最简单的变频器控制电机正反转及调速电路
PLC控制富士变频器多段调速、正反转、连续运行电路图(七按钮)

L1 L2 L3 N
S9分励脱扣器
FX2N-48MR
12 11 Y3 X3 X2 X1
E03=2 E02=1 E01=0 U 30A
高速
X5 X4 X3 X2 X1 COM
Y2 Y1 Y0 COM
C05多段频率1=10Hz C06多段频率2=20Hz C08多段频率4=40Hz
30C
中速
低速 变频器 停止输出 变频器 运行输出
10 11 12 13 14 15 16 17 0 1 2 3 4 5 6 7 20 21 22 23 24 25 26 27
MELSEG
RUN 运行 Y0 停止 STOP Y2
FX2N-48MR
OUT
10 11 12 13 14 15 16Fra bibliotek17Y4
Y6
Y10
Y12
Y14
Y16
Y20
Y22
Y24
Y26
U11 V11 W11 N11
L1 L2 L3 N
S9分励脱扣器
FX2N-48MR
Y3 Y2 Y1 Y0
变频器 停止输出 变频器 运行输出
11 X3 X2 X1 E03=2 E02=1 E01=0 U CM
F07=1s F08=1s C05多段频率1=10Hz C06多段频率2=20Hz C08多段频率4=30Hz
U11 V11 W11 N11
L1 L2 L3 N
S9分励脱扣器
FX2N-48MR
12 11 Y3 X3 X2 X1
E03=2 E02=1 E01=0 U 30A
多段频率3
X5 X4 X3 X2 X1 COM
Y2 Y1 Y0 COM
C05多段频率1=5Hz C06多段频率2=10Hz C07多段频率3=15Hz C08多段频率4=20Hz C09多段频率5=25Hz C10多段频率6=30Hz C11多段频率7=35Hz
变频器的运行方式之正、反转运行图文详解-民熔

变频器的运行方式之正、反转运行-民熔
正、反转运行
在实际生产中有大量频繁的、向后移动的设备,如龙门、铣床、磨床等等等驱动这些设备的异步引擎,自己能纠正和哈莉工作地点工频异步电动机可以通过改变电源相序来改变发动机的方向如果逆变器作为发动机的电源,有些逆变器具有正向和反向的功能,而其他人没有。
对于具有正向和反向功能的逆变器,利用逆变器的正向和反向控制信号对发动机进行正向和反向控制。
具有正反转功能变频器正、反转的控制线路
此图为发动机前后操作电路图变频器。
通过直接控制变频器的前后控制接口,可以实现发动机的前后操作。
对于无正向和反向功能的变频器,可以利用屏蔽开关将变频器的输出相序切换到如果我们用这种变频器,在设计其控制开关时,不能当心将发动机直接前后转换,而应在发动机熄火的情况下对发动机进行转换,否则转换过程中过多的电流会对变频器和发动机造成损坏。
无正反转功能变频器正反转运行接线图
在图中,KM-1和KM-2射手的初始相序改变主电路的相序,以实现发动机的前后控制。
变频器控制电动机正反转设计

东瞧晨 舛技
21年 期 01 第3
变频 器 控 制 电动机 正反 转设 计
刘 萍
( 黑龙 江龙煤集 团鹤 岗分公司热电厂, 黑龙 江 鹤 岗 140 ) 5 10
摘
要
该文介绍 了当前流行的节能设备变 频器 的原理 , 并针对最常用 的电动机正 反转控制进 行 了简 单设 计。采用理论 与应用 相结合 的方
・收稿 日期 :0 0— O一2 21 1 8
作者简 介: 刘萍 (94一) 大学 , 17 , 工程师 , 黑龙江龙 煤集 团鹤 岗热
路 由两部 分组 成 : 电动机工作主电路和实现电动机正反转 目的 的控 制 电 路 。主电路包括交 流接触 器 K 的主触 头 、 M 变频器 内 置 的正相序 和反 相序 A / C A D D / C变换 器 以及 三相 交 流电动机 M 等。控制电路包括变频器 U F的 内置辅 助 电路 , 制按 钮 S 1 S 2 停 止按 钮 S 3 正 反转 控 制 控 B 、B , B,
图 2 电压 型 变频 器
() 2 转差频率控制变频器 : 转差频率控制方 式是 对 V f /
控 制的一 种改进 , 这种控 制需 要 由安 装在 电动机 上 的
速度传感器检测 出电动机 的转速 , 构成速度 闭环 , 速度 调节器 的输 出为转差频 率 , 变频器 的输 出频率则 由 而 电动机 的实 际转速与所需转差频率之 和决定 。 由于通 过控制转差频率 来控制转 矩 和 电流 , v f 与 / 控制相 比 其加减速特性和 限制过流的能力得到提高。 () 3 矢量控制变 频器 : 量控 制是 一种 高性能 异 矢 步 电动机控制方式 , 它的基本思路是 : 将异步 电动机的 定子 电流分 为产 生磁场 电流 的分 量 ( 磁 电流 ) 励 和与 其垂直 的产生转矩 的电流分量 ( 转矩 电流) 并分别 加 , 以控制 。由于在这种控制方式 中必须 同时控 制异步 电 动机定子 电流 的幅值和相位 , 即定子电流 的矢 量 , 因此 这种控制方式被称为矢量控制方式。 通用变频器大 多采用 交 一直 一交 变频 变压 方式 , 其基本构成如图 3所示 。
电机正反转控制电路附实际接线图

三相异步电动机正反转控制电路图原理及plc接线与编程在图1是三相异步正反转控制的电路和控制,图2与3是功能与它相同的控制系统的外部接线图和梯形图,其中,KM1和KM2分别是控制正转运行和反转运行的.在梯形图中,用两个起保停电路来分别控制电动机的正转和反转;按下正转启动按钮SB2,X0变ON,其常开触点接通,Y0的线圈“得电”并自保;使KM1的线圈通电,开始正转运行;按下停止按钮SB1,X2变ON,其常闭触点断开,使Y0线圈“失电”,电动机停止运行;在梯形图中,将Y0与Y1的常闭触电分别与对方的线圈串联,可以保证他们不会同时为ON,因此KM1和KM2的线圈不会同时通电,这种安全措施在继电器电路中称为“互锁”;除此之外,为了方便操作和保证Y0和Y1不会同时为ON,在梯形图中还设置了“按钮互锁”,即将反转启动按钮X1的常闭点与控制正转的Y0的线圈串联,将正转启动按钮X0的常闭触点与控制反转的Y1的线圈串联;设Y0为ON,电动机正转,这是如果想改为反转运行,可以不安停止按钮SB1,直接安反转启动按钮SB3,X1变为ON,它的常闭触点断开,使Y0线圈“失电”,同时X1的敞开触点接通,使Y1的线圈“得电”,点击正转变为反转;在梯形图中的互锁和按钮联锁电路只能保证输出模块中的与Y0和Y1对应的硬件继电器的常开触点心不会同时接通;由于切换过程中电感的延时作用,可能会出现一个触点还未断弧,另一个却已合上的现象,从而造成瞬间短路故障;可以用正反转切换时的延时来解决这一问题,但是这一方案会增大编程的工作量,也不能解决不述的接触触点故障引起的短路事故;如果因主电路电流过大或者接触器质量不好,某一接触器的主触点被断电时产生的电弧熔焊而被粘结,其线圈断电后主触点仍然是接通的,这时如果另一个接触器的线圈通电,仍将造成三相短路事故;为了防止出现这种情况,应在PLC外部设置KM1和KM2的辅助常闭触点组成的硬件互锁电路见图2,假设KM1的主触点被电弧熔焊,这时它与KM2线圈串联的辅助常闭触点处于断开状态,因此KM2的线圈不可能得电;图1中的FR是作过载保护用的热继电器,异步电动机长期严重过载时,经过一定延时,热继电器的常开触点断开,常开触点闭合;其常闭触点与接触器的线圈串联,过载时接触其线圈断电,电机停止运行,起到保护作用;有的热继电器需要手动复位,即热继电器动作后要按一下它自带的复位按钮,其触点才会恢复原状,及常开触点断开,常闭触点闭合;这种热继电器的常闭触点可以像图2那样接在PLC的输出回路,仍然与接触器的线圈串联,这反而可以节约PLC的一个输入点;有的热继电器有复位功能,即热继电器动作后电机停止转,串接在主回路中的热继电器的原件冷却,热继电器的触点恢复原状;如果这种热断电器的常闭触点仍然接在PLC的输出回路,电机停止转动后果一段时间会因热继电器的触点恢复原状而自动重新运转,可能会造成设备和人身事故;因此有自动复位功能的热继电器的常闭触点不能接在PLC 的输出回路,必须将它的触点接在PLC的输入端可接常开触点或常闭触点,用梯形图来实现点击的过载保护;如果用式电机过载保护来代替热继电器,也应注意它的复位.电动机正反转实物接线图按钮联锁正反转控制电路图接触器联锁正反转控制线路。
三相电机正反转控制电路

三相电机正反转控制电路是通过改变电机电源的相序来实现的。
下面是一个简单的三相电机正反转控制电路的示例:
1. 电路图:
* 主电路电源进断路器QS,然后到KM1,到热继电器FR到电机。
* KM2主电路改变其中两项的相序从而改变电机转向。
2. 实物图配合电路图:
* 合上电源电源导入KM1----KM2主触点,同时到停止常闭,到启动按钮常开。
* 正转:按下启动按钮SB2接触器得电吸合,接触器主触点闭合,辅助触点闭合接触器自锁,电机正转运行。
同时接触器KM1常闭断开,此时即便按下启动按钮SB3也无法启动KM2。
* 停止:按下停止按钮SB1整个电路失电。
* 反转:按下启动按钮SB3接触器KM2得电吸合,接触器KM2主触点辅助触点闭合,同时常闭断开形成了对KM1互锁。
电机反转运行,停止按线停止按钮,接触器失电。
整个电路失电。
3. 工作原理:
* 主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。
当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。
当接触器KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。
* 为确保两个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。
在线路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源。
这两
正向启动过程对辅助常闭触头就叫联锁或互锁触头。
以上示例仅供参考,实际电路可能会因具体需求而有所不同。
建议咨询专业电工以获取更准确的信息。
变频调速电机通风机的线路接法

变频调速电机通风机的线路接法
一、主电路接线
1. 将电机电源线接入变频器输出端,即UVW端子。
确保电源线的规格合适,并且电源线的连接牢固。
2. 连接电机接地线,确保电机安全接地。
3. 根据实际需求,设置电机的旋转方向。
如果需要正反转控制,可以通过调换UVW三相中的任意两相来实现。
二、控制电路接线
1. 将控制电路的电源线接入变频器的控制电源端子,一般为DC12V或DC24V,具体电压值根据实际使用的变频器型号而定。
2. 连接启动信号线,将启动信号线接入变频器的控制端子,如STF 或STR端子(根据变频器型号而定)。
3. 根据需要,连接速度给定信号线,通常接入变频器的模拟量输入端子,如AI1和AI2端子。
可以通过调整速度给定信号来改变电机的转速。
三、传感器线路接线
1. 如果通风机配备了传感器,如温度传感器、湿度传感器等,需要根据传感器的接口类型和规格进行接线。
2. 确保传感器与通风机的安装位置正确,并且传感器的线路连接牢固,避免传感器线路松动或脱落。
四、通风管道连接
1. 根据通风机的设计要求,正确连接通风管道。
确保通风管道的连接处密封良好,防止漏风现象发生。
2. 在连接通风管道时,应考虑到管道的走向和支撑,避免管道过重或受到过大的外力作用导致通风机运行异常。
五、电源和接地线连接
1. 将电源线接入电源插座或电源开关,确保电源电压与变频器的额定电压相符。
2. 连接接地线,确保整个系统接地良好,提高系统的安全性能。
3. 在连接电源和接地线时,应确保接线符合当地电气规范和安全标准。
电机正反转控制电路图

CREATE TOGETHER
DOCS
谢谢观看
THANK YOU FOR WATCHING
• 原理:通过接触器的吸合与断开来改变电机的电源极性 • 优点:电路简单,成本低,适用于大功率电机 • 缺点:控制方式较为简单,无法实现复杂的控制功能
案例二:微型计算机控制的电机正反转电路
• 原理:通过微型计算机发出的控制信号来改变电机的电源极性 • 优点:控制功能强大,可以实现复杂的控制算法,适用于高精度、高 速度的控制系统 • 缺点:成本较高,对计算机性能有一定要求
• 元器件选型:选择正品元器件,保证 电路的性能和可靠性 • 电路设计:电路结构简洁明了,易于 调试和维护 • 安全防护:采取适当的安全保护措施, 防止电气事故的发生
04
电机正反转控制电路图的仿真与调试
电机正反转控制电路 图的仿真软件选择与 设置
• 仿真软件选择:常用的电机正反转控制电路仿真软件有 MATL AB/Simulink、LabVIEW等
电机正反转控制电路图中的元器件选择与参数计算
元器件选择:
• 电源电路:选择合适的电源变压器、整流器等元件 • 控制电路:选择合适的继电器、接触器、微控制器等元件 • 电机电路:选择合适的电机、电刷、换向器等元件
参数计算:
• 电源电路:根据电路结构和元器件参数计算电源电压和电流 • 控制电路:根据控制方式和元器件参数计算控制信号的电压和频率 • 电机电路:根据电机类型和性能要求计算电机的电压、电流、转速等参数
电机正反转控制电路图的拓展功能与技术创新
拓展功能:
• 多电机控制:实现多个电机的正反转控制,提高系统的复杂度和性能 • 遥控控制:通过无线遥控实现电机的正反转控制,提高操作便利性 • 传感器融合:结合传感器技术实现电机的自适应控制和智能控制
如何通过变频器来控制电机运转方向

变频器在恢复出厂参数后,按下“RUN”键,变频器驱动马达的转向,称为正向,若此时的旋转方向与设备要求的转向相反,请将F0-13=1或断电后(注意待变频器主电容电荷泄放完毕),将变频器UVW输出线中的任何两个接线掉换一下,排除旋转方向的问题。
在有的驱动系统中,只允许系统正转运行而不允许反转运行,则需要将F0-13=2,此时若出现反转指令,则变频器将减速至0并进入停机状态,同时操作面上FWD/REV一直闪烁。
如下图逻辑所示。
对于不允许有电机反转的应用,请不要用修改功能码的方法来改变转向,因恢复出厂值后,会复位上述两个功能码。
此时可以采用数字输入端子DI的50号功能实现禁止反转。
扩展资料:
变频器控制正反转和工频控制正反转原理差不多,工频是通过控制电机的线圈从机控制主电路来实现,而变频器是通过控制变频器的正反转端子从而来控制电机的正反转,在原有工频控制线路基础上在一些改进,将正反转的两个接触器的输出拆掉,分别在每个接触器上加一个辅助触头,用常开触头的通断来控制变频器的正转FWD和DCM端子,反转REV和DCM端子就可以了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理最简单的变频器控制电机正反转及调速电路
1.线路图
有正反转功能变频器控制电动机正反转调速线路,如下图
器件:QF:断路器
UF:变频调速器
SB1:正转启动按钮
SB2:反转启动按钮
SB3:停止按钮开关
SB4:故障复位按钮
K1,K2:继电器(线圈电压380Vac)
RP1,RP2:调速电位器
M:三相交流电动机
2.工作原理
旋转RP1调速电位器将设定频率调至目标值,再启动正反转,亦可在运行过程中随时调整电位器,改变变频器运行频率(注意不可转得太快)。
正转时,按下按钮SB1,继电器K1得电吸合并自锁,其常开触点闭合,FR-COM连接,电动机正转运行;停止时,按下按钮SB3,K1失电释放,电动机停止。
精心整理
反转时,按下按钮SB2,继电器K2得电吸合并自锁,其常开触点闭合,RR-COM连接,电动机反转运行;停止时,按下按钮SB3,K2失电释放,电动机停止。
事故停机或正常停机时,复位端子RST-COM断开,并发出报警信号。
按下复位按钮SB4,使RST-COM连接,报警解除。
控制线路串联于变频器内部热继电常闭辅助触点,提高电路保护性能。
3.应用
该电路有加减速平稳,运行可靠,控制简单的特点,大大调高了设备的自动化程度,比常规控制正反转电路的优点是:保护性能大大提高,可以调速。
可广泛应用于建筑施工,仓库,酒店餐饮业,小型工厂等货物的上下传输系统中。