设计 圆极化微带天线设计
宽带圆极化微带天线分析与设计

宽带圆极化微带天线分析与设计一、本文概述本文旨在深入探讨宽带圆极化微带天线的分析与设计。
随着无线通信技术的飞速发展,天线作为无线通信系统的关键组成部分,其性能直接影响到整个系统的传输质量和效率。
宽带圆极化微带天线作为一种重要的天线类型,具有宽频带、圆极化、低剖面、易集成等优点,因此在卫星通信、移动通信、雷达系统等领域具有广泛的应用前景。
本文将首先介绍宽带圆极化微带天线的基本原理和特性,包括其辐射机制、极化特性、带宽特性等。
随后,将详细分析宽带圆极化微带天线的设计方法,包括天线尺寸的选择、馈电方式的设计、介质基板的选取等。
在此基础上,将探讨影响天线性能的关键因素,如阻抗匹配、交叉极化、增益等,并提出相应的优化策略。
本文还将通过具体的案例分析,展示宽带圆极化微带天线在实际应用中的性能表现。
通过对比分析不同设计方案下的天线性能,为工程师和研究者在实际应用中提供有益的参考。
本文将总结宽带圆极化微带天线的设计与优化策略,并展望其未来的发展趋势和应用前景。
通过本文的研究,旨在为宽带圆极化微带天线的分析与设计提供理论支持和实践指导。
二、圆极化微带天线的基本原理圆极化微带天线是一种能够在空间中产生圆形极化波的天线,它具有独特的电磁辐射特性,广泛应用于无线通信、雷达探测和卫星通信等领域。
了解圆极化微带天线的基本原理对于其分析与设计至关重要。
圆极化波是一种电磁波,其电场矢量在空间中随时间旋转,形成一个圆形的轨迹。
圆极化微带天线通过特定的设计和构造,能够在其辐射区域内产生这样的圆形极化波。
这种波形的特性在于,无论接收天线的极化方式如何,圆极化波都能在一定程度上被接收,因此具有更好的抗干扰能力和更广泛的适用性。
圆极化微带天线的基本原理主要基于电磁场理论和天线辐射原理。
它通过在微带天线的辐射贴片上引入特定的相位差,使得天线的两个正交分量产生90度的相位差,从而形成圆极化波。
这种相位差可以通过在辐射贴片上刻蚀特定的槽口或引入附加的相位延迟线来实现。
一种新型环状宽带圆极化微带天线设计

防 雨雾 能力 ,这 在卫 星 导航系 统 中尤为重 要 。为 了 适应 多种 导航 模式 ( P 、GA I E GS L L O、C MP S O AS 、 GL N S ,已经 发展 了多种技 术 以改善 圆极化 轴 O AS ) 比和 阻抗 带 宽。本文通 过在 圆贴片上 开槽 ,有 效的 增加 了天 线轴 比带 宽 。
2 1 6月第 3期 0 2年
现代 导航
・2 2 5・
一
种新型环状 宽带 圆极化微带天线设计
王 忠 ,顾 云 涛 2
( 海 军 驻 广 州 地 区舰 船 配 套代 表 室 ; 2 海 军 装 备 部 驻 西 安 地 区 军 事 代 表 局 ) 1
摘
要: 本文设计了一种新型的环状开缝的宽带 圆极化微带贴片天线 , 通过等幅度 9 。相位 O
WANG o g Zh n ,GU u t o Y na
Ab ta t An w crua p lr ain( P bo d admi otpa t n i nua o epthi ds n di ti sr c: e i lr oai t c z o C ) rab n c s i ne aw t an l s tnt ac ei e s r r n h rl i h s g nh
所 以本文 采用 形探 针双 点馈 电, 馈 电网络采 用 9 。相位 差等 功分 的宽 带功分 器 。通 过观 察 圆环 上 0
低 、重量轻 、易于实现 、可 与载 体共 性 、易于有 源 器件 集成 、结 构简单 、 易于加工 制作 等优 点 , 已经
被广 泛应 用 。圆极 化天 线具 有很 强 的抗 干 扰能力 和
文章 编号 :17—9 6(020 —2 —3 6477 . 1)32 50 2
右旋圆极化矩形微带天线设计

右旋圆极化矩形微带天线设计一、引言大多数情况下,矩形微带天线工作于线极化模式,但是通过采用特殊的馈电机制及对微带贴片的处理,它也可以工作于圆极化和椭圆极化模式。
圆极化的关键是激励起两个极化方式相互正交的线极化波,当这两个模式的线极化波幅度相等,且相位相差90度时,就能得到圆极化的辐射。
矩形微带天线获得圆极化特性的馈电方式有两种:一种是单点馈电,另一种是正交馈电。
本文采用单点馈电。
我们知道,当同轴线的馈电点位于辐射贴片的对角线位置时,可以激发TM10和TM01两个模式,这两个模式的电场方向相互垂直。
在设计中,我们让辐射贴片的长度L和宽度W相等,这样激发的TM10和TM01两个模式的频率相同,强度相等,而且两个模式的电场相位差为零。
若辐射贴片的谐振长度为Lc,我们微调谐振长度略偏离谐振,即一边的长度为L1,另一边的长度为W1,且L1>W1,这样前者对应一个容抗Y1=G-jB,后者对应一个感抗Y2=G+jB,只要调整L1和W1的值,使得每一组的电抗分量等于阻抗的实数部分,及B=G,则两阻抗大小相等,相位分别为-45度和+45度,这样就满足了圆极化的条件,从而构成了圆极化的微带天线。
其极化旋向取决于馈电点接入位置,当馈电点在如图1-1的A点时,产生右旋圆极化;当馈电点在图1-1的B 点时,产生左旋圆极化波。
图1-1 单馈点圆极化矩形微带天线结构二、结构设计设计微带天线的第一步是选择合适的介质基片,假设介质的介电常数为εr,对于工作频率为f的矩形微带天线,可以用如下的公式估算辐射贴片的宽度:21212-+=)ε(fcW r(1)其中,c是光速。
辐射贴片的长度一把取为2cλ,其中cλ是介质内的导波波长,考虑到边缘缩短效应后,实际的辐射贴片长度为:LfcLe∆-=22ε(2)其中,eε是有效介电常数,L∆是等效辐射缝隙长度,它们可以分别用下式计算,即为:211212121-+-++=)(wh r r e εεε).)(.().)(.(.8025802640304120+-++=∆h w h w L e e εε对于同轴馈电的微带贴片天线,在确定了贴片长度L 和宽度W 之后,还需要确定同轴线馈点的位置,馈电的位置会影响输入阻抗,通常要求是50Ω阻抗匹配。
宽带圆极化微带天线设计

宽带圆极化微带天线设计关键词:微带天线,X波段,设计,分析,HFSS,仿真目录1 绪论 (1)1.1 本课题研究背景 (1)1.2 微带天线的发展 (1)1.3 微带天线的优缺点 (2)1.4 本课题研究内容 (3)2 微带天线基本概念及原理 (5)2.1 天线的基本概念 (5)2.2 天线的辐射原理 (6)2.3 天线的基本参数 (6)2.3.1 天线的极化 (7)2.3.2 天线方向图的概念 (7)2.3.3 天线输入阻抗的计算方式 (8)2.3.4 天线的谐振频率与工作频带宽带 (8)2.3.5 天线的驻波比 (9)2.4 微带天线的简介 (10)2.4.1 微带天线的结构与分类 (10)2.4.2 微带天线的辐射机理 (10)2.4.3 微带天线的形状 (11)2.5 微带天线的分析方法 (11)2.5.1 传输线模型法 (11)2.5.2 空腔模型法 (13)2.5.3 积分方程法 (13)2.6 微带天线的馈电方法 (14)2.7 微带天线圆极化技术 (15)2.7.1 圆极化天线的原理 (15)2.7.2 圆极化实现技术 (16)3 宽带异形贴片微带天线设计 (21)3.1 微带天线的仿真 (21)3.2 Ansoft HFSS高频仿真软件的介绍 (21)3.3 HFSS对具体实例的仿真 (21)3.3.1 选取微带天线模型 (21)3.3.2 微带天线的仿真优化 (23)4 双点馈电圆形圆极化微带天线设计 (35)4.1 HFSS对圆极化微带天线的仿真 (35)4.1.1 选取圆极化微带天线模型 (35)4.1.2 圆形圆极化微带天线的仿真优化 (35)5 总结结论及展望 (41)参考文献 (42)1 绪论1.1 本课题研究背景天线作为电磁波的发射和接收装置,在无线通信和雷达系统中有着不可替代的作用。
自19 世纪初首次在跨越大西洋的无线通信使用天线以来,无数科学家投身到了天线的研究当中。
圆极化宽频带微带天线设计概要

圆极化宽频带微带天线设计近年来,鉴于通信系统向着大容量、宽频带和智能化的方向发展,宽频带和多频段天线成为一个重要的研究方向。
并且随着卫星导航技术的不断进步,越来越多的国家发展自己的导航系统,而每个导航系统的卫星在空间分布有限,所以在提供卫星定位的精密度、可用性和可靠性方面就无法得到保证,因此近年来对应用多种卫星导航系统组成的宽频带导航接收系统的研究受到了广泛重视。
具有圆极化和宽频带特点的宽带导航接收天线成为近年卫星接收天线研究的热点之一。
本文针对宽频带卫星导航接收天线的需求,设计了几种可工作在卫星导航频段的单频、双频及宽频段天线,并采用数值仿真方法对天线结构进行了优化。
具体内容如下:本文首先介绍了微带天线的几种分析方法:传输线模型理论、空腔模型理论和全波理论。
接着分析制约微带天线带宽的各种因素,研究增加微带天线频带宽度的四种途径:降低等效谐振电路的品质因数、修改等效谐振电路、增加匹配网络和采用分形天线等等。
借助于基于有限元法的ANSOFT HFSS软件对天线性能进行了数值仿真:单频圆极化微带天线、双层贴片结构的双频段及宽频段的圆极化微带天线,其中单频天线采用不同的贴片开槽方法来实现圆极化。
为了使天线小型化,同时便于加工,本设计中去掉了传统的在多层贴片之间引入空气层的结构,并且设计了宽频段微带天线的匹配网络。
最后用ADS 仿真软件设计了GPS L1频段的低噪声放大器。
设计出了能够分别工作在1.575GHz、1.602GHz和2.492GHz的单频天线以及同时工作在以上两个频段的微带天线。
本文设计的宽频段圆极化微带天线能够同时工作在1.2GHz-1.3GHz、1.5GHz-1.6GHz,这个天线能够接收目前所有四大卫星导航系统的信号。
同主题文章[1].马小玲,康凤兴,王贞松. 微带天线及其在通信与广播电视中的应用' [J]. 电视技术. 2000.(05)[2].吴沅. 微带天线的崛起' [J]. 知识就是力量. 2002.(11)[3].都世民. 用微带天线测量介电常数' [J]. 计量学报. 1984.(04)[4].杨卫英. 覆盖高∈_r材料微带天线的研究' [J]. 微波学报.2000.(S1)[5].王聪敏,高向军. 微带天线的宽频带技术' [J]. 电子对抗技术. 2003.(05)[6].丁克乾,李连辉,张凤林. 双频圆极化微带天线' [J]. 遥测遥控.2004.(05)[7].冯钧. 一种H形槽耦合微带天线模型及分析' [J]. 视听界(广播电视技术). 2007.(01)[8].杨超,阮颖铮,冯林. 微带天线RCS缩减技术及分析方法' [J]. 电波科学学报. 1994.(04)[9].曹菊良,董文龙,李文祥. 多角形微带天线' [J]. 电子学报. 1985.(06)[10].张金标. GPS/GLONASS兼容微带天线的研制' [J]. 天津理工学院学报. 1994.(01)【关键词相关文档搜索】:通信与信息系统; 圆极化; 宽频带; 微带天线;低噪声放大器【作者相关信息搜索】:西安理工大学;通信与信息系统;王丽黎;李伟;。
设计4:圆极化微带天线设计

分析结果:①谐振频率随Lc的变大而降低 ;
②当Lc在
44.4mm~44.5mm之间时,谐振频率在1.58GHz~1.57GHz之间
查看输入阻抗和馈电位置的关系
查看当Lc=44.45mm时的输入阻抗
实部 虚部
当工作频率为1.575GHz时,输入阻抗为(32.34+j8.51)Ω, 要使输入阻抗为50 Ω左右,则L1的值必须大于初始值6.9mm。
查看输入阻抗和馈电位置的关系
添加L1的参扫:范围7.4mm~9mm,间隔0.2mm
分析结果:①输入阻抗随L1的变大而变大 ; ②当L1=8.8mm时,输入阻抗约为50Ω
优化分析
优化变量
Lc
8mm~9mm 44mm~45mm
dB(S(1,1))
目标函数 dB(AxialRatioVa lue)
单馈电圆极化天线实现原理
同轴线的馈电点位于辐射贴片的对角线位置时,可以激发 TM10和TM01两个模式如果让辐射贴片的长宽相同,这样激发 的两个模式的频率相同、强度相等,而且两个模式电场的相位 差为零。若辐射贴片谐振长度Lc,微调谐振长度:L=Lc+a W=Lc-a。前者对应容抗,后者对应感抗,调节a的值,使每一 个阻抗实部和虚部相等(B=G),则两阻抗大小相等,相位分 别为-45和+45,这就满足了圆极化条件
1.6mm Lc-Delta Lc+Delta 6.9mm
50mm L1
46.1mm 0.0143*Lc
查看天线的谐振点
m
f 1.53GHz
S11 -16.89dB
在初始尺寸下的谐振频率为1.53GHz,而设计要求中心频率为 1.575GHz,因此需要参数扫描分析谐振频率和Lc的关系
课程设计:基于cst仿真的6GHz圆极化微带贴片天线设计

Harbin Institute of Technology课程设计说明书(论文)课程名称:天线仿真设计题目:圆极化微带天线的仿真院系:班级:设计者:学号:指导教师:设计时间:哈尔滨工业大学一、课程设计目的1、了解微带天线的辐射原理和分析方法,并掌握微带天线尺寸计算一般过程;2、了解微带天线圆极化的方法,并设计一种圆极化微带天线;3、学习并掌握CST软件的使用,熟悉天线仿真的流程,并完成天线的优化设计。
二、天线设计目标本文设计的圆极化矩形微带贴片天线的中心频率为6 GHz,并且将满足一下技术指标:1、反射系数S11<10dB(VSWR<2);2、天线轴比小于3dB;3、绝对带宽100MHz;4、增益大于5dB;5、输入阻抗50Ω;6、波瓣宽度大于70deg。
三、微带天线背景1、微带天线简介微带天线是近30年来逐渐发展起来的一类新型天线。
早在1953年就提出了微带天线的概念,但并未引起工程界的重视。
在50年代和60年代只有一些零星的研究,真正的发展和使用是在70年代。
常用的一类微带天线是在一个薄介质基(如聚四氟乙烯玻璃纤维压层)上,一面附上金属薄层作为接地板,另一面用光刻腐蚀等方法作出一定形状的金属贴片,利用微带线和轴线探针对贴片馈电,这就构成了微带天线。
由于微带天线有独特的优点,而缺点随着科技的进步正在研究克服,因此它有广阔的应用前景。
一般说来,它在飞行器上的应用处于优越地位,可用于卫星通讯、天线电高度表、导弹测控设备、导引头、环境监测设备、共形相控阵等。
徽带天线在地面设备上应用也有其优势方面。
特别是较低功率的各种民用设备,例如医用微波探头,直播卫星的接收阵以及当前的蓝牙设备的收发天线等,由于微带带天线能集成化,它在毫米波段的优势非常明显。
当然它并不是完美无缺的,我们将其与微波天线相比,简单介绍它的优缺点。
微带天线和常用的微波天线相比较,它有以下一些突出的优点:(1)重量较轻,体积比较小,剖面低,能与飞行器等载体共形。
一种微带线馈电的宽带圆极化微带天线的设计

一种微带线馈电的宽带圆极化微带天线的设计引言在通信领域中,天线是不可或缺的一个设备,而微带天线因其结构简单、成本低廉、易于集成等优点,已经成为了现代通信领域中应用广泛的一种天线。
在微波领域中,圆极化天线通常被用来避免天线之间的互干扰和提高通信质量。
然而,许多微带圆极化天线的带宽是有限的,这使得这些圆极化天线的通信传输性能大大受到限制。
因此,本文提出了一种微带线馈电的宽带圆极化微带天线的设计方案,旨在解决微带圆极化天线带宽狭窄的问题。
设计原理本设计方案采用了一种微带线馈电的宽带圆极化微带天线。
其中,天线由一个正方形微带辐射片和一个环形贴片构成。
其工作原理基于微带线馈电的正方形微带辐射片,是以TM模式的耦合方式进行馈电的。
正方形微带辐射片的一边通过一条微带线馈电导线与馈电点相连,另一边则用接地板连接。
环形贴片作为一个反射器,通过正方形微带辐射片的边缘和接地板之间的短接实现电路的反射。
设计步骤1.计算天线的工作频率和所需圆极化方式。
根据这些参数确定天线的尺寸和形状。
2.设计并确定微带线馈电导线和连接设备的点。
3.添加环形贴片,并在模拟软件中进行必要的优化,以提高天线的性能。
4.按照所需的角度选择天线的旋转方向,并调整微带线馈电导线与天线的尺寸,以实现所需的圆极化方向。
仿真结果为了验证设计的性能,我们使用了一款天线仿真软件进行模拟实验。
仿真过程中,我们使用S参数和体表波图形来评估天线的性能。
以下是一些关键指标的仿真结果:•工作频率:4.4GHz•带宽:360~630MHz,VSWR小于2•圆极化方向:左旋•Gain:6.5dB•Axial Ratio: 1.1dB结论本文提出的一种微带线馈电的宽带圆极化微带天线设计方案,能够在4.4GHz 的频率范围内实现左旋或右旋的圆极化方式。
其带宽可达到360~630MHz,在这个带宽范围内可以实现VSWR小于2的传输性能。
此外,天线具有高增益和低轴比等优点。
因此,这种设计方案具有较好的前景和实际应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Freq=1.575GHz
Theta=0 Phi=0
Freq=1.575GHz
<=-20 <=1
优化分析
优化分析结果
优化分析
查看天线优化后的性能
单馈电圆极化天线实现原理
右旋圆极 化馈电点
dp
W=Lc-a
d
y x
左旋圆极
dp 化馈电点
L=Lc+a
h
FR4 Epoxy
Kalio和Carver Coffey研究 证明,理论上当L/W=1.029 即a=0.0142LC时,TM01和 TM10两个模式的相位差为90o
由实际经验可以得到,此种结构的50Ω馈电点位于贴片对角线 上,且馈电点和辐射贴片顶点的距离dp在(0.35~0.39)d之间。 设馈电点到贴片中心距离为L1,则L1在(0.11~0.15)Lc之间
查看输入阻抗和馈电位置的关系
添加L1的参扫:范围7.4mm~9mm,间隔0.2mm
分析结果:①输入阻抗随L1的变大而变大 ; ②当L1=8.8mm时,输入阻抗约为50Ω
优化分析
名称
符号
范围
条件
L1 优化变量
Lc
8mm~9mm 44mm~45mm
dB(S(1,1))
目标函数 dB(AxialRatioVa lue)
单馈电圆极化天线设计要求
类型范围:右旋圆极化GPS接收天线 中心频率:1.575GHz 波的轴比:小于2.0dB 馈电类型:单点馈电 介质基片:1.6mm的FR4 Epoxy
单馈电圆极化天线设计步骤
① 仿照设计2方法计算谐振频率1.575GHz辐射贴片初始尺寸:
② L=W=Lc=46.1mm 设置微调长度a=0.0143Lc
H L0 W0 L1 Length L2 Lc Delta
1.ห้องสมุดไป่ตู้mm Lc-Delta Lc+Delta 6.9mm
50mm L1
46.1mm 0.0143*Lc
查看天线的谐振点
m
f 1.53GHz
S11 -16.89dB
在初始尺寸下的谐振频率为1.53GHz,而设计要求中心频率为 1.575GHz,因此需要参数扫描分析谐振频率和Lc的关系
① 将设计3的设计文件Dual_Patch.hfss改为CP_Patch.hfss并保存
② 添加并修改设计变量 ③ 修改端口位置:选中Port和Feed ④ Center Position:-L1,L2,0mm ④ 更改求解频率和扫频范围 ⑤ 中心频率:1.575GHz ⑥ 扫频范围:1.3GHz~1.8GHz
查看天线谐振频率和天线尺寸的关系
添加参扫Lc:范围44mm~45.2mm,间隔0.1mm
分析结果:①谐振频率随Lc的变大而降低 ;
②当Lc在
44.4mm~44.5mm之间时,谐振频率在1.58GHz~1.57GHz之间
查看输入阻抗和馈电位置的关系
查看当Lc=44.45mm时的输入阻抗
实部 虚部
当工作频率为1.575GHz时,输入阻抗为(32.34+j8.51)Ω, 要使输入阻抗为50 Ω左右,则L1的值必须大于初始值6.9mm。
② 估算输入阻抗50Ω的同轴馈电点位置:
x,y方向距贴片中心均为L1=0.15L=6.9mm
③ 使用HFSS仿真参数和优化功能给出谐振频率为1.575GHz贴片
天线的实际尺寸和实际馈电位置
④ 使用HFSS优化功能求的满足下列要求的贴片尺寸和馈电位置:
⑤
S11 <-20dB,轴比小于1dB
单馈电圆极化天线HFSS仿真
单馈电圆极化天线实现原理
同轴线的馈电点位于辐射贴片的对角线位置时,可以激发 TM10和TM01两个模式如果让辐射贴片的长宽相同,这样激发 的两个模式的频率相同、强度相等,而且两个模式电场的相位 差为零。若辐射贴片谐振长度Lc,微调谐振长度:L=Lc+a W=Lc-a。前者对应容抗,后者对应感抗,调节a的值,使每一 个阻抗实部和虚部相等(B=G),则两阻抗大小相等,相位分 别为-45和+45,这就满足了圆极化条件