(什么是)差动保护--详解

合集下载

差动保护的基本原理

差动保护的基本原理

差动保护的基本原理差动保护是电力系统中常用的一种保护方式,用于检测电气设备发生故障时的电流差异,从而及时采取动作措施,防止故障扩大并保护设备安全运行。

本文将从差动保护的基本原理、差动保护的主要应用领域以及差动保护的发展趋势等方面进行详细介绍。

差动保护的基本原理差动保护是基于电流差动原理而建立的。

其基本原理是通过比较电流的进出差异来检测设备是否发生故障。

在理想情况下,正常工作时电流的进出应该是相等的,即电流之差为零。

如果设备发生故障,则电流发生偏差,进出电流之差将不为零,这时差动保护系统将发出动作信号,切断故障部分的电源,保护系统的正常运行。

差动保护系统主要由主保护和备用保护两部分组成。

主保护负责实现差动保护的主要功能,备用保护则在主保护系统发生故障时起到备份作用。

主保护系统通常由差动电流继电器、比较器以及动作执行器等组成。

差动电流继电器负责将进出电流进行比较,发现差异时输出信号给比较器,比较器再将信号转化为动作信号给动作执行器。

差动保护的主要应用领域差动保护广泛应用于电力系统的各个环节,包括发电厂、变电站以及配电网等。

在发电厂中,差动保护用于发电机组、变压器等设备的保护。

在变电站中,差动保护则用于变压器、电缆线路等高压设备的保护。

而在配电网中,差动保护主要应用于低压设备,如配电变压器、电缆线路等。

差动保护的发展趋势随着电力系统的不断发展和现代化要求的提高,差动保护也在不断演变和完善。

目前,差动保护已经实现了微机保护的发展,并结合了现代的通信技术。

微机保护使得差动保护系统的功能更加强大,可实现更精确的测量和判断。

通信技术的应用使得差动保护系统能够实现远程控制和监控,提高了运维效率和安全性。

此外,差动保护系统还在趋向智能化和自适应方向发展。

智能化差动保护系统能够实现自动分析故障类型和区域,准确识别故障类型并采取相应的保护措施。

自适应差动保护系统则能够根据电网的实际运行情况对差动保护参数进行动态调整,提高保护系统的适应性和准确性。

差动保护线路的工作原理

差动保护线路的工作原理

差动保护线路的工作原理差动保护是一种常见且重要的电力保护装置,广泛应用于电力系统的高压线路、变压器等设备中。

差动保护的主要作用是保护被保护设备免受劣质或故障电流的影响,以防止设备因电流过载、短路等故障而受损。

下面将从差动保护线路的工作原理、结构、特点和应用方面进行解析。

差动保护线路的工作原理是通过比较电流输入和输出,判断设备正常还是存在故障,并根据判断结果触发保护动作。

其基本原理是基于法拉第定律,即从线圈周围的总磁通等于通过该线圈的电流的积分。

差动保护线路通过将需要保护的电流通过互感器转化为电压信号,然后将这些信号输入到差动保护装置中进行比较。

当输入信号之和等于输出信号时,系统认为设备正常;当输入信号之和不等于输出信号时,系统判断设备存在故障,此时差动保护装置将触发保护动作,如跳闸或断开故障设备。

差动保护线路的结构通常由互感器、匝数比较器、差动继电器和输出装置组成。

互感器将电流信号转换成电压信号,匝数比较器将输入信号之和与输出信号进行比较,差动继电器根据比较结果触发保护动作,输出装置负责将触发信号发送到断路器等保护设备,以进行相应的操作。

差动保护线路的特点有以下几个方面。

首先,差动保护具有高灵敏度和快速动作的特点,能够在故障发生的瞬间进行准确判断和保护动作,有效地防止设备故障的扩大。

其次,差动保护具有较强的适应性和稳定性,能够适应不同类型和容量的电气设备,并能够在复杂的电力系统环境中稳定运行。

此外,差动保护具有一定的误动特性,能够排除外界因素的影响,确保准确判断故障信号。

差动保护在电力系统中有着广泛的应用。

首先,差动保护广泛应用于高压线路和变压器等重要设备中,可以及时发现和隔离设备故障,确保电力系统的正常运行。

其次,差动保护还广泛应用于电气设备的原理保护和后备保护中,可以提高电力设备的可靠性和安全性。

此外,差动保护还可以与其他保护装置相结合,形成多重保护系统,提供全面的保护措施,从而降低设备的维修和更换成本。

高压电动机差动保护原理及注意事项

高压电动机差动保护原理及注意事项

高压电动机差动保护原理及注意事项差动保护是大型高压电气设备广泛采用的一种保护方式,2000KW以上的高压电动机一般采用差动保护,或2000kW(含2000kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。

差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。

对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。

差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。

当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。

微机保护一般采用分相比差流方式。

图1电动机差动保护单线原理接线图为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。

两组电流互感器之间,即为纵差保护的保护区。

电流互感器二次侧按循环电流法接线。

设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I・12与I・22之差。

继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。

图1所示为电动机纵差保护单线原理接线图。

在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。

如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s的延时动作于跳闸。

如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。

一般在保护装置端子上有交流量或称模拟量输入的端子,分别定义为Ia1、Ia1*、Ic1、Ic1* (电机的端电流),Ia2、Ia2*、Ic2、Ic2* (电机的中性线电流),带*的为极性端。

电动机差动保护原理

电动机差动保护原理

电动机差动保护原理
电动机差动保护是一种保护电动机的措施,其原理是通过比较电动机的不同相电流,来检测是否存在故障。

差动保护通常包括两个主要部分:差动电流互感器和差动保护装置。

互感器位于电动机的供电线路中,用于检测电动机的相电流。

它通过感应电流的变化,将电流信号转化为电压信号。

互感器通常由多个线圈组成,其中一部分连接在供电线路的进线侧,另一部分连接在出线侧。

当电动机正常运行时,进线侧和出线侧的电流应该相等,因此互感器的输出电压应该接近零。

差动保护装置比较互感器的输出电压,如果发现有较大的差异,就会发出故障信号,并采取适当的措施来切断供电。

差异可能是由于电动机内部的故障或线路短路引起的。

差动保护装置通常包括了灵敏性调节装置,用于调整差动保护的动作灵敏度。

差动保护可靠性较高,可以有效地保护电动机不受损坏。

然而,差动保护也有一些限制。

例如,在启动电动机或者母线电压发生偏差时,差动保护可能会误动作。

因此,在设计和配置差动保护装置时,需要考虑这些因素,并进行相应的调整和保护配置。

总之,电动机差动保护通过比较电动机的不同相电流来检测故障,并采取措施来切断电源,以保护电动机的安全运行。

差动保护和比例差动保护原理(含图)

差动保护和比例差动保护原理(含图)

1.比率差动是差动电流和制动电流的制约,要考虑到励磁涌流的影响;2.差流速断是当差流过定值后不考虑制动电流直接出口跳闸,在整定时就躲过励磁涌流。

3.变压器在正常负荷状态下,差动保护的最小动作电流大于额定电流下流入差动回路的不平衡电流,保护不会误动。

随着外部短路电流的增大,电流互感器可能饱和,误差随之增大,不平衡电流也就不断增大。

为防止差动保护误动作,引入比率差动保护。

其能可靠地躲过外部故障时的不平衡差动电流。

1.差动速断保护反映变压器内部或引出线严重短路故障,任一相电流大于整定值,保护跳闸并发信号,其动作方程为:Id>I1式中,Id为短路电流,I1差动保护定值。

Ih为高压侧电流,Il为低压侧电流TAP=(VWDG2×CT2×C)/(VWDG1×CT1)式中:VWDG1为高压侧线电压;VWDG2为低压侧线电压;CT1为高压侧CT变比;CT2为低压侧CT变比。

当相位调整选择“退”时,为外部接线补偿,C=3。

差动电流的计算方法为:Id=|Ih+ Il*TAP| ,其中Idh、Idl都为矢量。

制动电流的计算方法为:Ir= Imax |Ih、Il*TAP|。

(表示选择其中最大相)当相位调整选择“投”时,为内部软件补偿,。

C=1单加高压侧形成的差动电流的计算方法为:Idh=Ih线/3;单加低压侧形成的差动电流的计算方法为:Idl=Il*TAP;高压侧和低压侧同时施加,各相差动电流的计算方法为:Id=|Idh +Idl| ,其中Idh、Idl都为矢量。

高压侧和低压侧同时施加,各相制动电流的计算方法为:Ir=Imax |Idh、Idl|。

差动速断保护原理逻辑图如下:图6-1 差动速断保护原理逻辑图2.比率差动保护变压器在正常负荷状态下,差动保护的最小动作电流大于额定电流下流入差动回路的不平衡电流,保护不会误动。

随着外部短路电流的增大,电流互感器可能饱和,误差随之增大,不平衡电流也就不断增大。

差动保护的原理

差动保护的原理

差动保护的原理差动保护是电力系统中常用的一种保护方式,它主要用于保护电力系统中的发电机、变压器、母线等设备。

差动保护的原理是通过比较设备两端的电流值,来判断设备是否出现故障,从而实现对设备的保护。

下面我们将详细介绍差动保护的原理及其应用。

首先,差动保护的原理是基于基尔霍夫电流定律和对称分量理论的。

在正常情况下,设备两端的电流是相等的,而在设备发生故障时,两端的电流就会出现不相等的情况。

差动保护利用这一特性,通过对设备两端电流的比较,来判断设备是否出现故障。

当两端电流不相等时,差动保护会动作,从而实现对设备的保护。

其次,差动保护可以分为整流差动保护和非整流差动保护两种。

整流差动保护主要用于对发电机和变压器等设备进行保护,而非整流差动保护主要用于对母线等设备进行保护。

整流差动保护和非整流差动保护的原理是一样的,都是通过比较设备两端的电流值来实现对设备的保护,只是在实际应用中会有一些差异。

此外,差动保护还可以通过不同的接线方式来实现。

常见的差动保护接线方式有星形接线和三角形接线两种。

星形接线适用于对称电流较大的情况,而三角形接线适用于对称电流较小的情况。

选择合适的接线方式可以更好地实现对设备的保护。

最后,差动保护在电力系统中有着广泛的应用。

它能够及时准确地对设备进行保护,防止设备发生故障对整个电力系统造成影响。

同时,差动保护还可以实现对设备的局部保护,提高了电力系统的可靠性和安全性。

总之,差动保护作为一种常用的电力系统保护方式,其原理简单而有效。

通过对设备两端电流的比较,可以实现对设备的及时保护,从而保障了电力系统的安全稳定运行。

差动保护在电力系统中的应用前景广阔,将在未来发挥越来越重要的作用。

什么是差动保护

什么是差动保护

什么是差动保护?为什么叫差动?这样有什么优点?
差动保护是变压器的主保护,是按循环电流原理装设的。

主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。

在绕组变压器的两侧均装设电流互感器,其二次侧按循环电流法接线,即如果两侧电流互感器的同级性端都朝向母线侧,则将同级性端子相连,并在两接线之间并联接入电流继电器。

在继电器线圈中流过的电流是两侧电流互感器的二次电流只差,也就是说差动继电器是接在差动回路的。

从理论上讲,正常运行及外部故障时,差动回路电流为零。

实际上由于两侧电流互感器的特性不可能完全一致等原因,在正常运行和外部短路时,差动回路中仍有不平衡点流Iumb 流过,此时流过继电器的电流IK为Ik=I1-I2=Iumb
要求不平衡点流应尽量的小,以确保继电器不会误动。

当变压器内部发生相间短路故障时,在差动回路中由于I2改变了方向或等于零(无电源侧),这是流过继电器的电流为I1与I2之和,即
Ik=I1+I2=Iumb
能使继电器可靠动作。

变压器差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备、以及连接这些设备的导线。

由于差动保护对保护区外故障不会动作,因此差动保护不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,所以在区内故障时,可以瞬时动作。

差动保护工作原理

差动保护工作原理

差动保护工作原理差动保护是电力系统保护中常用的一种保护方式,主要用于检测电力系统中的故障情况,并采取措施防止故障扩大。

差动保护可以用于对各种电气设备进行保护,如变压器、发电机、母线等。

下面将详细介绍差动保护的工作原理。

差动保护是一种基于电流差值的保护方式。

其基本原理是通过比较同一电路的两个或多个点的电流,来判断电气设备是否存在故障。

差动保护一般采用主动式差动保护,也就是主动比较电流并判断是否存在故障,另外还有被动式差动保护,也就是被动接受其他装置的差动信号。

差动保护通常由一个差动继电器组成,该继电器上接入从变压器、发电机以及线路中取得的电流信号。

差动继电器接受这些电流信号,并通过比较这些信号的差异来判断电气设备是否存在故障。

差动保护的工作原理大致可以分为三个步骤:采样、比较和判定。

首先是采样。

差动继电器上接入从电气设备中取得的电流信号。

这些电流信号是通过采样装置采集而来的,通常采用电流互感器获取变压器、发电机以及线路中的电流信号。

采样装置会将采集的电流信号转换成适合差动继电器处理的信号,然后输入到差动继电器中。

接下来是比较。

差动继电器将接收到的电流信号进行比较,比较对象通常是同一电路中的两个或多个点的电流信号。

差动继电器会将这些电流信号进行差分运算,得到一个差值。

如果差值超过所设定的阈值,就会触发差动继电器的动作。

最后是判定。

差动继电器会根据比较得到的差值判断电气设备是否存在故障。

如果差值超过阈值,差动继电器会发出警报信号,并向对应的断路器或开关发送信号,将故障路段进行隔离。

如果差值在阈值之内,差动继电器则认为电气设备正常运行。

差动保护的工作原理中,要特别注意的是阈值的设定。

阈值的大小与电气设备的特性有关,通常需要根据设备的额定电流和故障特性来确定。

阈值设置过小,容易造成误动作,阈值设置过大,容易漏检故障。

差动保护相对来说是一种较为简单、可靠的保护方式。

它可以实时监测电气设备的工作情况,一旦发现故障可以迅速切除故障路段,保护系统的安全稳定运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
④ 采用差动电流速断保护。利用 励磁涌流随时间衰减的特点,借保护固 有的动作时间,躲开最大的励磁涌流。
5.3 差动继电器
一、DCD—2差动继电器的基本原理 结构原理示意图:
Φ
Φ
Φ
Φ
Φ
Φ
Φ
它由加强型速饱和变流器和电流继电器KA组成。加强型速饱和变流
器是一个三柱铁芯,中间柱B的截面积比两边柱A、C的截面积大一
但为了便于组织生产,国家规定了TA的标准变比系列值,实际采用 的TA变比可能与该计算值不等,从而造成二次侧电流相减结果不等于零, 从而形成不平衡电流。
二、两侧电流互感器型号不同
由于配电装置布置、设计人员喜好、厂家不同等原因,有可能出现 两侧TA型号不同的情况,即使是型号相同,由于TA误差也会造成两侧电 流大小不等,从而形成不平衡电流。
(什么是)差动保护--详解
5.1 纵差保护的基本原理
纵联差动保护是通过比较 被保护对象纵向两侧电流的大 小和相位的原理实现的。
假定被保护对象是变压器, 变比等于1,Y/Y-12组别, 如图:
被保护对象正常运行和外部短路时,流过差动继电器的电 流为 I r I I2I II2 ,理想情况下,被保护对象两侧的电流大 小和相位都是相同的,故流入继电器的电流为零。实际由于电 流互感器的误差等因素,流过继电器的电流并不为零,称之为 不平衡电流。
以上两项不平衡电流可以利用平衡绕组补偿一部分,不能完全补偿, 剩余部分靠动作整定值躲过。(关于平衡绕组在差动继电器 中讲述)
三、变压器调压分接头位置改变 当纵差保护用于保护变压器时,一般
变压器在其高压侧绕组上都设有调压分接 头,分有载调压和无载调压两种。当调压 分接头位置改变时,变压器的变比也改变, 从而两侧TA二次侧电流的大小也改变。 这对已经配置好的纵差保护来讲,就会形 成不平衡电流。
5.2 纵差保护的不平衡电流
纵差保护在运用中,被保护对象正常运行或外部故障时,总会有一 个电流流入继电器,称之为“不平衡电流”,该电流的大小直接决定了保
护 的灵敏度。引起不平衡电流的因素主要有:
一、电流互感器计算变比与实际变比不一致 根据纵差保护的原理可知,最理想的情况就是两侧TA二次侧电流大
小择相公等式,是通:过接线nT方A1式使I其51N相减,则不nTA平2 衡I电52N流为零。所以TA变比的选
若空载合闸正好在电压瞬时值为零的瞬间接通电路,则铁芯中就具有
一个相应的磁通,而铁芯中的磁通又是不能突变的,所以在合闸时必将出
现一个非周期性磁通分量。因非周期性磁通分量的衰减比较慢,经过半个
周期后,它与稳态磁通相叠加的结果,将使铁芯中的总磁通达到的数
值 2max ,如果铁芯中还有方向相同的剩余磁通 res,则总磁通将为 2max
该项不平衡电流只能依靠保护的动作 整定值躲过。
四、变压器接线组别 当纵差保护用于保护变压器时,电力系统主变一般采用Y/D—11。
该接线组别的含义是:D侧电压、电流相量超前Y侧30°,因此TA二次 侧电流相量差并不为零,形成不平衡电流。
解决措施:将两侧的TA按下图所示连接,进行补偿。
• 采用了相位补偿接线后,在电流互感器绕组接成 三角形的一侧,流入差动臂中的电流要比电流互 感器的二次电流大 3 倍。可通过适当选择电流互 感器变比来消除。
当铁芯饱和后,磁阻变大,传变性能变坏,在短路绕组中感应电势
减小,由 IkWk、IkWk 产生的磁通也减小。值的注意的是,A、B柱上磁 通减小的程度不同,A柱减小更多,对C柱而言呈去磁作用,进一步使二
次绕组感生电势减小。
因此,短路绕组在差动线圈中流动非周期性电流时,是起“去磁” 作 用,有利于加强继电器躲闭励磁涌流的能力。同时,短路绕组的匝数越 多, 去磁作用越强。
• 变压器星形侧变比:
nTA1
3I1N 5
• 变压器三角形侧变比:
nTA 2
I2N 5
五、励磁涌流的影响
所谓励磁涌流,就是变压器空载合闸时的暂态励磁电流。
由于变压器的励磁电流只流经它的电源侧,故造成变压器两侧电流不 平衡,从而在差动回路内产生不平衡电流。
当变压器空载投入和外部故障切除后电压恢复时,可能出现很大的励 磁涌流,其值可达变压器额定电流的6~8倍。可能造成保护误动作.
DCD—2 差动继电器
5.4 用DCD—2差动继电器构成的纵差保护
变压器纵差保护展开接线图
信号回路
不考虑相位补偿时纵差保护展开图
信号回路
发电机纵差保护原理接线示意图
内部故障时,流如差动继电器的电流为:I r I I2I II2
该电流大于KD的动作电流时,KD动作。
由此可见,按照该原理构成的差动保护,对故障有极高的 灵敏度,保护范围为“构成差动保护的两侧电流互感器之间的 所有元件”,可以灵活运用,但需将被保护对象纵向两侧的TA 二次侧连接成闭合环流回路 。
工程实践中,由于输电线路距离长,采用该保护方式不现 实。故差动保护一般用于贵重而距离短的电气设备保护,如变 压器、发电机、母线等。特别短的输电线路也可考虑采用。
其中很大的非周期分量使速饱和变流器的铁芯迅速严重饱和,励磁阻抗锐 减,使得一、二次之间的传变性能变差,差动继电器的电流很小,保护不 起动。通常将速饱和变流器与电流继电器合在一起生产,从而产生出差动 继电器。
带速饱和变流器的接线
② 采用以二次谐波制动原理构成 纵联差动保护装置。
③ 采用鉴别波形间断角原理构成 差动保护。
+
re
。由于铁芯高度饱和,使励磁电流剧烈增加,从而形成了励磁涌流
s

励磁涌流的最大特点是:含有很大成分的非周期分量;含有大量的高
次谐波;
为了消除励磁涌流的影响,通常采取的措施是:
① 接入速饱和变流器。为了消除励磁涌流非周期分量的影响,通常
在差动回路中接入速饱和变流器 T sat 。当励磁涌流进入差动回路时,
倍。在中间柱上除绕有差动线圈和两个平衡线圈
W
bHale Waihona Puke 和1W b2
外,还绕有
短路线圈W k 。在A柱上绕有 W k 。在C柱上绕有二次绕组 W 2 。

过A柱当和在C差柱动,线并圈在W短d路上绕仅组有中周感期生分电量势电,流产I生r 时电,流BI柱k 上。的如磁果通W 分k =别2通W k
则 kBCkAC, 当铁芯未饱和时,相当于短路绕组不存在 。
相关文档
最新文档