原子转移自由基聚合.
原子转移自由基聚合理论

(1)ATRP 介绍王锦山等⑴采用1-苯-1-氯乙烷作为引发剂,氯化亚铜和联吡啶(bpy)的络合物作为催化剂,在130C下引发苯乙烯(St)的本体聚合,反应3h产率可达95%。
理论分子量和实验值符合较好。
为了验证反应的自由基机理,比较了所得聚合物与一般自由基聚合所得聚合物的立构规整度,发现两者比较一致。
并且当加入第二单体丙烯酸甲酯时,成功实现了嵌段共聚,具有明显的活性聚合特征。
由此他们提出了原子转移自由基聚合(ATRP)。
ATRP是以简单的有机卤化物为引发剂、过渡金属配合物为卤原子载体,通过氧化还原反应,在活性种与休眠种之间建立可逆的动态平衡,从而实现了对聚合反应的控制。
聚合原理引发阶段,处于低氧化态的转移金属卤化物Mt n,从有机卤化物R-X中吸取卤原子X,生成引发自由基R •及处于高氧化态的金属卤化物Mt n+1-X,自由基R •可引发单体聚合,形成链自由基R-M n • R-M n可从高氧化态的金属配位化合物Mt n+1-X中重新夺取卤原子而发生钝化反应,形成R-M n-X,并将高氧化态的金属卤化物还原为低氧化态的Mt n。
增长阶段,R-M n-X与R-X 一样(不总一样)可与Mt n发生促活反应生成相应的R-M n和Mt n+1-X,R-M n与R-M-性质相似均为活性种,同时R-M n和Mt n+1-X又可反过来发生钝化反应生成R-M n-X和Mt n, 则在自由基聚合反应进行的同时始终伴随着一个自由基活性种与大分子卤化物休眠种的可逆转换平衡反应。
由此可见,ATRP 的基本原理其实是通过一个交替的“促活—失活”可逆反应使得体系中的游离基浓度处于极低,迫使不可逆终止反应被降到最低程度,从而实现可控/“活性”自由基聚合。
引发剂ATRP聚合体系的引发剂主要是卤代烷RX(X=Br,C1),另外也有采用芳基磺酰氯、偶氮二异丁腈等。
RX的主要作用是定量产生增长链。
a碳上具有诱导或共轭结构的RX,末端含有类似结构的大分子(大分子引发剂)也可以用来引发,形成相应的嵌段共聚物。
原子转移自由基聚合概述

原子转移自由基聚合概述1.引言“活性”/可控自由基聚合不同于传统意义上的自由基聚合反应。
它克服了分子量及其分布不可控,难以合成嵌段聚合物等缺陷,做到了分子量可控,分子量分布较窄,聚合物结构可控等一系列要求。
这类聚合反应主要是有效降低了增长活性中心的浓度,抑制了双基终止的发生,延长了自由基的寿命和分子量的统一性;使用快引发的方式,保证不同分子链同时增长。
目前大致有以下几种不同的机理得到了较为深入地研究:基于引发-转移-终止剂(Initiator-chain transfer-terminator)的活性自由基聚合(Iniferter法)、基于氮氧稳定自由基的活性自由基聚合(Living nitroxide-mediated stable free radical polymerization-SFRP)、原子转移自由基聚合(Atom transfer radical polymerization-ATRP)、基于可逆加成碎裂链转移剂的活性自由基聚合(Living radical polymerization in the presence of reversible addition-fragmentation chain transfer-RAFT)和退化转移自由基聚合(degenerative transfer process-DT)等等。
在这些不同的实现“活性”/可控自由基聚合的方法当中,原子转移自由基聚合是目前最有希望实现工业化的一种方法。
2.原子转移自由基聚合概述原子转移自由基聚合是1995年由卡内基梅隆大学Matyjaszewski课题组提出的一种“活性”/可控自由基聚合新机理Wang, J-S; Matyjaszewski, K. Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117: 5614–5615.。
原子转移自由基聚合在星形聚合物合成中的应用

原子转移自由基聚合在星形聚合物合成中的应用一、本文概述随着材料科学的深入发展,聚合物的合成及其性能优化已成为科研和工业界的重要研究方向。
在众多合成技术中,原子转移自由基聚合(ATRP)因其独特的反应特性,如反应条件温和、反应活性高、聚合度可控等,受到了广泛关注。
特别是其在星形聚合物合成中的应用,不仅丰富了聚合物的种类,还极大地改善了聚合物的性能。
星形聚合物,由于其独特的结构特点,如高支化度、低粘度、良好的溶解性等,被广泛应用于涂料、粘合剂、生物医药等领域。
原子转移自由基聚合技术,通过精确控制聚合过程,能够合成出具有预定结构、性能和功能的星形聚合物,为星形聚合物的制备提供了强有力的技术支撑。
本文旨在探讨原子转移自由基聚合在星形聚合物合成中的应用。
我们将首先介绍原子转移自由基聚合的基本原理和反应特点,然后重点分析其在星形聚合物合成中的具体实现方法、反应条件以及影响因素。
我们还将对原子转移自由基聚合制备的星形聚合物的性能进行评估,并展望其在未来材料科学领域的应用前景。
通过本文的阐述,我们期望能够增进对原子转移自由基聚合在星形聚合物合成中应用的理解,为相关研究和应用开发提供有益的参考和启示。
二、原子转移自由基聚合的基本原理原子转移自由基聚合(ATRP)是一种重要的聚合技术,其基本原理涉及自由基的产生、传播和终止等步骤。
在ATRP过程中,一个过渡金属配合物作为催化剂,通过氧化还原反应不断地在低价和高价态之间转换,从而实现自由基的生成和控制。
在引发阶段,引发剂(如卤代烃)与过渡金属配合物(如铜(I)配合物)发生氧化还原反应,生成一个自由基和一个新的过渡金属配合物。
这个自由基随后引发单体聚合,形成链自由基。
在链增长阶段,链自由基与单体发生加成反应,生成一个新的自由基和聚合物链。
同时,过渡金属配合物再次与这个新的自由基发生氧化还原反应,将自由基转移到过渡金属配合物上,形成休眠种。
这个休眠种在适当的条件下可以再次发生氧化还原反应,释放出自由基,继续链增长过程。
原子转移自由基聚合(ATRP)

实验部分
聚甲基丙烯酸甲酯(PMMA)的合成及表征 聚甲基丙烯酸甲酯(PMMA)的合成及表征 大分子引发剂的合成及表征 乙基纤维素接枝甲基丙烯酸甲酯的合成及表征
1.聚甲基丙烯酸甲酯的合成与表征 1.聚甲基丙烯酸甲酯的合成与表征
表1.1 相同情况下单体转化率与反应时间的关系
序号 1 2 3 4
单体质量 5.64 5.64 5.64 5.64
从谱图中可知,1137.95 cm-1和1132.28 cm-1,以及1264.46 cm-1体现了C—O—C的伸缩振动,3441.76 cm-1处的峰较弱,说 明,乙基纤维素上的羟基发生了反应,生成了大分子引发剂。
3.乙基纤维素接枝甲基丙烯酸甲酯的合成与表征 3.乙基纤维素接枝甲基丙烯酸甲酯的合成与表征 • 表3.1接枝共聚物的接枝率随反应时间的关系 接枝共聚物的接枝率随反应时间的关系 反应时间 反应前大 分子引发 剂 4h 0.500 6h 0.500 8h 0.500 10 h 0.500 产物质量 所接单 体总质 量 1.137 0.637 1.411 0.911 1.487 0.987 1.688 1.188 接枝率
结论
• 本实验采用的是一种简便可行,研究价值高,应用前景广的聚合方
法—原子转移自由基聚合(ATRP),通过采用小分子引发剂和大分子引 原子转移自由基聚合(ATRP),通过采用小分子引发剂和大分子引 发剂分别引发甲基丙烯酸甲酯原子转移自由基聚合反应,以此作对比, 小分子和大分子引发过程再分别考察不同反应时间对聚合的影响,从 而证明反应是成功的。 • (1)通过乙基纤维素上的羟基与 2 — 溴异丁酰溴的取代反应,在乙 基纤维素上引入了较多的溴异丁酸酯基团,合成了取代度不同的大分 子引发剂。 • (2)通过PMMA的红外谱图和EC-g-PMMA红外谱图对比说明乙基纤 )通过PMMA的红外谱图和EC- PMMA红外谱图对比说明乙基纤 维素已成功接枝到聚甲基丙烯酸甲酯上。并且,在反应的极限时间内, 接枝率随反应时间增大而增大。且分别采用了两种不同取代度的大分 子引发剂引发了甲基丙烯酸甲酯的原子转移自由基聚合反应,得到了 不同接枝率的EC- PMMA接枝共聚物。证明了ATRP方法能使聚合反 不同接枝率的EC-g-PMMA接枝共聚物。证明了ATRP方法能使聚合反 应做到真正的活性/ 应做到真正的活性/可控。
原子转移自由基聚合

具有活性特征的自由基聚合体系简介
•
年代, 从60年代到90年代,世界各地的高分 子合成化学家陆续开发出一些具有“ 子合成化学家陆续开发出一些具有“活 特征的自由基聚合体系, 性”特征的自由基聚合体系,它们都是 通过前面所提及的前三种可逆钝化平衡 来控制聚合反应的。 来控制聚合反应的。 • 下面我们就分别对这三种方法举例说明。 下面我们就分别对这三种方法举例说明。
2.3 增长自由基与转移剂之间的可逆退化转移
•
•
P• + P1-X •
P1• + P-X
增长自由基(P·)与转移剂(P1-X)反应, ) )反应, • 形成休眠种 P-X 和具有链增长能力的新自由基 P1·, - , P1· 的结构和性质与 P· 相似。 相似。 • 转移剂可以是有机磷化物,烷氧基胺碘代烷等。 转移剂可以是有机磷化物,烷氧基胺碘代烷等。
Molecular Weight
• 分子链越短([I]0越大),分子量分布越宽。 分子量分布越宽。 • 由于自由基浓度[P·]远远低于增长链的总浓度: 远远低于增长链的总浓度:
[P·]<< <<([I]0=[P-R]+[P·]) <<
• 为使所有的链同时增长,活性种和休眠种的转变必 为使所有的链同时增长, 须是快速的,才可以控制聚合物的分子量。 须是快速的,才可以控制聚合物的分子量。 • (kp/kdeact)是控制分子量分布宽度的重要因素, 是控制分子量分布宽度的重要因素, 比值越低,分子量分布越窄。 比值越低,分子量分布越窄。 • 如果自由基失活很慢或不发生,就变成通常的自由 如果自由基失活很慢或不发生, 基聚合。如果引发和转变足够快, 基聚合。如果引发和转变足够快,就可预测聚合度
ATRP

四:ATRP的发展
• ①反向ATRP 常规的A TRP 存在两个缺陷: ① 引发剂为卤化物, 毒性较大; ② 催化剂中的还原态过渡金属离子易被空气中的氧气 氧化, 不易保存及操作.
四:ATRP的发展
• ①反向ATRP 王锦山博士和Matyjaszewski采用了偶氮二异 丁腈为引发剂, 氧化态的过渡金属卤化物 (CuX2) 与bpy的络合物为催化剂, 进行苯乙烯 的反向ATRP
四:ATRP的发展
• ②由非均相反应向均相反应的转变 Matyjaszewski等为增进卤化亚铜在聚合体系中的溶解性, 在配 体联吡啶的4, 4′—位上引入可溶性的侧链。他们利用4, 4′—二—特丁基—2, 2′—联吡啶(dTbpy)、4, 4′—二—正 庚基—2, 2′—联吡啶(dHbpy)、4, 4′—二(5—壬基) —2, 2′—联吡啶(dNbpy) 代替联吡啶, 实现了均相的A TRP, 所得 的PSt 和聚丙烯酸酯聚合物的分子量分布明显降低。对12溴 代乙苯作引发剂的St 聚合, 得到的聚合物分子量可达105, 多分 散系数低至1.04~ 1.05。而目前商品化的用于凝胶渗透色谱柱 标样的PSt (由阴离子聚合制备) 的多分散系数为1.03~ 1.05。。
三:ATRP的优缺点
• (一)ATRP的优点 (1)适于ATRP的单体种类较多:大多数单体 如甲基丙烯酸酯,丙烯酸酯,苯乙烯和电荷 转移络合物等均可顺利的进行ATRP,并已 成功制得了活性均聚物,嵌段和接枝共聚物。
三:ATRP的优缺点
• (一)ATRP的优点 (2)可以合成梯度共聚物:例如Greszta等曾用 活性差别较大的苯乙烯和丙烯腈,以混合一 步法进行ATRP,在聚合初期活性较大的单 体进入聚合物,随着反应的进行,活性较大 的单体浓度下降,而活性较低的单体更多地 进入聚合物链,这样就形成了共聚单体随时 间的延长而呈梯度变化的梯度共聚物
原子转移自由基聚合(ATRP)简介

原子转移自由基聚合(ATRP)简介1引言聚合物合成的控制一般指对聚合物结构和分子量的控制。
活性聚合可以得到分子量分布极窄的聚合物,是制备结构明晰的聚合物的理想方法。
与传统聚合相比,活性聚合具有如下特征:(1)一级动力学特征,即聚合速率与时间呈线性关系;(2)聚合物的目标分子量可事先设计,且聚合物数均分子量随单体转化率的增长而线性增长;(3)分子量分布窄;(4)聚合物链末端在单体耗尽后仍能保持活性,再次加入单体可继续引发增长。
活性聚合最早报道于1956年,Szwarc课题组以萘钠为引发剂,在低温四氢呋喃溶剂中实现了苯乙烯的阴离子聚合,即为高分子科学史上的第一例活性聚合。
因聚合物溶液在反应停止后保存数月仍能引发新的单体进行聚合,因而被称为“活性”聚合。
这一聚合方法率先实现了对聚合物分子量的控制性,亦为功能化聚合物结构设计的研究开辟了新思路。
但阴离子聚合反应有其难以避免的局限性,如:需要高纯度试剂,反应条件极为苛刻,聚合体系必须严格无水无氧,反应不能含有其他杂质,单体适用性也十分有限。
20世纪末期,高分子科学家逐渐将目光转向了“活性”自由基聚合(LRP)。
1982年Otsu课题组报道了引发-转移-终止剂聚合法(Iniferter),该方法中Iniferter试剂可产生两种活性不同的自由基,活性较高的自由基引发单体聚合,活性较低的自由基不能引发聚合,而是与增长自由基发生链终止。
通过这一策略有效降低了增长自由基的浓度,从而实现了“活性”聚合。
此后,人们发现建立活性种与休眠种之间的可逆平衡,以此控制体系中增长自由基的浓度,是实现“活性”自由基聚合的关键所在。
遵循这一思路,人们逐渐实现了各种各样的“活性”自由基聚合方法,如氮氧稳定自由基聚合法(NMP),原子转移自由基聚合法(ATRP),可逆加成断裂转移聚合法(RAFT),单电子转移自由基聚合法(SET-LRP)等。
原子转移自由基聚合(Atom Transfer Radical Polymerization,ATRP)是1994至1995年由Matyjaszewski和Sawamoto等人同时提出的一种聚合方法。
原子转移自由基聚合-ATRP

3. ATRP法
3、制备嵌段共聚物
迄今为止只有活性聚合反应才能合成出不含均聚物、分子 量及组成均可控制的嵌段共聚物。 用ATRP方法可直接制备二和三嵌段共聚物。 某些单体不能进行 ATRP ,但由于将 ATRP 引发末端引入聚 合物链不是一件十分困难的事,因此可先通过一定方法制备 ATRP大分子引发剂,再用ATRP 法合成嵌段共聚物,这就是所
接枝等结构明确的聚合物的合成等。ATRP的不足之处:催化剂
用量高,不易除净。
11
3. ATRP法
3.2 ATRP与高分子的分子设计
1、制备窄分子量分布聚合物
有机卤化物 /CuX(X 为 Cl ,Br) /2,2′-bpy 引发体系,高温下 (100~120 °C) 仍是非均相,可得到分子量分布为1.1~1. 2 的均 聚物。 2 ,2′-bpy 杂环上带上某些油溶性取代基团,如正丁基、叔 丁基等,则上述引发体系变为均相体系,由此得到的聚合物的 分子量分布可低到Mw/Mn≈1.04. 这是历史上人们用自由基聚合
向单体转移
或
6
2. 活性聚合
2.1 活性聚合概念
不存在链转移和链终止的聚合,称为活性聚合。
自由基聚合的链增长对自由基浓度呈一级反应,而链终止则 成二级反应,如能降低自由基的浓度[M· ]或活性,就可减弱双基 终止,有望成为可控/“活性”聚合。 实现可控/“活性”聚合的基本思想:在自由基聚合体系中
引入一个可以和增长自由基之间存在偶合-解离可逆反应的物
种,抑制增长自由基的浓度,减少双基终止和转移反应的发生。
7
2. 活性聚合
2.2 活性聚合的分类
按照活性种和休眠种可逆互变机理,目前主要发展了四种 活性聚合方法: 氮氧稳定自由基法; 引发转移终止剂(Iniferter)法; 原子转移自由基聚合(ATRP)法; 可逆加成-断链转移(RAFT)法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
施瓦茨 小传
(M.Michael Szwarc 1909~2000)
美国化学家 1909年6月9日出生于波兰本津 主要研究领域:化学动力学、键的离 1932年在华沙工业大学获化学工程师学 位 解能、单体和自由基捕捉剂对于自由 1942 年在希伯来大学获有机化学博士学 基的竞争反应、非水体系中过硫酸盐 位 的引发过程、高分子化学反应、气相 1947 年在曼彻斯特大学获物理化学博士 和液相中自由基的反应活性、笼蔽效 M. M Szwarc 学 高分子化学方面最著名的成就: 1956年发现阴离子活性聚 应、阴离子聚合、自由基离子化学等。 位,1949年因研究化学键离解能而获得 合。用这个方法可制得单分散高分子、嵌段共聚物、其他 科 “分子设计”而成的高分子 学博士学位;同年任该校研究员。 1952年起,任纽约州立大学林学院教授,
瞬时自由基浓度[M· ].
体系中的自由基浓度控 制得越低, 则Rt/Rp值越 小, 链终止对整个聚合反 应的影响越小, 从而也就 可以实现“ 所示.
其中, 是n 个单元 组成的聚合链; M 为 单体; R - X 为引发 剂(卤代化合物) ; 为还原态过渡金属络 合物; 为氧化 态过渡金属络合物; 均为 活性种; 均为休眠种, k 为速率常数.
的共聚物。与其它“活性”自由基聚合 相 比,原子转移自由基聚合的反应条件较 为温和,适用单体广泛,而对杂质不太
敏感。
在利用ATRP 合成嵌段共聚物方面,
已成功的合成了油溶性嵌段共聚物、两
亲性嵌段共聚物,含功能单体单元的嵌 段共聚物、含氟嵌段共聚物、含硅嵌段
共聚物和热塑性弹性体等。
两亲性嵌段共聚物:聚苯乙烯-b-聚甲基丙烯 酸叔丁酯(PS-b-PMAA)的合成
从金属络合物转移到自由基的原子转移 过程, 所以称之为原子转移聚合; 同时,
由于其反应活性种为自由基, 所以称之
为原子转移自由基聚合。
由此可见
ATRP 的基本原理其实是通过一个交
替的“促活--失活”可逆反应使得体系 中 的游离基浓度处于极低, 迫使不可逆终 止反应被降到最低程度, 从而实现“活 性”/可控自由基聚合.
超支化聚合物由于具有高度支化三 维球状结构及众多的端基, 因此显示出 与相应线型分子截然不同的性质, 如低 粘度、无链缠结、良好溶解性等, 可望
作为高分子催化络合剂、流变控制剂等,
具有十分广阔的应用前景.
采用原子转移自由基引发体系引发带卤原子的双 官能团单体, 可以得到超支化聚合物. 利用对氯甲基苯乙烯在CuCl和bpy存在下的自引 发均聚反应合成相对分子质量可达150 000的高支化 聚苯乙烯
原子转移自由基聚合 (ATRP) 及其在高分子设计中的 应用
引
言
活性聚合是高分子化学的重要技术, 是实
现分子设计, 合成一系列结构不同、性能特异
的聚合物材料, 如嵌段、接枝、星状、梯状、
超支化等特殊结构的聚合物的重要手段. 自从
1956 年Szwarc等报道了一种没有链转移和
链终止的阴离子聚合技术以来, 活性聚合的研
其它类型聚合物
此外, 还可用ATRP 技术制备出聚合物刷 子、有机/无机杂化材料等高分子功能材料。
如M arcHusseman等用带有原子转移自由
基引发基团的硅烷在硅表面发生ATRP, 制得烯
ATRP 在高分子设计中的应用
接枝 聚合物 星形 聚合物 超支化 聚合物
ATRP 技术
其它类型 聚合物
嵌段 聚合物
嵌段聚合物
嵌段聚合物具有独特的结构和性能,
可用作稳定剂、乳化剂、分散剂等, 而 且在聚合物的改性共混等方面有着广泛 的应用.
活性聚合技术在合成嵌段共聚物方
面具有明显的优势,可以制得预定结构
自由基聚合 几种重要, 有效的方法
引发转移 终止剂法
氮氧自由基 控制的 稳定自由基 方式聚合 (SFRP)
原子转移 自由基聚合 (ATRP)
可逆加成--裂解 链转移聚合 (RAFT)
其中原子转移自由基聚合(ATRP)方 法速度快,反应温度适中,适用单体范围 广,甚至可以在少量氧存在下进行,分子
设计能力强是现有其他活性聚合方法无
引发剂R- X 与 发生氧化还原反应变 为初级自由基 R· , 初级自由基 R· 与单体M 反 应生成单体自由基R - M· , 即活性种. 与 R - M· 性质相似均为活性种, 既可继续引发 单体进行自由基聚合, 也可从休眠种 上夺取卤原子, 自身变 成休眠种, 从而在休眠种与活性种之间建立一 个可逆平衡.
接枝共聚物
接枝共聚物往往可以用作乳化剂、
增容剂、表面活性剂、相转移催化剂、 抗静电剂及生物医学材料等, 其性能往 往优于同类型的嵌段共聚物.
通过ATRP法制备功能化聚乙烯接枝共聚物
星形聚合物
星形聚合物有较大的用途, 它可以用
作交联剂, 也可用于粘合剂、涂料、选 择性吸附分离材料及生物材料等.
超支化聚合物
再以RX/CuX/BPY 体系(其中RX 为卤代烷 烃、BPY 为2 , 2 ′-- 联二吡啶、CuX 为卤化 亚铜) 引发ATRP 反应为例, 典型的原子(基团) 转移自由基聚合的基本原理如下: • 引发阶段:
• 增长阶段: • 终止阶段:
由于这种聚合反应中的可逆转移包
含着卤原子从卤化物到金属络合物, 再
活性聚合
阳离子活性聚合 阴离子活性聚合
配位活性聚合 活性自由基聚合 开环活性聚合
与其它类型聚合反应相比, 活性自由基聚合 集活性聚合与自由基聚合的优点为一身, 不但
可得到相对分子量分布极窄, 相对分子量可控,
结构明晰的聚合物, 而且可聚合的单体多, 反应 条件温和易控制,容易实现工业化生产. 所以, 活 性自由基聚合具有极高的实用价值, 受到了高 分子化学家们的重视.
法比拟的。
原子转移自由基聚合原理
自 由 基 聚 合 中
链终止速率与链增长之比可用式(1) 表示
(1) 式中 R t为链终止速率; R p为链增长速 率; k t为链终止速率常数; kp 为链增长速率 常数; [P·] 为自由基浓度; [M ] 为单体浓度.
由式(1) 可见, Rt/Rp
的值主要取决于体系中