三角形内角和定理应用
三角形内角和定理的应用

三角形内角和定理的应用三角形内角和定理是几何学中的基本定理之一,它可以帮助我们计算三角形内角的和。
在实际生活中,我们经常会遇到需要计算三角形内角和的问题,比如在建筑设计、地理测量、天文学等领域。
本文将通过几个实际例子来说明三角形内角和定理的应用。
一、建筑设计中的应用在建筑设计中,计算三角形内角和是非常重要的。
例如,我们要设计一座房子的屋顶,需要确定屋顶的角度。
假设我们要设计一个等腰三角形的屋顶,已知两边的夹角为70度,我们就可以使用三角形内角和定理来计算出第三个角度。
根据三角形内角和定理,三个角度的和等于180度,所以第三个角度为180度减去已知的两个角度的和,即180 - 70 - 70 = 40度。
因此,我们可以确定屋顶的角度为40度。
二、地理测量中的应用在地理测量中,三角形内角和定理也有广泛的应用。
例如,当我们要测量两座山之间的距离时,可以利用三角形内角和定理来计算。
假设我们站在山的顶部,测量到另一座山的顶部的夹角为30度,然后我们向下走一段距离,再次测量到同一座山的顶部的夹角为60度。
根据三角形内角和定理,这两个角度的和等于180度,所以我们可以计算出第三个角度为180 - 30 - 60 = 90度。
然后我们可以利用三角形的正弦定理来计算出两座山之间的距离。
三、天文学中的应用在天文学中,三角形内角和定理也有重要的应用。
例如,当我们观测星星的位置时,可以利用三角形内角和定理来计算星星的方位角。
假设我们观测到星星与北极星的夹角为30度,然后我们转动望远镜,观测到星星与南极星的夹角为60度。
根据三角形内角和定理,这两个角度的和等于180度,所以我们可以计算出第三个角度为180 - 30 - 60 = 90度。
然后我们可以利用三角形的余弦定理来计算出星星的方位角。
三角形内角和定理在建筑设计、地理测量、天文学等领域都有重要的应用。
它可以帮助我们计算三角形内角的和,并用于解决实际问题。
通过运用三角形内角和定理,我们能够更好地理解和应用几何学知识,为我们的工作和生活带来便利。
专题11.8 三角形内角和定理及其应用(拓展提高)(解析版)

专题11.8 三角形内角和定理及其应用(拓展提高)一、单选题1.若一个三角形的三个内角的度数之比为1:3:4,那么这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形【答案】B【分析】设三个内角分别为k 、3k 、4k ,然后利用三角形的内角和等于180°列方程求出k ,再求解即可.【详解】解:设三个内角分别为k 、3k 、4k ,由题意得,k +3k +4k =180°,解得k =22.5°,所以,三个内角分别为22.5°、67.5°、90°,所以,这个三角形是直角三角形.故选:B .【点睛】本题考查了三角形的内角和定理,三角形的形状的判定,利用“设k 法”求解更简便. 2.如图,点A 和点B 恰好分别在GH 和EF 上,GH ∥EF 且BA 平分∠DBE ,若∠C =90°,∠CAD =32°,则∠BAD 的度数为( )A .28°B .29°C .30°D .31°【答案】B【分析】根据三角形的内角和定理,平行线的性质以及角平分线的定义即可得到结论.【详解】解:90C ∠=︒,32CAD ∠=︒,903258ADC ∴∠=︒-︒=︒, //EF GH ,58DBE ADC ∴∠=∠=︒, BA 平分DBE ∠,1292ABE DBE ∴∠=∠=︒, 直线//EF 直线GH ,29BAD ABE ∴∠=∠=︒,故选:B . 【点睛】本题主要考查了平行线的性质,角平分线的定义以及三角形内角和定理,解题时注意:两直线平行,内错角相等.3.如图,将一块含有45°角的直角三角板的直角顶点放在矩形板的一边上,若135∠=,那么2∠的度数是( ).A .80°B .90°C .100°D .110°【答案】C 【分析】根据平行线的性质,得31∠=∠;结合题意,根据三角形内角和的性质,得4∠;再根据对顶角相等的性质计算,即可得到答案.【详解】如下图根据题意得:3135∠=∠=︒∴4180345100∠=︒-∠-︒=︒∵24∠∠=∴2100∠=︒故选:C .【点睛】本题考查了对顶角、三角形内角和、平行线的知识;解题的关键是熟练掌握平行线、三角形内角和的性质,从而完成求解.4.如图,在△ABC 中,∠BAC =80°,BE 、CF 分别是∠ABC 、∠ACB 平分线,则∠BOC 的度数是( )A .130°B .60°C .80°D .120°【答案】A 【分析】根据三角形的内角和定理和角平分线的定义求出∠OBC +∠OCB 的度数,再根据三角形的内角和等于180°,即可求出∠BOC 的度数.【详解】解:∵∠BAC =80°,∴∠ABC +∠ACB =180°﹣∠BAC =180°﹣80°=100°,∵BE 、CF 分别是∠ABC 、∠ACB 平分线,∴∠OBC =12∠ABC ,∠OCB =12∠ACB , ∴∠OBC +∠OCB =12(∠ABC +∠ACB )=12×100°=50°, ∴∠BOC =180°﹣(∠OBC +∠OCB )=180°﹣50°=130°.故选:A .【点睛】本题主要利用三角形的内角和定理和角平分线的定义,熟练掌握定理和概念是解题的关键. 5.如图,延长ABC ∆的边AC 到点E ,过点E 作//DE BC ,BG 平分ABC ∠,EF 平分AED ∠交BG 的反向延长线于点F ,已知34A F ∠=∠,则A ∠的大小为( )A .75︒B .74︒C .72︒D .70︒【答案】C 【分析】过点F 作FM ∥BC ,结合平行线的判定和性质以及角平分线的定义可得11=2GBC ABC ∠∠=∠,112=3=22AED ACB ∠∠∠=∠,然后结合三角形内角和定理可得()11+2=1802A ∠∠︒-∠,然后根据题意列方程求解.【详解】解:过点F 作FM ∥BC∵//DE BC ,∴////FM DE BC又∵BG 平分ABC ∠,EF 平分AED ∠ ∴11=2GBC ABC ∠∠=∠,112=3=22AED ACB ∠∠∠=∠ ∴()1111+2=+180222ABC ACB A ∠∠∠∠=︒-∠ 由题意可得:()34412A GFE ∠=∠=∠+∠∴312=4A ∠+∠∠,()3118042A A ∠=︒-∠,解得:72A ∠=︒ 故选:C .【点睛】本题考查平行线的判定和性质,三角形内角和定理和角平分线的定义以及一元一次方程的应用,掌握相关的性质定理正确推理计算是解题关键.6.如图,,AB BC AE ⊥平分BAD ∠交BC 于点E ,AE DE ⊥,1290∠+∠=︒,M ,N 分别是,BA CD 延长线上的点,EAM ∠和EDN ∠的平分线交于点F .下列结论:①//AB CD ;②180AEB ADC ∠+∠=︒;③DE 平分ADC ∠;④F ∠为定值.其中正确的有( )A .1个B .2个C .3个D .4个【答案】C 【分析】先根据AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,∠EAM 和∠EDN 的平分线交于点F ,由三角形内角和定理以及平行线的性质即可得出结论.【详解】解:∵AB⊥BC,AE⊥DE,∴∠1+∠AEB=90°,∠DEC+∠AEB=90°,∴∠1=∠DEC,又∵∠1+∠2=90°,∴∠DEC+∠2=90°,∴∠C=90°,∴∠B+∠C=180°,∴AB∥CD,故①正确;∴∠ADN=∠BAD,∵∠ADC+∠ADN=180°,∴∠BAD+∠ADC=180°,又∵∠AEB≠∠BAD,∴AEB+∠ADC≠180°,故②错误;∵∠4+∠3=90°,∠2+∠1=90°,而∠3=∠1,∴∠2=∠4,∴ED平分∠ADC,故③正确;∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=12×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠F AD+∠FDA=135°-90°=45°,∴∠F=180°-(∠F AD+∠FDA)=180-45°=135°,故④正确.故选:C.【点睛】本题主要考查了平行线的性质与判定、三角形内角和定理、直角三角形的性质及角平分线的计算,熟知三角形的内角和等于180°是解答此题的关键.二、填空题7.将一副三角板如图放置,若//AB CD ,则∠=CFE ________度.【答案】75【分析】根据两直线平行,同旁内角互补及三角板的特征进行做题.【详解】因为//AB CD ,∠B=60°,所以∠BCD=180°-60°=120°;因为两角重叠,则∠ACE=90°+45°-120°=15°,∠=CFE 90°-15°=75°.故CFE ∠的度数是75度.故答案为:75.【点睛】本题考查了平行线的性质,三角板的知识,是基础题,熟记性质是解题的关键.8.如图,已知//AB CD ,AC 与BD 交于点E ,BD CD ⊥于点D ,若150∠=︒,则2∠=______.【答案】140°【分析】首先根据对顶角相等即可求出∠CED 的度数,再根据三角形的内角和即可求得∠ECD 的度数,根据平行线的性质即可求出∠CAB 的度数,再根据补角的性质即可求解;【详解】∵ ∠1=50°,∴∠CED =50°,∵ 三角形内角和为180°,BD ⊥CD ,∴∠ECD =180°-90°-50°=40°,∵ AB ∥CD ,∴∠EAB =40°,∴∠2=180°-40°=140°,故答案为:140°.【点睛】本题考查了平行线的性质,以及三角形的内角和定理,正确掌握知识点是解题的关键; 9.如图,ABC 中30A ∠=︒,E 是AC 边上的点,先将 ABE △沿着BE 翻折,翻折后ABE △的AB 边交AC 于点 D ,又将BCD △沿着BD 翻折,C 点恰好落在BE 上,此时 84CDB ∠=︒,则ABC 中ABC ∠=_______ .【答案】81.【分析】在图(1)的ABC 中,根据三角形内角和定理,可求得150B C ∠+∠=︒;结合折叠的性质和图(2)(3)可知: 3B CBD ∠=∠,即可在CBD 中,得到另一个关于 B C ∠∠、度数的等量关系式,联立两式即可求得 B 的度数.【详解】解:在ABC 中,30A ∠=︒,则150B C ∠+∠=︒①;根据折叠的性质知:3B CBD ∠=∠,BCD C ∠=∠;在CBD 中,则有:18084CBD BCD ∠+∠=︒-︒, 即:9136B C ∠+∠=︒ ②; ①-②,得:2543B ∠=︒,解得81B ∠=︒故答案为:81.【点睛】本题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B 和∠CBD 的倍数关系是解答此题的关键.10.如图,在Rt ABC ∆中,90B ∠=︒,60A ∠=︒,将三角形沿EF 对折,使点C 与边AB 上的D 点重合.若2EFD AED ∠=∠,则AED ∠的度数为____________.【答案】40°【分析】设∠EFD =2∠AED =2x ,由折叠性质可知,∠EDF =∠C =90°-∠A =90°-60°=30°,∠DEF =∠CEF ,由三角形内角和定理得出∠CEF =150°-2x ,再由∠DEF +∠CEF +∠AED =180°,列出方程即可求出∠AED =40°.【详解】解:设∠EFD =2∠AED =2x .由折叠性质可知,∠EDF =∠C =90°-∠A =90°-60°=30°,∠DEF =∠CEF ,在△DEF 中,∠DEF =180°-∠EDF -∠EFD =180°-30°-2x =150°-2x , ∴∠CEF =150°-2x ,∵∠DEF +∠CEF +∠AED =180°,∴150°-2x +150°-2x +x =180°,解得x =40°,即∠AED =40°,故答案为40°.【点睛】本题考查了折叠问题,熟练利用三角形的内角和定理是解题的关键.11.如图,一位跑酷运动员准备以连续两次“跳跃”结束一次跑酷表演,即在水平面AB 上跑至B 点,向上跃起至最高点P ,然后落在点C 处,继续在水平面CD 上跃起落在点D ,若ABK ∠和KCD ∠的平分线的反向延长线刚好交于最高点P ,88BKC ∠=︒,则P ∠=_______度.【答案】46【分析】延长PB ,PC 交KM 于点E ,点F ,利用角平分线的定义及平行线的性质可得13=2ABE ABK ∠∠=∠,14=2DCF DCK ∠∠=∠,1+180ABK ∠∠=︒,2+180DCK ∠∠=︒,求得268ABK DCK ∠+∠=︒,从而得到()13+4=1342ABK DCK ∠∠∠+∠=︒,然后结合三角形内角和定理求解. 【详解】解:延长PB ,PC 交KM 于点E ,点F由题意可得:AB ∥CD ∥KM ,PE 平分∠ABK ,PF 平分∠DCK∴13=2ABE ABK ∠∠=∠,14=2DCF DCK ∠∠=∠ 1+180ABK ∠∠=︒,2+180DCK ∠∠=︒又∵∠BKC =88°∴1+2+180BKC ∠∠∠=︒180180180ABK DCK BKC ︒-∠+︒-∠+∠=︒,即268ABK DCK ∠+∠=︒∴()13+4=1342ABK DCK ∠∠∠+∠=︒ ∴()1803446P ∠=︒-∠+∠=︒故答案为:46.【点睛】本题考查三角形内角和定理,平行线的性质及角平分线的定义,理解相关性质定理正确推理计算是解题关键.12.如图,EFG 的三个顶点E ,G 和F 分别在平行线AB ,CD 上,FH 平分EFG ,交线段EG 于点H ,若36AEF ∠=︒,57BEG ∠=︒,则EHF ∠的大小为________.【答案】75°.【分析】首先根据∠AEF =36°,∠BEG =57°,求出∠FEH 的大小;然后根据AB ∥CD ,求出∠EFG 的大小,再根据FH 平分∠EFG ,求出∠EFH 的大小;最后根据三角形内角和定理,求出∠EHF 的大小为多少即可.【详解】解:∵∠AEF =36°,∠BEG =57°∴∠FEH =180°-∠AEF -∠BEG =87°∵ //AB CD∴∠EFG =∠AEF =36°∵FH 平分∠EFG∴∠EFH =12∠EFG =18° ∴∠EHF =180°-∠FEH -∠EFH =75°故答案为:75.︒【点睛】此题主要考查了三角形内角和定理的应用,角平分线的性质和应用,以及平行线的性质和应用,要熟练掌握.13.如图,BF 平分ABD ∠,CE 平分ACD ∠,BF 与CE 交于G ,若120BDC ∠=︒,90BGC ∠=︒,则A ∠的度数为________.【答案】60°【分析】根据三角形内角和定理可求得∠DBC +∠DCB 的度数,再根据三角形内角和定理及三角形角平分线的定义可求得∠ABC +∠ACB 的度数,从而求得∠A 的度数.【详解】解:连接BC .∵∠BDC =120°,∴∠DBC +∠DCB =180°-120°=60°,∵∠BGC =90°,∴∠GBC +∠GCB =180°-90°=90°,∵BF 是∠ABD 的平分线,CE 是∠ACD 的平分线,∴∠GBD +∠GCD =12∠ABD +12∠ACD =30°, ∴∠ABD +∠ACD =60°,∴∠ABC +∠ACB =120°,∴∠A =180°-120°=60°.故答案为:60°.【点睛】本题考查的是三角形内角和定理,根据题意作出辅助线,构造出三角形是解答此题的关键. 14.如图,在ABC 中,30B ,90BAC ︒∠=,点P 是BC 的动点(不与点B ,C 重合),AI 、CI 分别是PAC ∠和PCA ∠的角平分线,AIC ∠的取值范围为m AIC n <∠<,则m =_______,n =________.【答案】105°150° 【分析】根据三角形内角和等于180°及角平分线定义即可表示出∠AIC ,从而得到m ,n 的值即可.【详解】解:设∠BAP=α,则∠APC=α+30°,∵∠BAC=90°,∴∠PCA=60°,∠PAC=90°-α, ∵AI 、CI 分别平分∠PAC ,∠PCA ,∴∠IAC=12∠PAC ,∠ICA=12∠PCA ,∴∠AIC=180°-(∠IAC+∠ICA ) =180°-12(∠PAC+∠PCA ) =180°-12(90°-α+60°) =12α+105°, ∵0<α<90°,∴105°<12α+105°<150°,即105°<∠AIC <150°, ∴m=105°,n=150°.故答案为:105°,150°.【点睛】本题考查了角平分线的定义,不等式的性质,熟练掌握角平分线的定义是解题的关键.三、解答题15.如图,BD 是ABC ∠的平分线,//DE CB ,交AB 于点E ,150BED ∠=︒,60BDC ∠=︒,求A ∠的度数.【答案】∠A =45°【分析】首先根据平行线的性质求出∠ABC 的度数,再根据角平分线的性质求出∠CBD 的度数,最后利用三角形内角和定理求出∠A 的度数即可.【详解】解:∵DE ∥CB ,∴∠BED +∠ABC =180°,∵∠BED =150°,∴∠ABC =30°,∵BD 是∠ABC 的平分线,∴1152CBD ABC ∠=∠=︒, ∵∠BDC =60°,∴∠C =105°,∴∠A =180°-∠ABC -∠C =45°.【点睛】本题主要考查了三角形内角和定理以及平行线的性质,熟练掌握相关定理,正确识图,求得∠C 的度数是解题关键.16.如图,在ABC 中,AE 平分∠BAC ,AD 是BC 边上的高.(1)在图中将图形补充完整;(2)当∠B =28°,∠C =72°时,求∠DAE 的度数;(3)∠DAE 与∠C ﹣∠B 有怎样的数量关系?写出结论并加以证明.【答案】(1)见解析;(2)22°;(3)1()2DAE C B ∠=∠-∠,证明见解析 【分析】(1)根据题意画出图形即可; (2)在ABC ∆中,利用三角形内角和定理可求出BAC ∠的度数,结合角平分线的定义可求出CAE ∠的度数,由AD 是BC 边上的高,可求出CAD ∠的度数,再结合DAE CAE CAD ∠=∠-∠即可求出结论; (3)根据题意可以用B 和C ∠表示出CAD ∠和CAE ∠,从而可以得到DAE ∠与C B ∠-∠的关系.【详解】解:(1)如图,(2)在ABC ∆中,28B ∠=︒,72C ∠=︒,18080BAC B C ∴∠=︒-∠-∠=︒,AE ∵平分BAC ∠,1402CAE BAC ∴∠=∠=︒, AD 是BC 边上的高,AD BC ∴⊥,9018CAD C ∴∠=︒-∠=︒,401822DAE CAE CAD ∴∠=∠-∠=︒-︒=︒.(3)1()2DAE C B ∠=∠-∠, 理由:在ABC ∆中,AD ,AE 分别是ABC ∆的高和角平分线, 180CAB B C ∴∠=︒-∠-∠,90CAD C ∠=︒-∠,1(180)2CAE B C ∠=︒-∠-∠, 11(180)(90)()22DAE B C C C B ∴∠=︒-∠-∠-︒-∠=∠-∠. 【点睛】本题考查三角形内角和定理,熟练掌握角的平分线的性质、直角三角形的性质是解题的关键. 17.如图,在ABC 中,BE 是ABC 角平分线,点D 是AB 上的一点,且满足DEB DBE ∠=∠.(1)DE 与BC 平行吗?请说明理由;(2)若50C ∠=︒,45A ∠=︒,求DEB ∠的度数.【答案】(1)//,DE BC 理由见解析;(2)42.5.︒【分析】(1)根据角平分线的定义可得∠DBE =∠EBC ,从而求出∠DEB =∠EBC ,再利用内错角相等,两直线平行即可证明;(2)根据两直线平行,同位角相等可得∠ABC =∠ADE ,再利用三角形的内角和等于180°列式计算即可得到答案.【详解】解:(1)DE ∥BC理由如下:∵BE 是△ABC 的角平分线∴∠DBE =∠EBC∵∠DEB =∠DBE∴∠DEB =∠EBC∴ DE ∥BC ;(2)在△ABC 中,∠A +∠ABC +∠C =180°∴∠ABC =180°-∠A-∠C =85°∵BE 是△ABC 的角平分线∴∠DBE =∠EBC =42.5°∴∠DEB =∠EBC =42.5°【点睛】本题考查了三角形内角和定理,平行线的判定与性质,准确识别图形是解题的关键.18.阅读下列材料,并完成相应任务. 三角形的内角和小学时候我们就知道三角形内角和是180度,学习了平行线之后,可以证明三角形内角和是180度,证明方法如下:如图1,已知:三角形ABC .求证180ABC ACB BAC ∠+∠+∠=︒证法一:如图2,过点A 作直线//DE BC ,∵//DE BC∴ABC DAB ∠=∠,ACB CAE ∠=∠∵180DAB BAC CAE ∠+∠+∠=︒∴180ABC ACB BAC ∠+∠+∠=︒,即三角形内角和是180︒证法二:如图3,延长BC 至M ,过点C 作//CN AB …证法一的思路是用平行线的性质得到ABC DAB ∠=∠,ACB CAE ∠=∠,将三角形内角和问题转化为一个平角,进而得到三角形内角和是180︒,这种方法主要体现的数学思想是转化思想,请运用这一思想将证法二补充完整.【答案】见解析【分析】根据平行线的性质得到∠A =∠ACN ,∠B =∠NCM ,由平角的定义得到∠ACB +∠ACN +∠NCM =180°,等量代换即可得到结论.【详解】解:证明:∵CN ∥AB∴∠A =∠ACN ,∠B =∠NCM ,∵∠ACB +∠ACN +∠NCM =180°,∴∠ACB +∠BAC+∠ABC =180°.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.19.如图,MN //PQ ,点A ,B 分别在直线MN ,PQ 上,若射线AN 绕点A 逆时针旋转至AM 后立即回转,射线BP 绕点B 顺时针旋转至BQ 后立即回转,两射线分别绕点A ,点B 不停地旋转,若射线AN 转动的速度是a ︒/秒,射线BP 转动的速度是b ︒/秒,且a ,b 满足方程组32527a b a b -=⎧⎨+=⎩.(1)求a ,b 的值;(2)若射线AN 和射线BP 同时旋转,至少旋转多少秒时,射线AN 和射线BP 互相垂直?【答案】(1)3a =,2b =;(2)至少旋转18秒时,射线AN 与射线BP 互相垂直.【分析】(1)解二元一次方程组,即可求得a 和b 的值;(2)设至少旋转x 秒时,射线AN 和射线BP 互相垂直,根据直角三角形两锐角互余和平行线的性质可得2x °+3x °=90°,求解即可.【详解】解:(1)32527a b a b -=⎧⎨+=⎩①②, ①+②得:412a =,解得3a =,将3a =代入②得327b +=,解得2b =,所以原方程组的解为:32a b =⎧⎨=⎩, 即3a =,2b =;(2)设至少旋转x 秒时,射线AN 和射线BP 互相垂直,记旋转后的两条射线交于点C ,连接AB ,如图,则∠BCA =90°,由已知得∠PBC=2x°,∠NAC=3x°,∵MN//PQ,∴∠PBA+∠BAN=180°,∵∠BCA=90°,∴∠ABC+∠BAC=90°,∴∠PBC+∠NAC=90°,∴2x°+3x°=90°,x=,解得18答:至少旋转18秒时,射线AN与射线BP互相垂直.【点睛】本题考查平行线的性质,直角三角形两锐角互余,解二元一次方程组.(1)中掌握解二元一次方程组的方法并能灵活运用是解题关键;(2)能根据平行线的性质和直角三角形两锐角互余列出方程是解题关键.∠交CD于20.如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分AEF ∠=∠.点M,且FEM FME(1)猜想直线AB与直线CD有怎样的位置关系?说明你的理由;∠交CD于点H,过点H作(2)若点G为直线CD上一动点(不与点M,F重合),EH平分FEG∠=.∠=,EGFβ⊥于点N,设EHNαHN EMβ=︒,求α的度数;①如图2,当点G在射线FD上运动时,若56②当点G 在直线CD 上运动时,请直接写出α和β的数量关系.【答案】(1)AB ∥CD ,理由见解析过程;(2)28°;(3)α=12β或α=90°-12β 【分析】(1)结论://AB CD .只要证明AEM EM D ∠=∠即可.(2)①依据平行线的性质可得124AEG ∠=︒,再根据EH 平分FEG ∠,EM 平分AEF ∠,即可得到1622HEN AEG ∠=∠=︒,再根据HN ME ⊥,即可得到Rt EHN ∆中,906228EHN ∠=︒-︒=︒;②分两种情况进行讨论:当点G 在点F 的右侧时,12αβ=,当点G 在点F 的左侧时,1902βα︒=-.【详解】解:(1)结论://AB CD .理由:如图1中,EM 平分AEF ∠交CD 于点M ,AEM M EF ∴∠=∠,FEM FM E ∠=∠.AEM FM E ∴∠=∠,//AB CD ∴.(2)①如图2中,//AB CD ,56BEG EGF β∴∠=∠==︒,124AEG ∴∠=︒,AEM EM F ∠=∠,HEF HEG ∠=∠,1622HEN MEF HEF AEG ∴∠=∠+∠=∠=︒,HN EM ⊥,90HNE ∴∠=︒,9028EHN HEN α∴=∠=︒-∠=︒.②结论:12αβ=或1902βα︒=-.理由:①当点G 在F 的右侧时,可得12αβ=. //AB CD ,BEG EGF β∴∠=∠=,180AEG β∴∠=︒-,AEM EM F ∠=∠,HEF HEG ∠=∠,119022HEN MEF HEF AEG β∴∠=∠+∠=∠=︒-,HN EM ⊥,90HNE ∴∠=︒,1902EHN HEN αβ∴=∠=︒-∠=.②当点G 在F 的左侧时,可得1902βα︒=-.理由://AB CD ,AEG EGF β∴∠=∠=,又EH 平分FEG ∠,EM 平分AEF ∠,12HEF FEG ∴∠=∠,12MEF AEF ∠=∠,M EH M EF H EF ∴∠=∠-∠1()2AEF FEG =∠-∠12AEG =∠1 2β=,又HN ME⊥,Rt EHN∴△中,90EHN MEH∠=︒-∠,即1902βα︒=-.【点睛】本题考查三角形的内角和定理,熟练掌握三角形内角和,平行线的性质,角平分线的定义等知识是解题的关键.。
三角形内角和定理的应用

三角形内角和定理的应用在几何学中,三角形是最基本的图形之一,而三角形内角和定理则是三角形中一项重要的性质。
本文将探讨三角形内角和定理的应用,并通过实例展示其在几何问题中的实际运用。
一、三角形内角和定理的定义三角形内角和定理是指三角形的三个内角之和等于180度。
简言之,对于任意一个三角形ABC,其内角A、内角B、内角C的和等于180度,即:∠A + ∠B + ∠C = 180°。
二、三角形内角和定理的应用1. 判断三角形的角度性质:通过三角形内角和定理,我们可以判断一个三角形的角度性质。
若三角形的内角之和等于180度,则可以确定该图形为三角形。
若内角之和小于180度或大于180度,则说明该图形不是三角形。
2. 解决三角形内角问题:在已知部分内角的情况下,可以通过三角形内角和定理求解其他内角的大小。
例如,若已知一个三角形的两个内角的度数分别为30度和60度,我们可以通过内角和定理计算出第三个内角的度数为180度减去已知内角之和。
3. 应用于证明和推理:在几何证明和推理中,三角形内角和定理是常用的工具之一。
通过灵活运用内角和定理,可以推导出一系列几何性质和关系。
例如,我们可以利用三角形内角和定理证明等腰三角形的性质,或者证明平行线与三角形内角的关系等。
三、实例展示为了更好地理解三角形内角和定理的应用,以下将提供两个实例。
实例一:已知一个三角形的两个内角的度数分别为60度和90度,求第三个内角的度数。
解答:根据三角形内角和定理,我们可以得到∠A + ∠B + ∠C = 180°。
其中,已知∠A = 60°,∠B = 90°。
将已知的两个角度代入公式,则可得60° + 90° + ∠C = 180°。
整理方程可得∠C = 180° - 60° - 90°,即∠C = 30°。
因此,第三个内角的度数为30度。
三角形的内角和公式及其应用

三角形的内角和公式及其应用三角形是几何学中最基础的图形之一,拥有丰富的性质和应用。
其中一个重要的性质是三角形的内角和公式,它能够帮助我们计算三角形内角的大小,并且在解决实际问题中起到重要的作用。
本文将详细介绍三角形的内角和公式,以及它在实际中的应用。
1. 三角形的内角和公式对于任意一个三角形,其内角和公式可以简洁地表达为:三角形的内角和等于180度。
即:角A + 角B + 角C = 180°其中,角A、角B和角C分别表示三角形的三个内角。
此公式成立于任何三角形,无论是等边三角形、等腰三角形还是一般三角形都适用。
2. 三角形的内角和公式的推导要理解三角形的内角和公式,可以通过以下推导来加深理解。
考虑任意一个三角形ABC,我们可以将其划分为两个锐角三角形,如下所示:A/ \C—B根据锐角三角形的内角和等于180度的性质,我们可以得出以下两个等式:角ABC + 角ACB = 180° -- (1)角ACB + 角BAC = 180° -- (2)将(1)式中的角ACB代入(2)式中,可得:角ABC + (180° - 角ABC) = 180°化简后得到:角ABC = 角ABC这就证明了三角形ABC的内角和等于180度。
3. 三角形内角和公式的应用三角形的内角和公式在解决各种实际问题中起到重要的作用,下面将介绍一些常见的应用场景。
3.1 三角形内角的计算通过三角形的内角和公式,我们可以很容易地计算出三角形中任意一个内角的大小。
例如,如果我们已知三角形的另外两个内角的度数,就可以通过内角和公式求解出第三个内角的度数。
3.2 三角形分类根据三角形的内角和公式,我们可以将三角形进行分类。
当三角形的三个内角和为180度时,可以得到以下结论:- 如果三角形的三个内角都小于90度,称为锐角三角形。
- 如果三角形中存在一个内角为90度,称为直角三角形。
- 如果三角形的三个内角中至少有一个大于90度,称为钝角三角形。
三角形内角和的应用

三角形内角和的应用郭一鸣“三角形三个内角的和等于180°”,这是大家熟悉的一个定理。
本文举七则中考题说明它的应用。
例1. △ABC中,∠A=∠B+∠C,则∠A=_________度。
解:因为∠A+∠B+∠C=180°又∠A=∠B+∠C所以∠A+∠A=180°,即∠A=90°例2. 如图1,∠1+∠2+∠3+∠4=__________度。
解:因为∠1+∠2=∠3+∠4=180°-40°=140°所以∠1+∠2+∠3+∠4=140°+140°=280°例3. 图2中,∠1+∠2+∠3+∠4=__________度。
解:连结BD,则∠1+∠2+∠3+∠4=180°+180°=360°例4. 如图3,在△ABC中,∠B=66°,∠C=54°,AD是∠A的平分线,DE平分∠ADC交AC于E,则∠BDE=__________。
解:因为∠BAC=180°-∠B-∠C=180°-66°-54°=60°又AD是∠A的平分线所以∠BAD=∠DAC=30°在△ABD中,∠ADB=180°-66°-30°=84°在△ADC中,∠ADC=180°-54°-30°=96°又DE平分∠ADC所以∠ADE=48°故∠BDE=∠ADB+∠ADE=84°+48°=132°例5. 直角三角形两锐角的角平分线交成的角的度数是()A. 45°B. 135°C. 45°或135°解:如图4,∠1=180°-45°=135°∠2=180°-135°=45°故选C。
三角形内角和及应用

三角形内角和及应用三角形内角和是指三角形内三个角的角度之和。
根据三角形的性质,我们知道三角形的内角和始终等于180度。
这是一个简单而重要的数学概念,在解决各种几何问题时经常用到。
首先,我们来解释为什么三角形的内角和等于180度。
我们可以通过以下两种方法理解这个概念。
第一种方法是画一个直角三角形。
直角三角形的一个角是90度,而另外两个角之和必须等于90度,因此直角三角形的内角和为180度。
第二种方法是将任意三角形分割成两个直角三角形。
我们可以通过在三角形的内部画一条边将其分割成两个直角三角形。
根据直角三角形的性质,每个直角三角形的内角和为180度,所以整个三角形的内角和也为180度。
了解了三角形内角和的概念后,我们可以应用这个概念解决各种几何问题。
首先,我们可以利用三角形内角和来判断一个三角形的形状。
例如,如果一个三角形的三个角都小于90度,则这个三角形是锐角三角形;如果一个三角形有一个角大于90度,则这个三角形是钝角三角形;如果一个三角形有一个角等于90度,则这个三角形是直角三角形。
通过观察三角形的内角和,我们可以快速判断一个三角形的形状。
其次,三角形内角和可以帮助我们求解三角形的未知角度。
如果我们知道一个三角形的两个角度,可以利用三角形内角和等于180度的性质来求解第三个角度。
例如,如果一个三角形的两个角度分别为70度和50度,我们可以使用以下关系来求解第三个角度:180度- 70度- 50度= 60度。
因此,第三个角度为60度。
另外,三角形内角和也可以帮助我们解决一些复杂的几何问题。
例如,当我们遇到一个三角形内角和等于某个特定角度的问题时,我们可以推导出其他角度的数值。
这种方法在角度相关的几何证明中非常有用。
此外,三角形内角和还与其他几何概念有很多关联。
例如,三角形的外角和等于360度减去内角和。
此外,根据三角形的欧拉定理,三角形三个顶点的角度和等于360度。
这些定理和关系都是基于三角形内角和的特性推导得出的。
三角形内角和在生活中的应用

三角形内角和在生活中的应用
三角形内角和是指三角形三个内角的度数之和。
在生活中,三角形内角和有许多应用。
1. 地理测量:三角形内角和的概念被广泛应用于地理测量中。
通过测量三角形的三个内角,可以计算出三角形的面积和周长。
这对于绘制地图和确定地球表面的形状和大小非常重要。
2. 建筑设计:三角形内角和在建筑设计中也非常有用。
建筑师
可以使用三角形内角和来计算角度和比例,以确保建筑物的结构稳定,并且符合美学和功能需求。
3. 游戏设计:三角形内角和还可以应用于游戏设计。
许多计算
机游戏和桌面游戏都使用三角形内角和来确定角色在游戏中的动作
和移动。
4. 物理学:三角形内角和也在物理学中发挥重要作用。
例如,
三角形内角和可以用于计算热力学中的相变和能量转换。
总之,三角形内角和在许多领域都有重要的应用,并且对于我们理解和应用数学知识非常重要。
- 1 -。
三角形内角和定理及其应用

岛的北偏西40 °方向。从B岛看A,C两岛的视
角∠ABC是多少度?从C岛看A、B两岛的视
角∠ACB是多少度?
北
北EΒιβλιοθήκη DC...
B
A
东
• 解:∠CAB= ∠BAD - ∠CAD =80°-50°= 30°
• ∵AD∥BE,得: ∠BAD +∠BADE=180°
• ∴ ∠ABE=180°- ∠BAD = 180°- 80°=100°
解:设∠A=x°,则∠C=∠ABC=2X0 ∴x+2x+2x=180 解得:x=360 ∴∠C=72° 在△BDC中, ∵∠BDC=90°
∴∠DBC=180°-∠BDC- ∠C =180°-90°-72°
=180
动动脑: 如图,C岛在A岛的北偏东50°方
向,B岛在A岛的北偏东80 °方向,C岛在B
A
B
C
与
A
A B
C
B
B
A
图1
A
B
C
B
图2
C
B
图3
C
通过以上操作,你得到了什么结论?
三角形的内角和等于1800.
A
E
A B
B
C 图2
过点C作CE∥AB
已知,如图△ABC
求证: ∠A+∠B+∠ACB=180°
证明:作BC的延长线CD 过点C作射线CE∥BA ∴∠B=∠2 (两直线平行,同位角相等). ∠1=∠A, (两直线平行,内错角相等,). 又∵∠1+∠2+∠ACB=180 °(平角等于180度) ∴∠A+∠B+∠ACB=180°(等量代换)
11.2.1三角形的内角和
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时多边形的内角和
教学目标
1.掌握多边形内角和及外角和公式.
2.能把多边形问题转化为三角形问题,体现了转化的数学思想,让学生体会从特殊到一般的认识问题的方法.
教学重点
探索并证明多边形内角和与外角和公式.
教学难点
探索多边形内角和时,将多边形转化成三角形来解决问题的思路.
教学设计(设计者:)
教学过程设计
一、创设情景,明确目标
问题:1.三角形的内角和是180°;正方形的内角和是360°;一般四边形的内角和是多少呢?(360°)
2.五边形的内角和呢?(540°)
3.n边形的内角和是多少呢?[180°(n-2)]
二、自主学习,指向目标
学习至此:请完成《学生用书》相应部分.
三、合作探究,达成目标
探究点一多边形的内角和
活动一:探究:教材P21“思考”.
小组讨论:把一个多边形分成几个三角形,还有其他的分法吗?都可以推导出多边形的内角和公式吗?
反思小结:n边形的内角和等于(n-2)·180°.
针对训练:见《学生用书》相应部分
探究点二多边形的外角和
活动二:见教材P22例1(答案见课本)
展示点评:任何一个外角同与它相邻的内角有什么关系?六边形的6个外角加上与它们相邻的内角,所得总和是多少?上述总和与六边形的内角和、外角和有什么关系?你能归纳出多边形外角和的求法吗?
小组讨论:多边形的外角和与这个多边形的边数之间有数量关系吗?
反思小结:多边形的外角和等于360°.
针对训练:见《学生用书》相应部分
四、总结梳理,内化目标
1.本节课学习的数学知识是:多边形的内角和公式,及外角和.
2.数学思想:转化、数形结合.
五、达标检测,反思目标
1.填空:
(1)十二边形的内角和是__1800°__.
(2)一个多边形当边数增加1时,它的内角和增加__180°__,它的外角和增加__0°__.
(3)一个多边形的内角和是720°,则此多边形共__6__个内角.
(4)如果一个多边形内角和是1440度,那么这是__十__边形.
2.如图:∠A+∠B+∠C+∠D+∠E+∠F=__360°__.
3.下列角度中不能成为多边形内角和的是( A )
A.600°B.720°C.900°D.1080°
4.科技馆为某机器人编制了一段程序,如果机器人在平地上按照图中所示的步骤行走,那么该机器人所走的总路程为( A )
A.12 m B.13 m C.14 m D.不能确定
5.看图答题:
问题:(1)他们在求几边形的内角和?
(2)少加的那个角为多少度?
解:(1)1125÷180=6 (45)
∴多边形边数为:6+2+1=9
(2)少加的内角:180°-45°=135°
●布置作业,巩固目标教学难点
1.上交作业课本P257、8、9、10.
2.课后作业见《学生用书》.。