数学人教版七年级下册不等式的解集
人教版七年级数学下册不等式及其解集2

立志难也,不在胜人,在自胜。 有志的人战天斗地,无志的人怨天恨地。 壮志与毅力是事业的双翼。 成功往往偏向于有准备的人 胸无大志,枉活一世。
3.下列说法不正确的是( C ) 人无志向,和迷途的盲人一样。
立志是事业的大门,工作是登门入室的旅程。 鹰爱高飞,鸦栖一枝。
岂器能大尽 者如声人必意闳,,但(志求A高无)者愧方意我必心程远. 。2X+3=1的解是X=-1
这样表示不等式的解集呢?
画一画: 利用数轴来表示下列不等式的解集.
(1)x>-1
1 (2)x<
2
-1 0 1
(3)X≥-1
● -1 0 1
实心圆: 表示-1在这个解集内
0
12
大于向右画;
空心圆: 表示-1不在这个解集内
大于向右画,小于向左画; 有等号的画实心圆点,无等号的画空 心圆圈.
用数轴表示x+2≥5的解集x≥3的步骤:
一个含有未知数的不等式的所有的解,组成这个不等式的 解的集合,简称为这个 不等式的解集。
D 1.下列说法正确的是( ) < (A)x=3.5是2x 7的解集
< (B)x=3.5是2x 7的解
< (C)x=3是2x
7的唯一解
< < (D)x 3.5是2x 7的解集
C 2.下列说法错误的是( )
(A)X=3.1是x+3>6的一个解 (B)x+1<2的解有无数个 (C)x+1<4的解集是x<2 (D)x+2>1的解集是x>-1
给这类些比数方定 程的个名解称?
(C)x=3是2x < 7的唯一解
这里表示的不都是不等式的解,如何表示解集呢?
用有我“等≠号 们”的表画知示实不心道等圆关点:系,的无使式等子号方也的是画程不空等心左式圆。圈右. 两边相等的未知数的值叫做方程的解
人教版七年级下册课件不等式及其解集

9.1.1 不等式及其解集
儿童火车票身高新标准
问题1: 五一节快到了,小李准备和父母
全 单位"米 价 票
半 价 票
坐火车去衡山旅游.若小李身高 为x米,那么:
(1)根据儿童火车票身高新标准 ① 当x满足 x<1.1 时,他可免票. ② 当x满足 x ≥ 1.5 时,他该买全票.
(2)已知小李家到衡山的距离为120
A. x=3是2x>1的解集 B. x=3不是2x>1的解 C. x=3是2x>1的唯一解 D. x=3是2x>1的解
2 .下列数值哪些是不等式 x+3> 6的解?哪些不是? -4, -2.5, 0, 1, 2.5, 3, 3.2, 4.8, 8, 12
才自清明志自高。
不等式解集的几何表示 志之所趋,无远勿届,穷山复海不能限也;志之所向,无坚不摧。
当x=2时,x+3=5成立; x=3是2x>1的唯一解 D. 1 不等式及其解集 以这个速度行驶50千米所用的时间不到 小时
1 不等关系 不相等 处处可见
在古代,我们的祖先就懂得了翘翘板的工作原理, 并且根据这一原理设计出了一些简单机械,并把它们 用到了生活实践当中.
“不相等”处处可见.从今天起,我们开始学习一类 新的数学知识:不等式.
对比来工作的. 解: ⑴ x>2 ;
“总≤”结读:作用“数小轴于表或示等不于等”式或的“解不集大的于步”骤: 思①考若:该不车等计式划的在解上和午不1等0点式准的时解到集达是,一可样列的式吗子?两者有什么区别与区别. ? ((3)6x)的a一+2半≠与a-2 的和不大于4 ①⑶ 当 a与x满5和足小于7 ; ⑷时,a与他2可的免差票不.小于-1; 已思知考导 :不火等线式的的燃解烧和速不度等为式0的. 解集是一样的吗?两者有什么区别与区别? x“=≥3”是读2x作>1“的大解于集或等B于. ”或“不小于” 你解还:记 设得导小火孩线玩的的长翘度翘为板x米吗。?你想过它的工作原 雄新鹰的必 数须学比知鸟识飞:得不高等,式因.为它的猎物就是鸟。
人教版数学七年级下册 不等式与不等式组 课件PPT

②ቊ
− 1 < 0, 两个未知数
> −2,
①ቊ
< 3,
2 + 1 < ,
③ቊ 2
+ 2 > 4,
A. 1 个
最高次为2
B. 2 个
+ 3 > 0,
④ቊ
< −7.
C. 3 个
D. 4 个
x>1
2 − 1 > 1,
2.不等式组 ቊ
的所有整数解的和是 9 .
①每个不等式都是一元一次不等式;
②含有同一个未知数;
③不等式的个数不少于2.
8.一元一次不等式组的解集
解集的公共部分
一般地,几个不等式的_________________,叫做由它们所组成的
不等式组的解集.
“公共部分”是指同时满足不等式组中每一个不等式的解集的
部分.如果组成不等式组的各个不等式的解集没有公共部分,则
18 个学生,就有一名老师少带 4 个学生.为了安全,每辆客车上至
少要有 2 名老师.(1)参加此次研学旅行活动的老师和学生各有多少
人?
解:(1)设老师有 x 人,学生有 y 人.
17 = − 12,
= 16,
依题意得 ቊ
解得 ቊ
= 284.
18 = + 4,
答:此次参加研学旅行活动的老师有 16 人,学生有 284 人.
由题意得获得的利润为 y=50x+45(80-x),
当 x=40时,y=3800;
当 x=41时,y=3805;
当 x=42时,y=3810;
当 x=43时,y=3815;
人教版数学 七年级下册第9章9.1.1不等式及其解集 课件(公开课 )

拔河时力气的大小
新课探究
问题:一辆匀速行驶的汽车在11:20距离A地 50千米,要在12:00之前驶过A地,车速应满 足什么条件?
A
汽车
分析:设车速是x千米/时
从时间上看,汽车要在12:00之前驶过A地,则以 2 这个速度行驶50千米所用的时间不到 小时,即 3
50 2 x 3
2 x 50 3
标出数轴上某一区间,其中的 点对应的数值都是不等式的解. 10 20
0
5
15
例2: 用数轴表示下列不等式的解集: ⑴ x>-1; ⑵ x≥ -1; ⑶ x< -1; ⑷ x≤ -1.
解:
○ ●
-1
0
-1
0
⑴
○
⑵
●
-1
0
-1
0
⑷ 总结: ①第一步:画数轴; 第二步:定界点; 第三步:定方向. ②规律: 大于向右画,小于向左画; 有等号(≥ ,≤)画实心点,无等号(>,<)画空心圆.
解:x+y ≤-2; (5)a与b的和的20%至多为15.
解:20%(a+b) ≤15
二.不等式的解: 2 x 50 3
你能找出一个符合条件的x的值吗? 使方程等号两边相等的未知数的值叫方程的解. 使不等式成立的未知数的值叫做不等式的解.
动动脑: 不等式的解与方程的解有什 么区别?
注意:不等式的解与一元一次方程的解是 有区别的.不等式的解是不确定的,是一 个范围,而一元一次方程的解则是一个具 体的数值.
(6)a的相反数至少为1.
解:-a≥1.
请直接想出下列不等式的解集,并在数轴上 表示. (1) 2x<8
0 1 2 3 4
人教版数学七年级下册知识重点与单元测-第九章9-5《不等式与不等式组》章末复习(能力提升)

第九章不等式与不等式(组)9.5 《不等式与不等式组》章末复习(能力提升)【要点梳理】知识点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点二、一元一次不等式1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键.要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集.(2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式例1.判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b﹣3a<0,则b<3a;(2)如果﹣5x>20,那么x>﹣4;(3)若a>b,则 ac2>bc2;(4)若ac2>bc2,则a>b;(5)若a>b,则 a(c2+1)>b(c2+1).(6)若a >b >0,则<. . 【答案与解析】解:(1)若由b ﹣3a <0,移项即可得到b <3a ,故正确; (2)如果﹣5x >20,两边同除以﹣5不等号方向改变,故错误; (3)若a >b ,当c=0时则 ac 2>bc 2错误,故错误; (4)由ac 2>bc 2得c 2>0,故正确;(5)若a >b ,根据c 2+1,则 a (c 2+1)>b (c 2+1)正确. (6)若a >b >0,如a=2,b=1,则<正确. 故答案为:√、×、×、√、√、√.【总结升华】本题考查了不等式的性质,两边同乘以或除以一个不为零的负数,不等号方向改变.例2. 设x>y ,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x 或y 的值是多少?【思路点拨】比较两个代数式的大小,可以运用不等式的性质得出比较方法。
人教版七年级数学下册_9.1.1不等式及其解集

A.5
B.4
C.3
D.2
感悟新知
知识点 3 不等式的解集的表示方法
在数轴上表示不等式的解集:
特别提醒 在数轴上表示不等式的解集时,
大于向右画, 小于向左画;界点处 用空心圆圈圈住该点.
知3-讲
感悟新知
知3-讲
不等式的解集表示的是未知数的取值范围,所以不等
式的解集可以在数轴上直观地表示出来. 一般地,利用数
C. 3
D. 2
感悟新知
例2 用不等式表示: (1)a 的一半与3 的和大于5; (2)x 的3 倍与1 的差小于2; (3)a 的 1 与1 的差是正数;
2
(4)m 与2 的差是负数.
知1-练
解题秘方:紧扣不等关系中的关键词语列出不等式.
感悟新知
解:(1) 1 a+3>5.
2
(2)3x-1<2.
第9章 不等式与不等式组
9.1 不等式
9.1.1 不等式及其解集
学习目标
1 课时讲解 2 课时流程
不等式 不等式的解与解集 不等式的解集的表示方法
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 不等式
知1-讲
1. 定义:用符号“<”或“>”表示大小关系的式子叫做不等
式. 用符号“≠”表示不等关系的式子也是不等式.
轴表示不等式的解集通常有以下四种情况(设a>0):
不等式的解集 x>a
x>-4a
x<a
x<-a
数轴表示
感悟新知
知3-练
例4 在数轴上表示下列不等式的解集: (1)x>2 (2)x<-2 解题秘方:紧扣不等式解集在数轴上的表示方法, 看清不等号和端点值是解决问题的关键.
人教版初中数学七年级下册9.1.1《不等式及其解集》教案
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“不等式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
举例:
a)难点解释:为什么当a > b且c < 0时,ac < bc?可以通过具体的数字例子帮助学生形象理解。
b)学生常见错误:在解不等式-3x > 6时,可能会错误地写成x < -2而不是正确的x < -2。
c)解集表示难点:解释如何正确表示不等式x ≤ 3的解集在数轴上,包括端点值的处理。
四、教学流程
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解不等式的基本概念。不等式是表示两个数大小关系的数学表达式。它是解决实际问题中比较数值大小的有力工具。
2.案例分析:接下来,我们来看一个具体的案例。假设小华的年龄大于小丽的年龄,我们可以用不等式x > y来表示。这个案例展示了不等式在实际中的应用,以及它如何帮助我们解决问题。
人教版初中数学七年级下册9.1.1《不等式及其解集》教案
一、教学内容
人教版初中数学七年级下册9.1.1《不等式及其解集》教案:
1.理解不等式的概念及其意义;
2于等于;
3.学会解简单的一元一次不等式,并能在数轴上表示解集;
4.了解不等式的性质,如:两边加(减)同一个数,不等号方向不变;两边乘(除)同一个正数,不等号方向不变;乘(除)同一个负数,不等号方向改变;
在小组讨论环节,我发现学生们在讨论不等式应用时表现活跃,他们能够提出一些很有创意的想法。但我也注意到,有些小组在讨论过程中,个别成员参与度不高。为了提高每个人的参与度,我考虑在下次活动中,可以设置明确的角色分配,确保每个学生都有明确的任务和责任。
人教版数学七年级下册-9.1借助于不等式的解集解题素材
例谈构造二元一次方程组解题二元一次方程是解决有关数学问题的重要工具.本文通过例题谈如何利用已知条件构造二元一次方程组解有关数学题.一、利用非负数的性质构造方程组例1. 若()063222=+-+-+y x y x ,求x ,y 的值. 解:()0632,022≥+-≥-+y x y x Θ ()063222=+-+-+y x y x 所以202360x y x y +-=⎧⎨-+=⎩,解得02x y =⎧⎨=⎩二、利用定义新运算构造方程组例2. 对有理数x ,y 定义新运算:⊗by ax y x +=⊗(a ,,b 为常数,等式右边是通常的加法与乘法运算),已知2525=⊗,1543=⊗,求11⊗=_______解:由新定义知:52253415a b a b +=⎧⎨+=⎩,解得50a b =⎧⎨=⎩ 所以x y x 5=⊗ 所以11⊗=515=⨯三、利用方程的定义构造方程组例3. 方程020082007724953=---++n m n m y x是关于x ,y 的二元一次方程. 求nm 的值. 解:由二元一次方程的定义,有35914271m n m n ++=⎧⎨--=⎩,即358428m n m n +=-⎧⎨-=⎩, 解得12132813m n ⎧=⎪⎪⎨⎪=-⎪⎩所以n m =73-四、利用方程组的解的定义构造方程组例4.已知方程组52ax bybx ay+=⎧⎨+=⎩的解为43xy=⎧⎨=⎩,求a,b的值.解:由方程组的解的定义,有435432a bb a+=⎧⎨+=⎩,解得21ab=⎧⎨=-⎩五、利用代数式的值的概念构造方程组例5.已知cbxx++2,当1=x时,它的值是2;当1-=x时,它的值是8,求b,c的值.解:由代数式的值的概念,有22112(1)(1)8b cb c⎧+⨯+=⎪⎨-+⨯-+=⎪⎩,即17b cb c+=⎧⎨-+=⎩,解得34bc=-⎧⎨=⎩六、利用几何图形构造方程组例6.用8块相同的长方形地砖拼成一块矩形地面,如图所示,求每块地砖的长与宽.解:设每块地砖的长为xcm,宽为ycm根据题意,得32()8x yx x y xy=⎧⎨+=⎩解这个方程组,得即每块地砖的长为1m,宽为13m七、利用实际问题构造方程组例7.在某校举办的足球比赛中规定:胜一场得3 分,平一场得1分,负一场得0分,某班足球队参加了12场比赛,共得22分,已知这个队只输了2场,那么此队胜几场?平几场? 解:设这支足球队胜x 场,平y 场由题意得212322x y x y ++=⎧⎨+=⎩ 解这个方程组,得64x y =⎧⎨=⎩利用方程b ax =的性质构造方程组我们知道:若方程b ax =有无穷多个解,则有00==b a 且.利用这一性质可以构造方程组.例8.如果关于x 的方程()1722++=+x b ax 有无穷多个解,试求a ,b 的值.解:将方程整理,得()b x a -=-154,因为方程有无穷多个解,所以有:⎩⎨⎧=-=-01504b a 解得⎩⎨⎧==154b a八、利用相反数的性质构造方程组 例9.a 的相反数是12+b ,b 的相反数是13+a ,求22b a +的值.解:由互为相反数的性质:互为相反数的两数之和等于0, 有:⎩⎨⎧=++=++013012a b b a 解得⎪⎪⎩⎪⎪⎨⎧-=-=5251b a所以22b a +=51525122=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-。
9_1_1 不等式及其解集(优质学案)
学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________人教版初中数学七年级下册 9.1.1 不等式及其解集 导学案一、学习目标:1. 了解不等式及其解的概念;2. 学会并准确运用不等式表示数量关系,形成在表达中渗透数形结合的思想;3. 理解不等式的解集及解不等式的意义.重点:会用不等式表示简单问题的数量关系,把不等式的解集正确的表示到数轴上.难点:理解不等式解集的意义. 二、学习过程: 自主学习一问题 一辆匀速行驶的汽车在11:20距离A 地50km ,要在12:00之前驶过A 地,车速应满足什么条件? 分析:设车速是 x km/h.从时间上看,汽车要在12:00之前驶过A 地,则以这个速度行驶50km 所用的时间不到____h ,即 _______ ①从路程上看,汽车要在12:00之前驶过A 地,则以这个速度行驶32h 的路程要超过____km ,即 __________ ②【归纳】________________________________________________________,叫做不等式.(1)像a+2≠a-2这样用符号“______”表示不等关系的式子也是不等式. (2)不等式中可以含未知数,也可以不含未知数.例如:a+2>5,4b <6;3<4,-1>-2.(3)“_____”读作“大于或等于”或“不小于”“______”读作“小于或等于”或“不大于” 用不等号填空:大于( ) 小于( ) 不大于( ) 不小于( )学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________不超过( ) 至多( ) 至少( ) 正数( ) 负数( ) 非负数( ) 非正数( ) …… 典例解析例1.下列式子:①3>0;②4x +5>0;③x <3;④x 2+x ;⑤x =−4;⑥x +2>x +1,其中不等式有( )A .3个B .4个C .5个D .6个 【针对练习】判断下列式子是不是不等式:(1)-3>0; (2)4x+3y<0; (3)x=3; (4) x 2+xy+y 2; (5)x ≠5; (6)x+2>y+5.例2.根据下列数量关系列不等式: (1)x 的7倍减去1是正数. (2)y 的13与13的和不大于0.(3)正数a 与1的和的算术平方根大于1. (4)y 的20%不小于1与y 的和.【针对练习】用不等式表示:(1) a 是正数;______ (2) a 是负数;______(3) a 与5的和小于7;_________ (4) a 与2的差大于-1;_________ (5) a 的4倍大于8;_________ (6) a 的一半小于3. _________ 自主学习二对于不等式5032>x ,当x =80时,5032>x ;当x =78时,5032>x ;当x=75时,5032=x ;当x =72时,5032<x .当x 取某些值(如80,78)时,不等式5032>x 成立;当x 取某些值(如75,72)时不等式5032>x 不成立.学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【归纳】____________________________________________叫做不等式的解. 思考:除了80和78,不等式5032 x 还有其他解吗?如果有,这些解应满足什么条件?【归纳】____________________________________________________,组成这个不等式的解集.________________________________叫做解不等式. 不等式的解与不等式的解集的区别与联系典例解析例3.下列各数中,哪些是不等式x +2<4的解?哪些不是?-3,-1,0,1,32,2,52,3,4.【针对练习】下列数中哪些是不等式x +3>6的解,哪些不是?-4,-2.5,0,1,2.5,3,3.2,4.8,8,12学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________例4.把下列不等式的解集在数轴上表示出来.(1)x ≥-3; (2)x >-1; (3)x ≤3; (4)x<-32.【针对练习】将下列不等式的解集在数轴上表示出来:① x <-1; ②x <-2; ③x >0; ④x <-52.【总结提升】解集的表示方法:第一种:___________________________________________________________.第二种: ___________________________________________________________. 用数轴表示不等式的解集的步骤:第一步:____________;第二步:____________;第三步:____________. 达标检测1.在下列式子中:①5<7;②2x>3;③a ≠0;④x ≥-5;⑤3x-1;⑥x2≤3;⑦x=3,其中是不等式的有( )A.3个B.4个C.5个D. 6个 2. x 与3的和的一半是负数,用不等式表示为( )A.12x+3>0 B. 12x+3<0 C. 12(x+3)>0 D. 12(x+3)<0 3.在数值-2,-1,0,1,2中,能使不等式x+3>2成立的有( ) A.1个 B.2个 C.3个 D. 4个 4.下列说法错误的是( )A.1不是x ≥2的解B.不等式x+3>3的解集是x>0C.0是x<13的一个解 D. x=6是x-7<0的解集学习笔记记录区_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________5.如图表示不等式的解集为________.6.方程2x=10的解有____个,不等式2x<10的解有______个,不等式2x<10的解集是_______.7.满足x ≤3.5的非负整数解是_____________.8.某种药品的说明书上,贴有如图所示的标签,则一次服用这种药品的剂量范围是__________mg.9.用不等式表示下列关系:(1) x 的2倍与6的差小于3; __________ (2) x 的平方不小于5; _________(3) x 的13与x 的2倍的和是非负数; ___________ (4) a 与4的和的30%小于7; ______________ (5) x 除以2的商加上2,至多为5; __________ (6) a 与b 两数和的平方大于10. ______________ 10.把下列不等式的解集在数轴上表示出来.(1) x>-3; (2) x ≤4; (3) x<3.5.11.根据下列语句写出不等式:(1)火车提速后,时速(v)最高可达300km/h; ______________ (2)某班学生中身高(h)最高的为1.84m; ______________(3)小明今天锻炼身体花了tmin,他每天锻炼身体的时间不少于30min; (4)某校男子跳高纪录是1.75m ,在今年的校田径运动会上,小明的跳高成绩是hm,打破了该校男子跳高纪录. ______________学习笔记记录区___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________ ___________________。
人教版数学七年级下册一元一次不等式第一课时一元一次不等式及其解法课件
褴褛衣内可藏志。 志不真则心不热,心不热则功不贤。
第九章 不等式与不等式组
1.下列不等式中,是一元一次不等式的是
A.13(x+2)>4x-1
B.(1+x)(1-x)>5
C.x+2 1-4≤x
第九章 不等式与不等式组
(2)2x-74≥94.
解:去分母,得2x-7≥9, 移项,得2x≥9+7, 合并同类项,得2x≥16. 系数化为1,得x≥8,其解集在数轴上表示,如图2所示.
第九章 不等式与不等式组
4.解下列各题: (1)解不等式:2(5x+3)≤x-3(1-2x); (2)解不等式:2x+ 3 2-3x+ 2 1<1,并把解集表示在数轴上. 解:(1)去括号,得 10x+6≤x-3+6x, 移项、合并同类项,得 3x≤-9, 系数化为 1,得 x≤-3. 所以原不等式的解集是 x≤-3.
解:移项,得 2x-4x>-3,即-2x>-3. 去括号,得4x+4-9x-3<6,
但方程两边同乘(或除以)一个负数时,方程的解不变. 6.已知3m-5x3+m>4是关于x的一元一次不等式, 系数化为1,得x>-1.
3 移项、合并同类项,得7x≥-14, 系数化为 1,得 x<2,其解集在数轴上表示,如图 1 所示. 去括号,得3x+12+4x+2≥0,
志之所趋,无远勿届,穷山复海不能限也;志之所向,无坚不摧。 去括号,得3x+12+4x+2≥0, 志之所趋,无远勿届,穷山复海不能限也;志之所向,无坚不摧。
(1)2x+3>4x; 解:(1)∵3m-5x3+m>4是关于x的一元一次不等式,
(2)求这个不等式的解集. 【第二关】 建议用时6分钟 ②不等式中,当两边同乘(或除以)一个负数时,不等号的方向改变;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标
1.使学生正确理解不等式的解,不等式的解集,解不等式等概念,掌握在数轴上表示不等式的解的集合的方法;
2.培养学生观察、分析、比较的能力,并初步掌握对比的思想方法;
3.在本节课的教学过程中,渗透数形结合的思想,并使学生初步学会运用数形结合的观点去分析问题、解决问题
教学重点和难点
重点:不等式的解集的概念及在数轴上表示不等式的解集的方法.
难点:不等式的解集的概念.
课堂教学过程设计
一、从学生原有的认知结构提出问题
1.什么叫不等式?什么叫方程?什么叫方程的解?(请学生举例说明)
2.用不等式表示:
(1)x的3倍大于1;(2)y与5的差大于零;
3.当x取下列数值时,不等式x+3<6是否成立?
-4,3.5,4,-2.5,3,0,2.9.
(2、3两题用投影仪打在屏幕上)
二、讲授新课
1.引导学生运用对比的方法,得出不等式的解的概念
2.不等式的解集及解不等式
首先,向学生提出如下问题:
不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,还有没有其它的解?若有,解的个数是多少?它们的分布是有什么规律?
(启发学生利用试验的方法,结合数轴直观研究.具体作法是,在数轴上将是x+3<6的解的数值-4,-2.5,0,2.9用实心圆点画出,将不是x+3<6的解的数值3.5,4,3用空心圆圈画出,好像是“挖去了”一样.如下图所示)
然后,启发学生,通过观察这些点在数轴上的分布情况,可看出寻求不等式x+3<6的解的关键值是“3”,用小于3的任何数替代x,不等式x+3<6均成立;用大于或等于3的任何数替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知数x的值是小于3的所有数,用不等式表示为x<3.把能够使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的解的集合.简称不等式x+3<6的解集,记作x<3.
最后,请学生总结出不等式的解集及解不等式的概念.(若学生总结有困难,教师可作适当的启发、补充)
一般地说,一个含有未知数的不等式的所有解,组成这个不等式的解的集合.简称为这个不等式的解集.
不等式一般有无限多个解.
求不等式的解集的过程,叫做解不等式.
3.启发学生如何在数轴上表示不等式的解集
我们知道解不等式不能只求个别解,而应求它的解集.一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x<3.那么如何在数轴上直观地表示不等式x+3<6的解集x<3呢?(先让学生想一想,然后请一名学生到黑板上试着用数轴表示一下,其余同学在下面自行完成,教师巡视,并针对黑板上板演的结果做讲解)
在数轴上表示3的点的左边部分,表示解集x<3.如下图所示.
由于x=3不是不等式x+3<6的解,所以其中表示3的点用空心圆圈标出来.(表示挖去x=3这个点)
记号“≥”读作大于或等于,既不小于;记号“≤”读作小于或等于,即不大于.
例如不等式x+5≥3的解集是x≥-2(想一想,为什么?并请一名学生回答)在数轴上表示如下图.
即用数轴上表示-2的点和它的右边部分表示出来.由于解中包含X=-2,故其中表示-2的点用实心圆点表示.
此处,教师应强调,这里特别要注意区别是用空心圆圈“°”还是用实心圆点“·”,是左边部分,还是右边部分.
三、应用举例,变式练习
例1 在数轴上表示下列不等式的解集:
(4)1≤x≤4;(5)-2<x≤3;(6)-2≤x<3.
解:(1),(2),(3)略.
(4)在数轴上表示1≤x≤4,如下图
(5)在数轴上表示-2<x≤3,如下图
(6)在数轴上表示-2≤x<3,如下
(此题在讲解时,教师要着重强调:注意所给题目中的解集是否包含分界点,是左边部分还是右边部分.本题应分别让6名学生板演,其余学生自行完成,教师巡视,遇到问题,及时纠正)
例2 用不等式表示下列数量关系,再用数轴表示出来:
(1)x小于-1;(2)x不小于-1;
(3)a是正数;(4)b是非负数.
解:(1)x小于-1表示为x<-1;(用数轴表示略)
(2)x不小于-1表示为x≥-1;(用数轴表示略)
(3)a是正数表示为a>0;(用数轴表示略)
(4)b是非负数表示为b≥0.(用数轴表示略)
(以上各小题分别请四名学生回答,教师板书,最后,请学生在笔记本上画数轴表示)
例3 用不等式的解集表示出下列各数轴所表示的数的范围.(投影,请学生口答,教师板演)
解:(1)x<2;(2)x≥-1.5;(3)-2≤x<1.
(本题从另一侧面来揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)
练习(1)用简明语言叙述下列不等式表示什么数:①x>0;②x<0;③x>-1;④x≤-1.
(2)在数轴上表示下列不等式的解集:
①x>3;②x≥-1;③x≤-1.5;
(3)*观察不等式x-4<0的解集是什么?用不等式和数轴分别表示出来.它的正数解是什么?自然数解是什么?(*表示选作题)
四、师生共同小结
针对本节课所学内容,请学生回答以下问题:
1.如何区别不等式的解,不等式的解集及解不等式这几个概念?
2.找出一元一次方程与不等式在“解”,“求解”等概念上的异同点.
3.记号“≥”、“≤”各表示什么含义?
4.在数轴上表示不等式解集时应注意什么?
结合学生的回答,教师再强调指出,不等式的解、不等式的解集及解不等式这三者的定义是区别它们的唯一标准;在数轴上表示不等式解集时,需特别注意解的范围的分界点,以便在数轴上正确使用空心圆圈“°”和实心圆点“·”.
五、作业
1.不等式x+3≤6的解集是什么?
2.在数轴上表示下列不等式的解集:
(1)x≤1;(2)x≥0;(3)-1<x≤5;
3.求不等式x+2<5的正整数解。