AnsoftHFSS设计圆极化微带天线阵
基于HFSS的4×24微带阵列天线的研究与设计

第5期基于HFSS的4×24微带阵列天线的研究与设计3HFSS仿真设计结果及分析3.1HFSS仿真设计平台HFSS是Ansoft公司推出的j维电磁仿真软件,是世界上第一个商业化的三维结构电磁场仿真软件,业界公认的i维电磁场设计和分析的电子设计工业标准。
HFSS软件拥有强大的天线设计功能,它可以计算天线参量,如增益、方向性、远场方向图剖面、远场3D图和3dB带宽。
绘制极化特性,包括球形场分量、圆极化场分量、Ludwig第三定义场分量和轴比。
使用HFSS可以计算:(1)基本电磁场数值解和开边界问题,近远场辐射问题;(2)端口特征阻抗和传输常数;(3)S参数和相应端口阻抗的归一化s参数;(4)结构的本征模或谐振解。
而且,由AnsoftHFSS和AnsoftDesigner构成的Ansoft高频解决方案,是目前唯一以物理原型为基础的高频设计解决方案,提供了从系统到电路直至部件级的快速而精确的设计手段,覆盖了高频设计的所有环节。
hnm(a)矩形微带贴片模型(”2X4子阵形式图2插槽型微带贴片与子阵天线结构图3_2阵列天线的整体仿真利用HFSS进行微波无源器件及电路的设计大体经过物理建模、给模型参数赋予初值、运行仿真、参数调整优化等步骤。
在进行计算机建模之前,需要经过详细的理论分析过程,利用微带天线工程设计的相关经验公式来确定相关尺寸数据,理论分析大体经历分析数据、全波仿真分析优化贴片尺寸、馈电网络设计等步骤。
利用HFSS软件对由RCL馈电网络的2X4微带子阵进行了仿真,建立的互维物理模型如图3所示,通过数据后处理就可以得出全向电场方向图和全向增益方向图,分别如图4和图5所示。
按照阵列天线方向图叠加原理和模块化的设计方法,可以得出4×24结构微带阵列天线的整体E面和H面方向图,如图6所示。
通过2x4微带子阵的全向电场方向图和全向增益方向图可知,天线最大估计电场强度为5.5V,天线最大估计增益为4dB。
用HFSS对宽波束圆极化天线的设计

- 122 - Ansoft2004年用户通讯用HFSS 对宽波束圆极化天线的设计房丽丽 应子罡 吕昕(北京理工大学 信息科学技术学院100081)摘要:本文用HFSS 设计了一种新型的螺旋天线结构,将角锥螺旋与四臂螺旋的结构巧妙的结合起来,并采用了自相移结构及渐进式的平衡馈电,经HFSS 对其辐射特性进行分析以及实测结果,都说明该种天线在实现宽波束圆极化的同时,展宽了频带,且结构简单。
关键词:圆极化 HFSS 螺旋天线一 引言星上测量装置及其他空间通讯设备上,需要天线具有宽波束、圆极化的性能,圆锥螺旋天线、谐振式四臂螺旋天线和微带天线都可以形成半球形的圆极化方向图。
但是考虑到天线装载在太空中,要受到高能粒子、宇宙射线的影响,以及大的温度交变,如果用微带天线的话介质层可能变脆剥落。
另外,微带天线不容易实现高的增益。
相比较下,螺旋天线不仅可以实现宽波束圆极化,还具有体积小、重量轻、结构稳定的优点,引起广泛的重视和应用。
我们这里提出了一种新型的螺旋结构,将圆锥螺旋天线与四臂螺旋天线结合起来,采用自相移实现90°相位差,采用渐变式的平衡馈电。
经过HFSS 仿真分析和实际测试,都说明该天线在实现宽波束圆极化的同时,展宽了频带,结构简单紧凑。
二 螺旋天线的结构1. 辐射部分角锥螺旋天线有单螺旋、双臂螺旋等形式,这里我们采用单臂螺旋角锥螺旋天线,可以表示为ϕρρb +=0 (1)其中,ρ为圆锥顶点到螺旋线任一点的距离,ρ0为圆锥顶点到螺旋线起点的距离,b 为常数,由圆锥的锥角和螺旋线的包角决定。
谐振式四臂螺旋部分由四根螺旋臂组成,每根螺旋臂到馈电点的长度为M λ/4(M 为整数).四根螺旋臂馈电端电流相等,相位两两相差90º;非馈电端开路(M 为奇数时)或短路(M 为偶数时)。
我们将角锥螺旋与四臂螺旋的结构结合起来。
其中,四臂螺旋的相位差通过同轴馈线末端开四个槽,分成四部分,每部分的末端与四臂螺旋的臂相连。
基于HFSS的圆极化微带天线分析与设计

基于HFSS的圆极化微带天线分析与设计作者:吴峻岩陶琴于家傲来源:《科技信息·上旬刊》2018年第06期摘要:随着时代的发展,圆极化微带天线的应用范围逐渐扩大,其在实际应用中具有成本低、集成性高以及重量轻等特点。
基于此,本文将在HFSS的基础上,分析圆极化微带天线,并研究基于HFSS的圆极化微带天线设计方法,其中主要包括圆极化微带天线的应用性质、圆极化微带天线中馈电网络的选择、圆极化微带天线中的抗干扰算法以及圆极化微带天线的性能指标设计。
关键词:HFSS软件;圆极化微带天线;馈电网络前言:随着时代的发展,圆极化微带天线中的应用技术也越来越成熟,圆极化微带天线在实际应用的过程中能够提升接收效率以及信息传播速度,与传统天线相比具有较高的应用效率。
加上圆极化微带天线还能够在电离层的过程中产生法拉第螺旋效应,提升了圆极化微带天线的应用质量。
本文在研究圆极化微带天线的过程中,将会在HFSS的基础上对其展开研究设计,最终达到提升圆极化微带天线设计质量的目的。
一、HFSS的基础上的圆极化微带天线HFSS是一种辅助软件,在设计圆极化微带天线的过程中,能够帮助设计人员对其中的数据参数展开分析,提升最终圆极化微带天线的设计质量。
在此过程中还可以利用HFSS软件对圆极化微带天线中的影响因素展开分析,避免在实际圆极化微带天线设计中出现设计问题,在此基础上制定出最优设计方案。
由此可以看出,利用HFSS对圆极化微带天线展开设计,能够在降低圆极化微带天线设计难度的同时,提升最终圆极化微带天线的设计质量。
微天线最早出现在1953年,将辐射贴片贴在不同的介质基板中,其中介质基本的厚度小于微电天线的波长,微带天线在实际应用过程中具有性能高、外形小以及设计简单等优点,被广泛应用在卫星导航系统以及无线通信中。
例如,在卫星导航系统应用的过程中,可以根据单馈圆偏振发原理,保证微带天线中L/S波段双频导航天线的应用质量,进而提升系统短消息的通信功能以及定位功能。
应用HFSS设计一种双频段GPS微带天线

应用 HFSS 设计一种双频段 GPS 微带天线彭祥飞,钟顺时(上海大学通信与信息工程学院,上海 200072)摘要:本文应用Ansoft 公司的HFSS 软件仿真设计一种双频段GPS 微带天线。
此天线由不同介电常数的 微波陶瓷基片组成,双层正方形切角的微带贴片通过单个探针馈电。
文中给出了天线的详细设计及实验结 果,仿真结果和实验结果很好的吻合,结果说明HFSS 软件的高效性和准确性。
关键词: Ansoft HFSS ; 微带天线;全球定位系统;双频段;圆极化;1前言Ansoft 公司 HFSS 仿真器提供了一种采用有限元法对三维高频结构电磁特性进行仿真计算的工具。
该软件具有很高的 计算精度,已经成为天线与微波电路设计方面的有力工具。
本文采用 Ansoft 公司的 HFSS 模块设计出一种双频段 GPS 微带 天线。
近年来微带天线由于它的尺寸小、成本低、易实现圆极化等优点在全球定位系统(GPS )应用中独占鳌头。
大部分的 GPS 仅工作在L 1 频率,常用的GPS 微带天线加工在高 ∑ r 的厚陶瓷基片上 [1],这样的天线低仰角性能好和带宽足够宽,具有 良好的广角圆极化。
但为了满足GPS 的一些特殊应用,如高精度的一体化检测或差分基准系统 [ 2 ],GPS 天线必须在L 1/L 2 两 个频率(L 1:1575 MHz, L 2:1227 MHz )上实现圆极化。
如果用单馈电点实现双频圆极化,可以用两种微带天线结构:一种使 用单块贴片 [3, 4] , 其两圆极化工作频率比大约是 1.5 倍或更大些;另一种使用双层贴片 [5 7 ],两圆极化频率比小于 1.5 倍。
本 设计中,L 1 和L 2 的频率比为 1.28 倍,小于 1.5 倍,所以用双层贴片设计能满足GPS 天线L 1/L 2 两个频率的要求。
但是绝大 多数文献[5~7]报道的双层贴片天线都加工在同一介电常数的两块基片上,基片中间引入空气层(可采用泡沫材料来支撑上 层),这样既增大了尺寸,又不便于加工。
宽带圆极化微带天线设计

宽带圆极化微带天线设计关键词:微带天线,X波段,设计,分析,HFSS,仿真目录1 绪论 (1)1.1 本课题研究背景 (1)1.2 微带天线的发展 (1)1.3 微带天线的优缺点 (2)1.4 本课题研究内容 (3)2 微带天线基本概念及原理 (5)2.1 天线的基本概念 (5)2.2 天线的辐射原理 (6)2.3 天线的基本参数 (6)2.3.1 天线的极化 (7)2.3.2 天线方向图的概念 (7)2.3.3 天线输入阻抗的计算方式 (8)2.3.4 天线的谐振频率与工作频带宽带 (8)2.3.5 天线的驻波比 (9)2.4 微带天线的简介 (10)2.4.1 微带天线的结构与分类 (10)2.4.2 微带天线的辐射机理 (10)2.4.3 微带天线的形状 (11)2.5 微带天线的分析方法 (11)2.5.1 传输线模型法 (11)2.5.2 空腔模型法 (13)2.5.3 积分方程法 (13)2.6 微带天线的馈电方法 (14)2.7 微带天线圆极化技术 (15)2.7.1 圆极化天线的原理 (15)2.7.2 圆极化实现技术 (16)3 宽带异形贴片微带天线设计 (21)3.1 微带天线的仿真 (21)3.2 Ansoft HFSS高频仿真软件的介绍 (21)3.3 HFSS对具体实例的仿真 (21)3.3.1 选取微带天线模型 (21)3.3.2 微带天线的仿真优化 (23)4 双点馈电圆形圆极化微带天线设计 (35)4.1 HFSS对圆极化微带天线的仿真 (35)4.1.1 选取圆极化微带天线模型 (35)4.1.2 圆形圆极化微带天线的仿真优化 (35)5 总结结论及展望 (41)参考文献 (42)1 绪论1.1 本课题研究背景天线作为电磁波的发射和接收装置,在无线通信和雷达系统中有着不可替代的作用。
自19 世纪初首次在跨越大西洋的无线通信使用天线以来,无数科学家投身到了天线的研究当中。
Ansoft HFSS在天线设计中的应用

微波电路 � � � � � 滤波器-腔体滤波器、微带滤波器、介质滤波器 电磁兼容(EMC)/电磁干涉(EMI)-电磁屏蔽、耦合、近/远场辐射 连接器-同轴、SFP/XFP、底板、转换器 波导-滤波器、谐振器、转换器、耦合器 半导体/GAAs-螺旋导体、变压器
�
信号完整性/调整数字电路 � � � � 封装-BGA、QFP、flip-chip PCB 板-功率/地板、网格地板、底板 连接器-SFP/XFP、VHDM、GBX、NexLev、同轴 转换器-Differential/Single-ended 过孔
7
Maxwell 方程有积分和差分两种形式,因此也各有算法相对应。矩量法( MOM )是求 解积分方程的一种算法, 它通过求得散射体上的电流从而推出整个空间的场, 因此它只需在 散射体上划分网格。而时域有限差分法(FDTD)和有限元是求解差分方程的算法。它们直 接求解整个空间的场从而得到整个空间的场。直接求解整个空间的场?Are you crazy?好吧, 我承认求解整个空间的场是不可能的, 但不代表这种算法只存在于想像中。 总有聪明的人想 出聪明的办法来,他们人为的在散射体周围放置一种吸收边界,类似于暗室的吸波材料, 来 波入射到上面就被吸收, 因此不会有反射干扰到吸收边界之内的场, 由求得的近场则可以推 得整个空间的场。 还有一个分支是图上没有表达出来的,那就是时域、频域之分。时域有限差分法顾名思 义是时域算法,与之类似的还有 CST 采用的有限积分法。而矩量法和有限元法则属于频域 算法。至于具体的原理就不多说了,我们只要知道时域算法适用于宽频带,而频域算法适用 于窄频带就好。 另外, 我们还要知道为什么这几种算法为什么称为低频算法。 称为低频算法并不意味只 能计算很低的频率。 这主要是因为这种算法假设工作波长远远大于结构体的尺寸, 所以在对 结构离散化的时候就不能忽略细节问题,是一种严格的分析方法。而与之对应的高频算法, 则是假设工作波长远远小于结构体的尺寸, 这样就可以在计算的时候做一些近似。 比如一个 球面上的散射问题,由于有上面的假设,则可以把球面的某个区域等效为一个平面来求解。 既然是讲 HFSS 的,那我们还是主要来了解一下有限元这种算法的几个主要术语吧。 � � FEM-finite element method 有限元; Element - 单 元 指 有 限 元 法 中 对 整 体 问 题 细 分 后 的 小 个 体 。 HFSS 中 采 用”tetrahedral”(四面体)elements; � Meshing-网格剖分,即对求解空间细分、然后定义所有四面体单元顶点位置的过 程。我们必须给予 HFSS 的自适应网格剖分技术充分的肯定。我认为在电磁仿真软 件中最重要的不是算法,而是网格剖分。模型易建,算法成熟,直接决定最后的计 算精度的是网格对模型离散化的效果。可以把网格看作模型和算法之间的桥梁, 它 使算法得以实用化,而不是只存在于文献中的大量让人头痛的公式。HFSS 初始网 格(将几何子分为四面体单元)的产生是以几何结构形状为基础的,利用初始网格 可以快速解计算并提供场解信息, 以区分出高场强或大梯度的场分布区域。 然后只 在需要的区域将网格加密细化,其迭代法求解技术节省计算资源并获得最大精确
一种以利用Ansoft HFSS软件对天线性能进行分析的圆极化微带天线的设计

一种以利用Ansoft HFSS软件对天线性能进行分析的
圆极化微带天线的设计
0 引言
微带天线由于独特的结构和多样化的性能,在各种无线电设备上得到了广泛的应用。
和常用的微波天线相比,微带天线具有体积小、重量轻、低剖面、能与载体(如飞行器)共形等优点。
其中圆极化微带天线,由于它能够接收任意极化的来波,并且其产生的圆极化辐射波可以被任意极化的天线所接收,从而越来越受到人们的关注。
用微带天线产生圆极化辐射波的关键是产生两个极化方向正交的、幅度相等的、相位相差90°的线极化波。
本文研究了一种中心开槽的圆极化缝隙微带天线,并用Ansoft HFSS软件对天线性能进行分析,设计了一种超高频圆极化微带天线。
1 天线理论分析与设计
1.1 圆极化理论
根据腔模理论可知,一个形状规则的单片微带天线由一点馈电可产生极化。
(完整版)HFSS天线设计实例

HFSS 天线设计实例这是一种采用同轴线馈电的圆极化微带天线切角实现圆极化设计目标!(具体参数可能不精确,望大家谅解)主要讲解HFSS操作步骤!GPS微带天线:介质板:厚度:2mm,介电常数:2。
2,大小:100mm*100mm工作频率:1.59GHz,圆极化(左旋还是右旋这里不讲了哈),天线辐射在上半平面覆盖!50欧同轴线馈电,1、计算参数首先根据经验公式计算出天线的基本参数,便于下一步建立模型。
贴片单元长度、宽度(正方形贴片长宽相等)、馈电点位置,分离单元长度.下表是经HFSS分析后选择的一组参数:2、建立模型首先画出基板50mm*50mm*2mm 的基板起名为substrate介电常数设置为如图2。
2的,可以调整color颜色和transparent透明度便于观察按Ctrl+D可以快速的使模型全可见!按住Ctrl+Alt键,拖动鼠标可以使3D模型自由旋转同理,我们画贴片:1、在基板上画出边长65mm(假设用公式算出的是这么多)的正方形2、起名为patch,颜色选绿色,透明度设为0。
5画切角是比较麻烦的1、用画线条工具,画三线段,坐标分别是0。
5.0, 5。
0。
0, 0.0。
02、移动三角形,选中polyline1,选菜旦里edit\Arrange\move,先确定坐标原点或任一点为基准点,将三角形移动到左上角和贴片边沿齐平.3、复制三角形,选中polyline1,选菜单里edit\arrange\duplicate\around axis,相对坐标轴复制,角度换成180,然后在右下角就出现了相对称的另一个三角形.4、从patch上切掉对角上的分离单元polyline1和polyline1_1:选中patch、polyline1和polyline1_1,选菜单里3D modeler\Boolean\Subtract把polyline1和polyline1_1从patch上切掉最后剩下先在介质板底面画一个100mm*100mm的正方形作为导电地板。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立式 (1) , 式(3) , 式 (4) 求得二阶近似 L2 , 如此循环 , 直至
L n/ L n- 1 ≤01 29 % , 此时可以把 L n 作为代入 Ansoft H FSS
仿真 中 方 形 贴 片 的 大 小 W p 。本 文 中 工 作 频 率 f r =
21 43 GHz ,基板的高度 h = 11 6 mm ,基板的介电常数εr =
果 。图 13 中 ,经过匹配后的中心谐振频率为 799 M Hz ,满
足设计要求 。
5 结 语
HFSS 仿真结果表明天线的辐射特性基本符合设计 要求 ,同时用 ADS 软件对天线的输入阻抗进行匹配电路 设计 ,使其能与 50 Ω 馈电系统很好地匹配 。
参 考 文 献
[ 1 ] 马小玲 ,丁丁. 宽频带微带天线技术及其应用 [ M ] . 北京 :人 民邮电出版社 ,2006.
2 设计原理
2. 1 天线阵元理论分析 微带天线要获得圆极化波的关键是 ,激励起两个极化
方向正交的 、幅度相等的 、相位相差 90°的线极化波 。利用 微带天线实现圆极化辐射主要有以下几种方式 :
收稿日期 :2007 - 07 - 23
(1) 正交馈电的单片圆极化微带天线 ; (2) 一点馈电或多点馈电的单片圆极化微带天线 ; (3) 由曲线微带构成的宽频带圆极化微带天线 ; (4) 微带天线阵构成的圆极化微带天线[2] 。 本文对天线单元的设计采用的是双正交馈电矩形微 带天线 。双馈电方式是获得圆极化辐射的最直接方法 ,这 种方法是采用两个馈电点来激励两个极化正交的简并模 , 并由馈电网络保证两模的振幅相等 ,相位差为 90°,这样就 满足圆极化条件[3 ] 。 图 1 所示是采用正交馈电的圆极化微带天线的最简 单的实现方法 。两支路分别激励 TM01 和 TM10 模 ,两者的 输入电阻分别为 Ra 和 R b , 且有 R a = Rb 。 各段馈线的特性阻抗以及长度按下列关系设计 :
通过软件仿真 ,可得最终微带天线阵列的回波损耗( Re2 turn Loss) 、轴比 A x 以及 E 面方向图 ,如图 3~图 5 所示。
图 3 微带天线阵列的回波损耗 72
图 6 微带天线阵实物照片
图 7 S11 测试结果
图 8 微波暗室测试 E 面方向图
4 结 语
本文应用 Ansoft HFSS 软件仿真设计了一种工作于 21 43 GHz 的圆极化方形微带天线阵 ,发现实验结果和仿 真结果较好吻合 ,这说明 Ansoft HFSS 软件具有数学模型 正确 、计算精度高的优点 ,是一种比较理想的天线设计工 具 , 这就为微带天线设计提供了一种可以选择的高效途 径 ,极大地简化了天线的分析设计过程 。
Abstract :A fo ur element of circular polarization micro st rip antenna array is designed ,who se operating f requency is 21 43 GHz. The circular polarizatio n wave can be obtained t hrough ort hogonal feed to t he antenna element . It t hen excites two linear polarization waves t hat ort hogo nal in direction of polarizatio n ,t he two linear polarizatio n waves have t he same amplit ude and p hase difference 90°. On t he basis of circular polarizatio n and antenna dimension , t he antenna performance can be simulated wit h t he Ansoft H FSS. Co mpared wit h t he simulation to t he experimental result ,t he result data is good.
-
2ΔL
( 3)
式中ΔL 可由下式求得 :
ΔL
(εe + 01 3) = 01 412
W h
+ 01 264
( 4)
h
(εe - 01 258)
W + 0.8 h
对于本文中方形贴片尺寸可按如下方法计算求得 :首
先将工作频率 f r , 基板的高度 h 以及介电常数εr 代入
式 (1) ~ 式 (4) 中求得一阶近似 L1 , 然后以 L1 作为 W 再联
(2) 在 ADS 的 Smith Chart Utility(如图 9 所示) 中进行 阻抗的匹配 ,即在史密斯圆中将 40149 - j12135 匹配到 50 + j 3 0 ,此时馈线终端没有功率反射 ,馈线上没有驻波。经过匹 配后得到的电容 ,电感值以及串并联方式如图 10 所示。
图 9 史密斯圆匹配图
图 10 匹配结果
(3) 根据匹配结果在图 8 中串并连一个电容 ,电感 ,
建立电路图如图 11 所示 。
图 11 匹配电路
图 12 史密斯圆
图 13 输入反射系数
在图 12 中 , Z0 在为 50 Ω ,匹配后阻抗为 50 3 (01 999
+ j51 194e - 4) ,由此可见已达到相当良好的阻抗匹配效
W EI Ho ngliang1 ,DUAN Wentao1 ,L I Simin2
(1. School of Information and Communication , Guilin University of Elect ronic Technology , Guilin ,541004 ,China ; 2. Office of University President s , Guilin University of Elect ronic Technology , Guilin ,541004 ,China)
关键词 :圆极化 ;微带天线阵 ;正交馈电 ;回波损耗 中图分类号 : TN82 文献标识码 :B 文章编号 :1004 - 373X(2008) 01 - 071 - 02
Design of Circular Polarization Microstrip Antenna Array Using Ansof t HFSS
[ Z]. [ 5 ] Agilent 公司. ADS 全套培训教程 ( EDA 教学网) [ Z] .
作者简介 宋旭亮 1980 年出生 ,大连海事大学信息学院在读研究生 。 朱义胜 1945 年出生 ,大连海事大学教授 ,博士生导师 。
(下转第 75 页)
《现代电子技术》2008 年第 1 期总第 264 期
4. 2 阻抗匹配过程 (1) 在 ADS 中新建一个 Schematic 文件 ,在其中建立
电路 ,如图 8 所示 。
通信与信息技术
(4) 对匹配电路进行仿真 , 仿真结果如图 12 , 图 13 所示 。
图 8 匹配前电路
《现代电子技术》2008 年第 1 期总第 264 期
通信与信息技术
运用 Ansoft HFSS 设计圆极化微带天线阵
魏宏亮1 ,段文涛1 ,李思敏2
(1. 桂林电子科技大学 信息与通信学院 广西 桂林 541004 ;2. 桂林电子科技大学 校长办公室 广西 桂林 541004)
摘 要 :介绍了一种工作频率为 21 43 GHz 的圆极化四单元矩形微带天线阵的设计方法 。通过对天线单元采用正交馈 电激励起两个极化方向正交的 、幅度相等的 、相位相差 90°的线极化波从而使天线单元获得圆极化波 。在利用圆极化条件确 定天线尺寸基础上 ,借助 Ansoft H FSS 仿真软件对天线进行了仿真 ,仿真结果和实验结果基本一致 。
21 55 , 按上述方法计算的 W p = 371 6 mm , 以 W p = 371 6
mm 为贴片尺寸在 Ansoft HFSS 进行建模仿真所得的工
作频率 f 0 = 21 420 GHz ,工作频率处的 VSWR = 11 2 ,轴比
A x = 11 5 ,通过仿真结果证明了以上计算方法的正确性 。
71
通信设备
魏宏亮等 :运用 Ansof t H FSS 设计圆极化微带天线阵
εe
= εr + 1 2
+εr 2
1
1 + 10 h W
- 1/ 2
( 1)
W
=c 2f r
εr + 1 2
- 1/ 2
( 2)
其中 c 为光速 , f r 为谐振频率 :
L
= 01 5λg -
2ΔL 或 L
=
2f
c
r
εe
[ 2 ] 钟顺时. 微带天线理论与应用 [ M ] . 西安 : 西安电子科技大 学出版社 ,1991.
[3] 林昌禄 ,陈海. 近代天线设计 [ M ]. 北京 : 人民邮电出版 社 ,1987.
[ 4 ] ansoft 公司. hf ss_v9_overvieW_ t raining ( hf ssv9 培训教材)
பைடு நூலகம்
图 4 微带天线阵列的轴比
图 5 E 面方向图
3 实测结果及比较 根据前面的设计 ,加工了一幅正交馈电方形微带贴片
天线阵 ,并进行了测试 。最终样品在中心频率处 VSWR = 11 23 , Gain = 121 9 dBi ,2θE3Db = 40°。图 6 为微带天线阵列 实物照片 ,图 7 为天线实验所测的反射损耗 ,图 8 为在微 波暗室 所 测 方 向 图 。可 以 看 出 , 仿 真 值 和 实 验 值 比 较 吻合 。