天然气中的水分去除,以免在后续液化过程中引起腐蚀和结冰等问题。
在天然气处理完成后,液化过程开始。
液化天然气的核心原理是通过降低天然气的温度将其转化为液态。
常见的液化方法有自然液化法和制冷循环液化法。
自然液化法是通过降低天然气的温度使其达到饱和汽化压力,进而从气态转变为液态。
而制冷循环液化法则是通过制冷剂来降低天然气的温度,使其液化。
制冷剂通常采用液氮或制冷机组来实现。
液化过程完成后,液化天然气被储存起来。
LNG的储存通常使用特殊的储罐,这些储罐由保温层和内胆组成,以保持液化天然气的低温状态。
储罐的设计主要考虑到LNG的膨胀系数和膨胀速度,以及安全性和可持续性等因素。
最后,液化天然气被运输到目的地。
LNG的运输主要有两种方式:海上运输和陆上运输。
在海上运输中,LNG被装载到LNG船上,通过管道或船舶进行运输。
在陆上运输中,LNG通常被装载到特殊的储罐车或储罐,通过公路或铁路进行运输。
总之,LNG的工艺流程包括天然气处理、液化、储存和运输等环节。
通过这一系列的工艺过程,天然气能够转化为液态状态,提供清洁高效的能源供应。
随着LNG的应用越来越广泛,相信其工艺流程也将不断优化和创新。
混合制冷天然气液化工艺模拟及优化研究

流程 中只 有一 级 压缩机 耗 功
、级 问冷 却 器制 冷
Байду номын сангаас
负荷 Q 及 低压 制冷 剂 的制 冷量 Q 发生 变化 。
类 型 天然 气液 化装 置 不仅 可用 于大 型 L NG 接 收 站 的建 设 ,还 可用 于 部分 城市 的事 故调 峰 ,具有 良好
的经济 意 义 。
天 然气 液化 部 分是整 个 液化 装置 的核 心 。通过 对 比各 种液 化流 程 并结合 现 有条件 ,其液 化工 艺选
用 美 国 Bl a c k &V e a t c h公 司研 发 的 P R I C O R 工 艺流
小型 天 然气 液化 装置 具有 投 资省 、建 设 周期 短
和见 效快 等优 点 ,可用 于 开发 边远及 零 散气 田。该
该液 化装 置 的设计 年供 气量 为 2亿 1 T 1 , 日液 化
量为 6 O万 r n ,设 计弹性 为 5 0 %~ 1 1 0 %,生产 年 限 为l 5年 ,年运 行 时 间为 8 0 0 0 h 。
上 海煤 气 2 0 1 3 年第 3 期 ( (7
R 。 s o 嗣 { 黜
。
说 明:根据 目前 的原料 气组 分 ,预计 装 置 中不 会 有 重烃产 生 ,故分 析 时做 了简 化 处理 ,去掉 重烃
分 离器 ,冷 箱 用一 个 多股流 换热 器 代替 。 3 . 1 天然 气入 口压 力 和温 度 的影 响 3 . 1 . 1 天然气 入 口压 力 的影 响
液化天然气的工艺流程 毕业论文

液化天然气的工艺流程毕业论文目录引言.........................................................................错误!未定义书签。
第一章工厂设计数据 .. (3)1.1工厂产能及储运要求 (3)1.2原料气条件及产品规格 (3)1.3现场环境条件 (3)第二章工厂技术分析 (4)第三章工艺系统 (6)3.1天然气预处理 (6)3.2天然气的液化及混合冷剂系统 (7)3.2.1 天然气的液化 (7)3.2.2 冷剂循环 (8)3.2.3 冷剂贮存和补充 (8)3.3液化天然气储存及灌装系统 (9)3.4燃料气系统 (10)3.5导热油系统 (10)3.6火炬系统 (11)第四章主要设备 (12)4.1冷箱 (12)4.2液化天然气储罐 (12)结束语 (13)前言2004年我国建成投运了目前国内规模最大的基本负荷型液化天然气(LNG)工厂,曰处理天然气150万m3,LNG年产量约为43万吨。
该工厂由德国Linde 公司提供天然气处理和液化技术,由德国 Tractebel Gas Enginering(TGE)公司提供LNG的储存和灌装配送技术。
工厂的原料气来自附近土哈丘东采油厂的油气田。
生产的LNG灌装在集装箱罐中,通过公路运输到各个接收站,然后,LNG被汽化并经过较短的管线输送给工业和民用客户。
本文对该工厂的工艺流程进行技术分析,以期对国内液化天然气工厂的设计提供一些有益的借鉴。
第一章工厂设计数据1.1 工厂产能及储运要求工厂为基本负荷型液化天然气生产工厂,每年连续运行时间8000h,液化能力54t/h,操作弹性50%~100%。
LNG储罐容积为30000m3,能满足10天产量的储存。
LNG配送灌装系统每天连续14h灌装100个集装箱罐,其中90%公路运输,。
1.2 原料气条件及产品规格通过管道输送来的原料气来自附近的油气田,原料气组成见表1。
焦炉煤气制液化天然气深冷液化工艺研究讲解

焦炉煤气制液化天然气深冷液化工艺研究摘要:本文突出介绍了内蒙古恒坤化工有限公司 LNG 项目液化工艺的流程。
在深冷液化工艺中制冷循环采用了高效率的混合冷剂制冷的液化流程, 低温精馏部分采用精馏塔和脱氢塔脱除焦炉煤气组分中的氮氢组分,以提高产品中甲烷的含量,制得产品纯度大于 99%的高品质液化天然气。
同时本文还分析了混合冷剂工质对制冷循环流程的影响。
研究结果表明,合理的制冷工质的配比,能过提高换热效率, 减少工艺能耗。
关键词:焦炉煤气;混合冷剂;深冷液化;低温精馏1引言我国是世界上第一大焦炭生产国, 焦炭总产能达到 3. 6亿吨。
2008年焦炭产量3.355亿吨,占全球总产量的 60%以上,其中 1/3的生产能力在钢铁联合企业内,2/3在独立的焦化企业。
焦化行业副产大量的焦炉煤气(热值 16.746MJ/Nm3。
按每吨焦炭副产约 400m 3焦炉煤气计算 [1],独立焦化企业每年副产焦炉煤气 894亿 m 3左右, 除回炉加热自用、民用(城市煤气及发电、化工利用(如生产甲醇、合成氨外,每年放散的焦炉煤气约 200亿 m 3。
焦炉煤气成分比较复杂 [2], 其中 CH4含量约为 25~30%、 CO 和 CO 2含量近 10%,其余为氢及少量氮,由于组分中的氢含量较高,可将焦炉煤气通过甲烷化反应, 使绝大部分 CO、 CO 2 转化成 CH4, 得到主要含 H 2 、CH4、N2的混合气体,经深冷液化可以得到甲烷体积分数 99%以上的液化甲烷(LNG。
据相关文献报道 [3], 预计 2020年我国天然气的需求量将达到 2000亿 m 3,而同期的天然气产量只能达到 1400亿~1600亿 m 3。
如此大的天然气缺口将给我国带来诸多不利影响, 这就为天然气的发展提供了重大契机。
同时, “十二五”规划战略布局的关键之一就是优化能源结构,构筑清洁能源体系。
结合我国国情,大力发展焦炉煤气、煤层气、含一氧化碳等工业排放气制天然气, 可以形成重要的天然气来源。
天然气液化工艺流程分析及其优选

天然气液化工艺流程分析及其优选天然气是重要的民生物资,在实际对接市场的过程中往往以液化气的形式而存在。
不同的液化装置在效率、能耗等方面存在一定的差异,故而做好其流程分析与优选对后续具体的工作体系构建与相关的工程建设具有积极意义。
文章以此为切入点在系统探究流程的基础上对不同工艺的特征进行总结,旨在为具体的优选提供必要基础。
标签:天然气;液化工艺;流程分析;工艺优选天然气是重要的清洁能源物质,对人民的生活与生产具有决定性作用。
在实际的运行过程中,往往通过液化技术来做到对天然气的提纯与压缩,进而帮助其更好的参与运输、销售及应用。
在实际的工艺流程中,其大致可以分为如下三个环节,即提纯、液化、分装。
其中提纯与液化为主要的质量控制过程。
而从实践经验来看,不同的工艺选择往往决定于相关液化流程的实际产能、成本规划等,也各自具有不同的特征。
根据企业的实际情况进行合规的优选能够有效的形成对生产成本的控制、对生产质量的控制以及对设备效能的提升。
本文以此为研究目的,对相关流程工艺进行分析,并探究不同模式下的优劣,旨在为后续的优选提供决策参考。
1 天然气液化工艺优化原则分析天然气液化工艺是天然气生产与输送的关键,该环节也是运输与销售过程中的主要耗能环节,并对安全生产有着较高的要求。
在此基础上,现阶段针对其工艺流程的设计与优化成为了研究的重点。
按照现行不同的工艺流程其安全系数、操作难度、设备场地、设备成本、工艺运维均存在较大的不同。
探究各类工艺与设备的原理与工况不同是形成有效选择与工艺优化的基础。
在实际的设计与应用过程中工艺优化应该本着如下原则来进行:一是需要保障工艺的合规性:所谓的合规性主要是指工艺的设计需要符合相关的科学事实以及现阶段的技术特征。
尤其是在天然气液化的过程中由于对生产安全具有较高的要求,更是对其技术的成熟程度有着较高的要求,通过实验工艺以及试运行工艺的方式来确定新型技术的稳定性与参数是一种可行模式,而不能贸然的大范围引入并不成熟的相关技术,以免形成安全生产事故;二是需要保障工艺的适应性:所谓的适应性主要是指不同的天然气液化工艺流程需要根据天然气的原料气特性来进行规划。
混合制冷剂循环液化天然气流程的优化

混合制冷剂循环液化天然气流程的优化赵军(重庆龙冉能源科技有限公司,重庆 408017)摘要:基于社会发展的大环境,社会对于清洁能源的使用越来越重视起来。
实际上,就国内清洁能源工艺而言,还需不断发展,只有将其技术不断进行完善,才可以进行自主研发。
基于此,文章首先概述了天然气流程,然后从两个方面展开论述,即流程与配比优化,并探究了实际的优化方式。
关键词:混合制冷;液化天然气;单级循环;节能降耗中图分类号:TB66 文献标志码:A 文章编号:1008-4800(2021)11-0167-02DOI:10.19900/ki.ISSN1008-4800.2021.11.082Optimization of Liquefied Natural Gas Flow of Mixed Refrigerant Cycle ZHAO Jun (Chongqing Longran Energy Technology Co., Ltd., Chongqing 408017, China) Abstract: Based on the environment of social development, the society pays more and more attention to the use of clean energy. In fact, as far as domestic clean energy technology is concerned, it needs to be developed continuously. Only by improving its technology can it be developed independently. Based on this, this paper first summarizes the natural gas process, and then from two aspects, namely process and ratio optimization, and explore the actual optimization.Keywords: hybrid refrigeration; liquefied natural gas; single stage cycle; energy saving0引言伴随技术的进步,我国也产生了许多新型的清洁能源,在这之中就包括液化天然气,因为其操作流程非常简便,而且所需成本费用相对较少,所以它被广泛运用到各个相关行业中。
小型天然气N2-CH4膨胀制冷液化工艺优化研究

表 1 预 处 理 后 天 然 气 组成
膨 胀 机 制冷 循 环 根 据 制 冷 剂 的 不 同 可分 为 N 2
文献标识码 : A
文章编号: 1 0 0 1 . 9 2 1 9 ( 2 0 1 4 ) 0 1 . 2 7 . 0 5 了N 2 。 C H 制冷 剂组 成 、 原 料气 处理量 和膨胀 机 出 口 压 力 对压 缩 机功 耗 的影 响 、 以及 天然 气 节 流温 度对
近年来液化天然气 ( L NG) 技 术 得 到 了迅 速 发
混合 制冷 剂 总量 均 为 5 0 0 0 k m o l ・ h ~ ,压 缩 机功 耗 的 增加是 由 N : 一 C H 混合制 冷 荆 中 N 含 量 的增加 引起
的. 如图 4所示 。
流至 7 5 0 k P a的温度 为一 1 7 3 . 7  ̄ C 。 随着 N 2 一 C H 混合制
1 6 0 k P a后进行 气 液分离 , 分离 后 的 L N G至 L N G储
罐, B O G至 B O G压缩 机 。 其中 , N : . C H 4 制冷 剂 总量 表示 为 ;进 入 膨胀
机的 N : 一 C H 制冷 剂量 表示为 ;压 缩机 功耗 是压 ; 缩机 l 、压 缩机 2和增 压机 功耗 的 总和 表示 为
冷剂 中 N : 含 量 的减少 ,制冷 剂 节 流后 温 度 显 著升
当N 的物质 的量分 数从 5 0 %增 大至 1 0 0 %时 , N 2 . C H 混 合 制 冷 剂 总 量 从 5 0 0 0 k mo l ・ h 增 加 至
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天然气液化流程工艺优化研究
摘要:本文论述了目前国内外液化天然气设备,根据不同的制冷剂,膨胀制冷循环可分为:氮膨胀制冷循环,氮甲烷气体膨胀制冷循环,天然气膨胀制冷循环。
和制冷循环和混合制冷剂制冷循环过程,氮膨胀循环的过程非常简单,紧凑,成本低。
启动快,热启动从2开始4小时得到全负荷,操作灵活,适应性强,容易操作和控制,安全性好,不会引起火灾或爆炸。
关键词:天然气液化流程氮-甲烷制冷
液化设备系统主要包括净化系统,液化系统和存储系统。
工艺流程过程优化,主要体现在:在制冷模式优化和存储方式的优化,下面对制冷模式优化进行分析比较。
一、天然气液化装置的国内外现状
天然气的主要成分是甲烷,甲烷常压沸点- 161℃,临界温度-84℃,临界压力4.1mpa。
液化天然气液化天然气的简称是lng,它是天然气净化后(脱水,烃,去除酸性气体去除后的),采取气体扩张和外部冷源制冷技术使甲烷转化成液体形式。
1、国外液化装置现状
国外液化装置规模大,工艺复杂,设备,投资高,基本采用制冷和混合制冷剂的制冷技术,目前两者在运作,新的生产设计主要是混合制冷剂制冷技术,研究的主要目的是降低能源消耗的液化。
从制冷的制冷工艺改为混合制冷剂循环,有报道和ⅱ- 2新技术,该技术具有纯组分环,如简单,无相分离和容易控制,和混合制冷
剂循环的优点,如天然气和制冷剂的制冷温度的少,效率高,设备简单等。
2、国内液化装置现状
与国外的情况进行比较,我们发现不同的是,国内天然气液化的研究都是以小规模的液化技术为目标,下面对国内现有的天然气液化装置技术进行简介。
(1)四川液化天然气装置
由中国科学院北京分公司天然气液化技术和四川简阳市科阳制冷设备公司合作研制的300 l /小时天然气液化装置,是使用液化天然气的工业及民用燃气调峰,以气代油示范项目。
该设备建于主要致力于天然气汽车研究。
该装置充分利用天然气压力,燃气涡轮膨胀机制冷液化天然气,用于民用天然气调峰或液化天然气生产,工艺合理,使用天然气透平膨胀机,更先进的技术。
该装置不消耗水,电,属节能项目,但液化率很低,约10%,这是符合其设计原理。
(2)吉林油田液化天然气装置
通过吉林油田,中国石油天然气总公司和中科院低温中心共同开发500 /小时橇装工业试验装置在整体试车成功后,该装置采用氮作为制冷剂膨胀循环过程,整个装置由10个撬块,所有设备的国产化。
该装置采用气体轴承透平膨胀机国产分子筛;深去除天然气水和二氧化碳,工艺流程简单,橇装结构,符合一个小装置的特点。
纯氮作为制冷剂,制冷剂膨胀循环功率比高。
没有充分利用天
然气压力,气体在中压下(约5.0mpa)(高压力下液化液化氮制冷温度可以增加,可以减少制冷负荷),使该装置能耗比较大。
(3)陕北气田液化天然气
在陕北气田天然气液化示范工程是我国液化天然气工业发展试点项目,也是中国第一家小型液化天然气工业化装置。
该装置采用气体膨胀制冷循环,低温甲醇洗和分子筛干燥的原料气净化,气波制冷机和透平膨胀机结合低温制冷,燃气发动机为动力源使用循环压缩机,内燃机尾气作为热源加热分子筛再生。
设备全部国产化。
成功操作装置中的我国边远油田上使用的天然气生产液化天然气提供了经验。
二、天然气液化流程工艺优化
根据制冷剂的不同,膨胀机制冷循环可分为:氮膨胀机制冷循环、氮-甲烷膨胀机制冷循环、天然气膨胀制冷循环。
1、氮气膨胀循环流程
和制冷循环和混合制冷剂制冷循环过程,氮膨胀循环的过程非常简单,紧凑,成本低。
启动快,热从2开始4小时得到全负荷,操作灵活,适应性强,容易操作和控制,安全性好,不会引起火灾或爆炸通风。
制冷剂用单组分气体,从而消除混合制冷剂的制冷循环的过程,分离和储存的制冷剂的麻烦,也避免了由此带来的安全问题,使液化工艺更加简化紧凑。
但能量比混合制冷剂液化流程高出40%左右。
2、n2-ch4膨胀机制冷循环
最好降低功耗的膨胀制冷循环的方式,是采用n2-ch4双组分混合气体代替纯氮气,研发了n2-ch4膨胀制冷循环。
和混合制冷剂循环相比,n2-ch4膨胀制冷循环的起动时间短,工艺简单,易于控制,测量和计算制冷剂等。
同时由于减少了冷端传热温差,它比纯氮膨胀制冷循环,节省能耗,但投资较高。
n2-ch4膨胀制冷循环液化天然气液化过程的系统和n2-ch4膨胀制冷系统在不同的地方。
在天然气液化系统,经过预处理装置酸气,脱水后的天然气,预冷器冷却后,气液分离器分离重碳氢化合物,气相部分进入液化液化,过冷器冷,节流后加入液化天然气储罐。
在n2-ch4制冷系统,制冷剂n2-ch4循环压缩机及压缩机(压缩机压缩制动)的工作压力,水冷却器冷却,冷却到预冷器入口温度膨胀机。
一部分制冷剂进入膨胀机膨胀循环压缩机入口压力,和胃食管反流混合制冷剂循环液化,作为冷源,膨胀的能量用来驱动压缩机的制冷剂;另一部分通过液化和过冷器冷凝器和冷却,节流阀节流冷却回流冷却器的冷却能力,太。
膨胀机制冷流程中,由于换热器的传热温差很大,可采用预冷的方法对制冷剂和天然气进行预冷,则液化过程的能耗可大幅度降低。
三、结束语
从以上的比较表明,级联循环制冷能耗最低,效率高,但系统的复杂程度最高,所以复叠制冷循环逐渐取代混合制冷剂的制冷循环。
带膨胀机的制冷循环是复杂度最低,但最高能耗,运行成本高,
经济不好,并利用高速旋转机械,可靠性低,和其他制冷循环比没有优势。
和混合制冷剂的制冷循环的优点在于工艺简单,适应性强,易操作,通过比较来看能耗较低,是广泛地用于工程中,因此建议使用混合制冷剂的制冷循环过程。
参考文献
[1] 张维江,石玉美,汪荣顺. 小型天然气液化装置研究进展和关键问题[j]. 低温与超导. 2007(05)
[2] 张立希. 陕北气田天然气液化工艺流程初探[j]. 西安石
油学院学报(自然科学版). 1994(03)
[3] 丁浩,李玉星. 影响天然气液化流程性能的参数分析研究[j]. 油气田地面工程. 2006(06)
[4] 杜建梅,姜东琪,王文军,杨颖,常玉春. 典型天然气液化流程的功耗比较[j]. 煤气与热力. 2010(10)。