奥数之数数与计数

合集下载

四年级奥数第二讲图形的计数问题含答案

四年级奥数第二讲图形的计数问题含答案

四年级奥数第⼆讲图形的计数问题含答案第⼆讲图形的计数问题⼀、知识点:⼏何图形计数问题往往没有显⽽易见的顺序,⽽且要数的对象通常是重叠交错的,要准确计数就需要⼀些智慧了.实际上,图形计数问题,通常采⽤⼀种简单原始的计数⽅法-⼀枚举法.具体⽽⾔,它是指把所要计数的对象⼀⼀列举出来,以保证枚举时⽆⼀重复、.⽆⼀遗漏,然后计算其总和.正确地解答较复杂的图形个数问题,有助于培养同学们思维的有序性和良好的学习习惯.⼆、典例剖析:例(1)数出右图中总共有多少个⾓分析:在∠AOB内有三条⾓分线OC1、OC2、OC3,∠AOB被这三条⾓分线分成4个基本⾓,那么∠AOB内总共有多少个⾓呢?⾸先有这4个基本⾓,其次是包含有2个基本⾓组成的⾓有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本⾓组成的⾓有2个(即∠AOC3、∠C1OB),最后是包含有4个基本⾓组成的⾓有1个(即∠AOB),所以∠AOB内总共有⾓:4+3+2+1=10(个)解:4+3+2+1=10(个)答:图中总共有10个⾓。

练⼀练:数⼀数右图中总共有多少个⾓?答案: 总共有⾓:10+9+8+…+4+3+2+1=55(个)例(2 )数⼀数共有多少条线段?共有多少个三⾓形?分析:①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).②要数有多少个三⾓形,先看在△AGH中,在GH上有3个分点,分成基本⼩三⾓形有4个.所以在△AGH中共有三⾓形4+3+2+1=10(个).在△AMN与△ABC中,三⾓形有同样的个数,所以在△ABC中三⾓形个数总共:(4+3+2+1)×3=10×3=30(个)解::①在△ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)②在△ABC中共有三⾓形是:(4+3+2+1)×3=10×3=30(个)答:在△ABC中共有线段60条,共有三⾓形30个。

【精选】奥数:计数之对应法.学生版

【精选】奥数:计数之对应法.学生版

前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式.模块一、图形中的对应关系【例 1】 在8×8的方格棋盘中,取出一个由三个小方格组成的“L ”形(如图),一共有多少种不同的方法?【考点】计数之图形中的对应关系 【难度】3星 【题型】解答【解析】 注意:数“不规则几何图形”的个数时,常用对应法.第1步:找对应图形 每一种取法,有一个点与之对应,这就是图中的A 点,它是棋盘上横线与竖线的交点,且不在棋盘边上. 第2步:明确对应关系 从下图可以看出,棋盘内的每一个点对应着4个不同的取法(“L ”形的“角”在2×2正方形的不同“角”上).第3步:计算对应图形个数 由于在 8×8的棋盘上,内部有7×7=49(个)交叉点,第4步:按照对应关系,给出答案故不同的取法共有49×4=196(种).评注:通过上面两个范例我们知道,当直接去求一个集合元素的个数较为困难的时候,可考虑采用相等的原则,把问题转化成求另一个集合的元素个数.【答案】196【例 2】 在8×8的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色小方格的长方形共有多少个?【考点】计数之图形中的对应关系 【难度】3星 【题型】解答例题精讲教学目标7-6-3计数之对应法【解析】首先可以知道题中所讲的13⨯长方形中间的那个小主格为黑色,这是因为两个白格不相邻,所以不能在中间.显然,位于棋盘角上的黑色方格不可能被包含在这样的长方形中.下面分两种情况来分析:第一种情况,一个位于棋盘内部的黑色方格对应着两个这样的13⨯长方形(一横一竖);第二种情况,位于边上的黑色方格只能对应一个13⨯长方形.由于在棋盘上的32个黑色方格中,位于棋盘内部的18个,位于边上的有12个,位于角上的有2个,所以共有1821248⨯+=个这样的长方形.本题也可以这样来考虑:事实上,每一行都有6个13⨯⨯=个.由于棋盘上⨯长方形,所以棋盘上横、竖共有13⨯长方形68296的染色具有对称性,因此包含两个白色小方格与一个黑色小方格的长方形正好与包含两个黑色小方格与一个白色小方格的长方形具有一一对应关系,这说明它们各占一半,因此所求的长方形个数为96248÷=个.【答案】48【巩固】用一张如图所示的纸片盖住66⨯方格表中的四个小方格,共有多少种不同的放置方法?【考点】计数之图形中的对应关系【难度】3星【题型】解答【解析】如图,将纸片中的一个特殊方格染为黑色,下面考虑此格在66⨯方格表中的位置.易见它不能位于四个角上;若黑格位于方格表中间如图浅色阴影所示的44⨯正方形内的某格时,纸片有4种不同的放法,共计44464⨯⨯=种;若黑格位于方格表边上如图深色阴影所示的方格中时,纸片的位置随之确定,即只有1种放法,此类放法有4416⨯=种.所以,纸片共有641680+=种不同的放置方法.【答案】80种【例3】图中可数出的三角形的个数为.【考点】计数之图形中的对应关系【难度】4星【题型】填空【解析】这个图不像我们以前数三角形那样规则,粗看似乎看不出其中的规律,不妨我们取出其中的一个三角形,发现它的三条边必然落在这个图形中的三条大线段上,而每三条大线段也正好能构成一个三角形,因此三角形的个数和三条大线段的取法是一一对应的关系,图中一共有8条大线段,因此有3856C =个三角形. 【答案】56个三角形【例 4】 如图所示,在直线AB 上有7个点,直线CD 上有9个点.以AB 上的点为一个端点、CD上的点为另一个端点的所有线段中,任意3条线段都不相交于同一个点,求所有这些线段在AB 与CD 之间的交点数.【考点】计数之图形中的对应关系 【难度】4星 【题型】解答C D BA【解析】 常规的思路是这样的:直线AB 上的7个点,每个点可以与直线CD 上的9个点连9根线段,然后再分析这些线段相交的情况.如右图所示,如果注意到下面这个事实:对于直线AB 上的任意两点M 、N 与直线CD 上的任意两点P 、Q 都可以构成一个四边形MNQP ,而这个四边形的两条对角线MQ 、NP 的交点恰好是我们要计数的点,同时,对于任意四点(AB 与CD 上任意两点)都可以产生一个这样的交点,所以图中两条线段的交点与四边形有一一对应的关系.这说明,为了计数出有多少个交点,我们只需要求出在直线AB 与CD 中有多少个满足条件的四边形MNQP 就可以了!从而把问题转化为:在直线AB 上有7个点,直线CD 上有9个点.四边形MNQP 有多少个?其中点M 、N 位于直线AB 上,点P 、Q 位于直线CD 上.这是一个常规的组合计数问题,可以用乘法原理进行计算:由于线段MN 有2721C =种选择方式,线段PQ 有2936C =种选择方式,根据乘法原理,共可产生2136756⨯=个四边形.因此在直线AB 与CD 之间共有756个交点.【答案】756个交点模块二、数字问题中的对应关系【例 5】 有多少个四位数,满足个位上的数字比千位数字大,千位数字比百位大,百位数字比十位数字大?【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 由于四位数的四个数位上的数的大小关系已经非常明确,而对于从0~9中任意选取的4个数字,它们的大小关系也是明确的,那么由这4个数字只能组成1个符合条件的四位数(题目中要求千位比百位大,所以千位不能为0,本身已符合四位数的首位不能为0的要求,所以进行选择时可以把0包含在内),也就是说满足条件的四位数的个数与从0~9中选取4个数字的选法是一一对应的关系,那么满足条件的四位数有410109872104321C ⨯⨯⨯==⨯⨯⨯个.【答案】210个【巩固】 三位数中,百位数比十位数大,十位数比个位数大的数有多少个?【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 相当于在10个数字中选出3个数字,然后按从大到小排列.共有10×9×8÷(3×2×1)=120种.实际上,前铺中每一种划法都对应着一个数.【答案】120种【例 6】 数3可以用4种方法表示为一个或几个正整数的和,如3,12+,21+,111++.问:1999表示为一个或几个正整数的和的方法有多少种?【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 我们将1999个1写成一行,它们之间留有1998个空隙,在这些空隙处,或者什么都不填,或者填上“+”号.例如对于数3,上述4种和的表达方法对应:1 1 1,1+1 1,1 1+1,1+1+1.可见,将1999表示成和的形式与填写1998个空隙处的方式之间是一一对应的关系,而每一个空隙处都有填“+”号和不填“+”号2种可能,因此1999可以表示为正整数之和的不同方法有1998199822222⨯⨯⨯=个相乘种.【答案】19982种【例 7】 请问至少出现一个数码3,并且是3的倍数的五位数共有多少个?【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【关键词】小学数学竞赛【解析】 五位数共有90000个,其中3的倍数有30000个.可以采用排除法,首先考虑有多少个五位数是3的倍数但不含有数码3.首位数码有8种选择,第二、三、四位数码都有9种选择.当前四位的数码确定后,如果它们的和除以余数为0,则第五位数码可以为0、6、9;如果余数为1,则第五位数码可以为2、5、8;如果余数为2,则第五位数码可以为1、4、7.可见只要前四位数码确定了,第五位数码都有3种选择,所以五位数中是3的倍数但不含有数码3的数共有8999317496⨯⨯⨯⨯=个.所以满足条件的五位数共有300001749612504-=个.【答案】12504个模块三、对应与阶梯型标数法【例 8】 游乐园的门票1元1张,每人限购1张.现在有10个小朋友排队购票,其中5个小朋友只有1元的钞票,另外5个小朋友只有2元的钞票,售票员没有准备零钱.问有多少种排队方法,使售票员总能找得开零钱?【考点】计数之对应与阶梯型标数法 【难度】5星 【题型】解答【解析】 与类似题目找对应关系.要保证售票员总能找得开零钱,必须保证每一位拿2元钱的小朋友前面的若干小朋友中,拿1元的要比拿2元的人数多,先将拿1元钱的小朋友看成是相同的,将拿2元钱的小朋友看成是相同的,可以利用斜直角三角模型.在下图中,每条小横线段代表1元钱的小朋友,每条小竖线段代表2元钱的小朋友,因为从A 点沿格线走到B 点,每次只能向右或向上走,无论到途中哪一点,只要不超过斜线,那么经过的小横线段都不少于小竖线段,所以本题相当于求下图中从A 到B 有多少种不同走法.使用标数法,可求出从A 到B 有42种走法.A B 424228145141494553221111111但是由于10个小朋友互不相同,必须将他们排队,可以分成两步,第一步排拿2元的小朋友,5个人共有5120=!种排法;第二步排拿到1元的小朋友,也有120种排法,所以共有5514400⨯=!!种排队方法.这样,使售票员能找得开零钱的排队方法共有421440060480⨯=(种). 【答案】604800种【例 9】 学学和思思一起洗5个互不相同的碗(顺序固定),思思洗好的碗一个一个往上摞,学学再从最上面一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,那么学学摞好的碗一共有 种不同的摞法.【考点】计数之对应与阶梯型标数法 【难度】5星 【题型】解答【关键词】学而思杯,5年级,第7题【解析】 方法一:如下所示,共有42种不同的摞法:54321----,45321----,35421----,53421----,34521----,54231----,45231----,25431----,52431----,24531----,52341----,25341----,23541----,23451----,54312----,45312----,53412----,35412----,34512----,54132----,45132----,15432----,51432----,14532----,51342----,15342----,13542----,13452----,54123----,45123----,15423----,51423----,14523----,12543----,51243----,15243----,12453----,12354----,12534----,15234----,51234----, 12345----。

四年级奥数培优专题第四章 数与计算(二)

四年级奥数培优专题第四章  数与计算(二)

四年级奥数培优专题第四章数与计算(二)第一讲定义新运算【专题导引】我们学过常用的运算有加、减、乘、除等。

如6+2=8,6×2=12等。

都是2和6,为什么运算结果不同呢?主要是运算方式不同,实质上是对应法则不同。

由此可见,一种运算实际就是两个数与一个数的一种对应方法。

对应法则不同就是不同的运算。

当然,这个对应法则应该是对任意两个数。

通过这个法则都有一个惟一确定的数与它们对应。

这一周,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不相同的。

【典型例题】【例1】有a、b两个数,规定a◎b=a+(b-2)。

那么5◎2= ?【试一试】1、有a、b两个数,规定a※b=a+2-b。

那么2※3= ?2、有a、b两个数,规定a#b=a+2-b+9。

那么6#8= ?【例2】如果规定a◎b=a-b×2 ,那么a=8、b=3时,求8◎3= ?【试一试】1、如果规定a△b=a×3+b ,那么a=3、b=10时,求3△10= ?2、如果规定a△b=(a+b)÷4 ,那么a=1、b=7时,求1△7= ?【例3】设a、b都表示数,规定是a△b表示a的3倍减去b的2倍,a△b=a×3-b×2。

试计算:①5△6,②6△5。

【试一试】1、设a、b都表示数,规定a○b=6×a-2×b。

试计算3○4。

2、设a、b都表示数,规定a*b=3×a+2×b。

试计算①(5*6)*7,②5*(6*7)。

【例4】对于两个数a与b,规定a※b= a×b + a+b。

试计算6※2。

【试一试】1、对于两个数a与b,规定a※b=a×b-(a+b)。

试计算3※5。

2、对于两个数A与B,规定A※B=A×B÷2。

试计算6※4。

【例5】如果2△3=2+3+4,5△4=5+6+7+8,按此规律计算:3△5。

【试一试】1、如果5◎2=5×6,2◎3=2×3×4,按此规律计算:3◎4= ?2、如果2◎4=24÷(2+4),3◎6=36÷(3+6),按此规律计算:8◎4= ?【※例6】对于两个数a与b,规定a□b=a+(a+1)+(a +2)+……(a+b -1)。

四年级高思奥数之计数综合一含答案

四年级高思奥数之计数综合一含答案

第22讲计数综合一内容概述巩固以前学过的各种方法,综合运用分类与分步思想、排列与组合公式及枚举法来解决较复杂的计数问题;学会使用排阵法、捆绑法、插空法解决排队问题.典型问题兴趣篇1.现有面值1元的钞票3张,面值5元的钞票1张,面值10元的钞票2张.如果从中取出一些钞票(至少取1张),可能凑出多少种不同的总钱数?2.一本书从第1页开始编排页码,到最后一页结束时共用了1983个数码.这本书共有多少页?3.费叔叔带着小悦、冬冬、阿奇一起到圆明园游玩.他们四人站成一排照相,其中费叔叔要站在最左边或者最右边,一共有多少种不同的站法?4.有13个球队参加篮球比赛.比赛分两个组,第一组7个队,第二组6个队.各组内先进行单循环赛(即每队都要与本组中其他各队比赛一场),然后由两组的第1名再比赛一场决定冠亚军.请问:一共需要比赛多少场?5.从5瓶不同的纯净水,2瓶不同的可乐和6瓶不同的果汁中,拿出2瓶不同类型的饮料,共有多少种不同的选法?6.从4台不同型号的等离子电视和5台不同型号的液晶电视中任意取出3台,其中等离子电视与液晶电视至少要各有1台,共有多少种不同的取法?7.从1至9中取出7个不同的数,要求它们的和是36,共有多少种不同的取法?8.用0、1、2、3、4这五个数字可以组成多少个没有重复数字的五位数?9.用两个1、一个2、一个3、一个4可以组成多少个不同的五位数?10.在所有不超过1000的自然数中,数字9一共出现了多少次?拓展篇1.把自然数1至2008依次写成一排,得到一个多位数12345678910111213…0620072008.请问:(1)这个多位数一共有多少位?(2)从左向右数,这个多位数的第2008个数字是多少?2.商场里举行抽奖活动,在一个大箱子里放着9个球.其中红色的、黄色的和绿色的球各有3个,而且每种颜色的球都分别标有1、2、3号.顾客从箱子里摸出3个球,如果3个球的颜色全相同或者各不相同,就可以中奖.已知这两种中奖方式分别被设定为一等奖和二等奖,并且一等奖比二等奖少.问:到底哪种中奖方式是一等奖,哪种是二等奖呢?3.工厂某日生产的10件产品中有2件次品,从这10件产品中任意抽出3件进行检查,问:(1)一共有多少种不同的抽法?(2)抽出的3件中恰好有一件是次品的抽法有多少种?(3)抽出的3件中至少有一件是次品的抽法有多少种?4.如图22-1,在半圆弧及其直径上共有9个点,以这些点为顶点可画出多少个三角形?5.6名学生和4名老师分成红、蓝两队拔河,要求每个队都是3名学生和2名老师,一共有多少种分队的方法?6.10个人围成一圈,从中选出3个人.要求这3个人中恰有2人相邻,一共有多少种不同选法?7.用0、1、2、3、4、5这六个数字可以组成多少个没有重复数字的四位数?其中偶数有多少个?8.用l、2、3、4这四个数字可以组成多少个没有重复数字的三位数?这些三位数的和是多少?9.用两个1、两个2、两个3可以组成多少个不同的六位数?10.5名同学站成一排,在下列不同的要求下,请分别求出有多少种站法:(1)5个人站成一排;(2)5个人站成一排,小强必须站在中间;(3)5个人站成一排,小强、大强必须有一人站在中间;(4)5个人站成一排,小强、大强必须站在两边;(5)5个人站成一排,小强、大强都没有站在边上.11.6名小朋友A、B、C、D、E、F站成一排.若A,B两人必须相邻,一共有多少种不同的站法?若A、B两人不能相邻,一共有多少种不同的站法?12.学校乒乓球队一共有4名男生和3名女生.某次比赛后他们站成一排照相,请问:(1)如果要求男生不能相邻,一共有多少种不同的站法?(2)如果要求女生都站在一起,一共有多少种不同的站法?超越篇1.有6种不同颜色的小球,请问:(1)如果每种颜色的球都只有1个,从这些球中取出3个排成一列,共有多少种方法?(2)如果每种颜色的球都只有1个,从这些球中取出3个装到袋中,共有多少种方法?(3)如果每种颜色的球的数量都足够多,从这些球中取出3个排成一列,共有多少种方法?(4)如果每种颜色的球的数量都足够多,从这些球中取出3个装到袋中,共有多少种方法?2.有一些四位数的4个数字分别是2个不同的奇数和2个不同的偶数,而且不含有数字0.这样的四位数有几个?3.用l、2、3、4这四个数字组成四位数,至多允许有1个数字重复两次.例如1234、1233和2414是满足条件的,而1212、3334和3333都不满足条件.请问:一共能组成多少个满足条件的四位数?4.四年级三班举行六一儿童节联欢活动.整个活动由2个舞蹈、2个演唱和3个小品组成.请问:(1)如果要求同类型的节目连续演出,那么共有多少种不同的出场顺序?(2)如果第一个和最后一个节目不能是小品,那么共有多少种不同的出场顺序?5.在一次合唱比赛中,有身高互不相同的8个人要站成两排,每排4个人,且前后对齐.而且第二排的每个人都要比他身前的那个人高,这样才不会被挡住.一共有多少种不同的排队方法?6.有9张同样大小的圆形纸片.其中标有数字“1”的纸片有1张;标有数字“2”的纸片有2张;标有数字“3”的纸片有3张;标有数字“4”的纸片也有3张.把这9张圆形纸片如图22-2所示放置在一起,要求标有相同数字的纸片不许靠在一起.请问:(1)如果在M处放置标有数字“3”的纸片,一共有多少种不同的放置方法?(2)如果在M处放置标有数字“2”的纸片,一共有多少种不同的放置方法?7.从三个0、四个1、五个2中挑选出五个数字,能组成多少个不同的五位数?8.8个人站队,冬冬必须站在小悦和阿奇的中间(不一定相邻),小慧和大智不能相邻,小光和大亮必须相邻,满足要求的站法一共有多少种?第22讲 计数综合一内容概述巩固以前学过的各种方法,综合运用分类与分步思想、排列与组合公式及枚举法来解决较复杂的计数问题;学会使用排阵法、捆绑法、插空法解决排队问题.典型问题兴趣篇1.现有面值1元的钞票3张,面值5元的钞票1张,面值10元的钞票2张.如果从中取出一些钞票(至少取1张),可能凑出多少种不同的总钱数?答案:23种分析 :根据题意,钱数的可能范围为1-28元,其中4元,9元,14元,19元,24元是不可能出现的。

小学奥数奥数计数问题

小学奥数奥数计数问题

乘法原理:如果完成一件事需要n个步骤,其中,完成第一步有m1 种不同的方法,完成第二步有m2 种不同的方法,…… 完成第n步有m n种不同的方法,那么完成这件事情共有m1 ×m2 ×……×m n种不同的方法。

例1 上海到天津每天有 2 班飞机,4 趟火车,6 班汽车,从天津到北京有 2 班汽车。

假期小茗有一次长途旅游,他从上海出发先到天津,然后到北京,共有多少种走法?例2 “IMO”是国际奥林匹克的缩写,把这 3 个字母用红、黄、蓝三种颜色的笔来写,共有多少种写法?【巩固】在日常生活中,人们用来装饭、菜的有餐碗和餐盘,用来吃饭的有餐勺、餐叉和餐筷。

如果一种装饭菜的和一种吃饭的餐具配作一套,那么以上这些可以组成不重复的餐具多少套?例3 小红、小明准备在5×5的方格中放黑、白棋子各一枚,要求两枚不同的棋子不在同一行也不在同一列,共有多少种方法?【巩固】右图中共有 16 个方格,要把 A、B、C、D 四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?例4 用数字0,1,2,3,4,组成三位数,符合下列条件的三位数各多少个?①各个位上的数字允许重复;②各个位上的数字不允许重复;【巩固】由数字 0、1、2、3 组成三位数,问:①可组成多少个不同的三位数?②可组成多少个没有重复数字的三位数?【拓展】由数字 1、2、3、4、5、6 共可组成多少个没有重复数字的四位奇数?例5 把1~100 这100 个自然数分别写在100 张卡片上,从中任意选出两张,使他们的差为奇数的方法有多少种?小结:应用乘法原理解决问题时要注意:①做一件事要分成几个彼此互不影响的独立的步骤来完成;②要一步接一步的完成所有步骤;③每个步骤各有若干种不同的方法。

加法原理:一般地,如果完成一件事有 k 类方法,第一类方法中有 m1 种不同做法,第二类方法中有 m2 种不同做法,…,第 k 类方法中有 mk 种不同的做法,则完成这件事共有:N=m1+m2+…+mk种不同的方法.例6 学校组织读书活动,要求每个同学读一本书.小明到图书馆借书时,图书馆有不同的外语书150 本,不同的科技书200 本,不同的小说100 本.那么,小明借一本书可以有多少种不同的选法?例7 一个口袋内装有3 个小球,另一个口袋内装有8 个小球,所有这些小球颜色各不相同.问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?例8 如图,从甲地到乙地有4 条路可走,从乙地到丙地有2 条路可走,从甲地到丙地有3 条路可走.那么,从甲地到丙地共有多少种走法?例9 有两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?例10 从1 到500 的所有自然数中,不含有数字4 的自然数有多少个?例11 如图,一只小甲虫要从 A 点出发沿着线段爬到 B 点,要求任何点和线段不可重复经过.问:这只甲虫有多少种不同的走法?例 12 如图,要从 A 点沿线段走到 B,要求每一步都是向右、向上或者向斜上方.问有多少种不同的走法?家庭作业:1.由数字 1、2、3、4、5、6、7、8 可组成多少个:①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8 的没有重复数字的三位数?⑤百位为 8 的没有重复数字的三位偶数?2.某市的电话号码是六位数的,首位不能是 0,其余各位数上可以是 0~9 中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?3.图中有 7 个点和十条线段,一只甲虫要从 A 点沿着线段爬到 B 点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?4.现有一角的人民币 4 张,贰角的人民币 2 张,壹元的人民币 3 张,如果从中至少取一张,至多取 9 张,那么,共可以配成多少种不同的钱数?5.将10 颗相同的珠子分成三份,共有多少种不同的分法?分给三个人有多少种分法?6.有红、白、黄、蓝四种颜色的彩旗各 1 面,不同的旗可以表示不同的信号,不同的颜色排列也可以表示不同的信号,这 4 面旗可以发出多少种信号?7.从最小的五个质数中,每次取出两个数,分别作为一个分数的分子和分母,一共可以组成多少个真分数?8.用1,2,3,4 这四种数码组成五位数,数字可以重复,至少有连续三位是 1 的五位数有多少?9.从1 到500 的所有自然数中,不含数字 2 的自然数有多少个?n Ⅰ 排列在实际生活中把一些事物进行有序的排列,计算共有多少种排法,这就是数学上的排列问题。

二年级奥数题

二年级奥数题

第一讲速算与巧算一、“凑整”先算1.计算:(1)24+44+56(2)53+36+472.计算:(1)96+15(2)52+693.计算:(1)63+18+19(2)28+28+28二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9(2)计算:1+3+5+7+9(3)计算:2+4+6+8+10(4)计算:3+6+9+12+15(5)计算:4+8+12+16+202. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10(2)计算:3+5+7+9+11+13+15+17(3)计算:2+4+6+8+10+12+14+16+18+20四、基准数法(1)计算:23+20+19+22+18+21(2)计算:102+100+99+101+981.计算:(1)18+28+72(2)87+15+13(3)43+56+17+24(4)28+44+39+62+56+212.计算:(1)98+67(2)43+28(3)75+263.计算:(1)82-49+18(2)82-50+49(3)41-64+294.计算:(1)99+98+97+96+95(2)9+99+9995.计算:(1)5+6+7+8+9(2)5+10+15+20+25+30+35(3)9+18+27+36+45+54(4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50(2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5第二讲数数与计数(一)数学需要观察.大数学家欧拉就特别强调观察对于数学发现的重要作用,认为“观察是一件极为重要的事”.本讲数数与计数的学习有助于培养同学们的观察能力.在这里请大家记住,观察不只是用眼睛看,还要用脑子想,要充分发挥想像力.例1 数一数,图2-1和图2-2中各有多少黑方块和白方块?例2 图2-3所示砖墙是由正六边形的特型砖砌成,中间有个“雪花”状的墙洞,问需要几块正六边形的砖(图2-4)才能把它补好?例3将8个小立方块组成如图2-5所示的“丁”字型,再将表面都涂成红色,然后就把小立方块分开,问:(1)3面被涂成红色的小立方块有多少个?(2)4面被涂成红色的小立方块有多少个?(3)5面被涂成红色的小立方块有多少个?例4如图2-7所示,一个大长方体的表面上都涂上红色,然后切成18个小立方体(切线如图中虚线所示).在这些切成的小立方体中,问:](1)1面涂成红色的有几个?(2)2面涂成红色的有几个?(3)3面涂成红色的有几个?习题二1.如图2-8所示,数一数,需要多少块砖才能把坏了的墙补好?2.图2-9所示的墙洞,用1号和2号两种特型砖能补好吗?若能补好,共需几块?第三讲数数与计数(二)1/ 数一数,图3-1中共有多少点?2 数一数,图3-5中有多少条线段?3 数一数,图3-9中共有多少个锐角?③注意,例2和例3的情况极其相似.虽然例2是关于线段的,例3是关于角的,但求总数时,它们有同样的数学表达式.同学们可以看出,一个数学式子可以表达表面上完全不同的事物中的数量关系,这就是数学的魔力.4.图2-10所示为一块地板,它是由1号、2号和3号三种不同图案的瓷砖拼成.问这三种瓷砖各用了多少块?5.如图2-11所示,一个木制的正方体,棱长为3寸,它的六个面都被涂成了红色.如果沿着图中画出的线切成棱长为1寸的小正方体.求:(1)3面涂成红色的有多少块?(2)2面涂成红色的有多少块?(3)1面涂成红色的有多少块?(4)各面都没有涂色的有多少块?(5)切成的小正方体共有多少块?6.图2-12所示为棱长4寸的正方体木块,将它的表面全染成蓝色,然后锯成棱长为1寸的小正方体.问:(1)有3面被染成蓝色的多少块?(2)有2面被染成蓝色的多少块?(3)有1面被染成蓝色的多少块?(4)各面都没有被染色的多少块?(5)锯成的小正方体木块共有多少块?7.图2-13所示为一个由小正方体堆成的“塔”.如果把它的外表面(包括底面)全部涂成绿色,那么当把“塔”完全拆开时,3面被涂成绿色的小正方体有多少块?8.图2-14中的小狗与小猫的身体的外形是用绳子分别围成的,你知道哪一条绳子长吗?(仔细观察,想办法比较出来).习题三1.书库里把书如图3-16所示的那样沿墙堆放起来.请你数一数这些书共有多少本?2.图3-17所示是一个跳棋盘,请你数一数,这个跳棋盘上共有多少个棋孔?3.数一数,图3-18中有多少条线段?4.数一数,图3-19中有多少锐角?5.数一数,图3-20中有多少个三角形?6.数一数,图3-21中有多少正方形?第四讲认识简单数列我们把按一定规律排列起来的一列数叫数列.在这一讲里,我们要认识一些重要的简单数列,还要学习找出数列的生成规律;学会把数列中缺少的数写出来,最后还要学习解答一些生活中涉及数列知识的实际问题.例1 找出下面各数列的规律,并填空.(1)1,2,3,4,5,□,□,8,9,10.(2)1,3,5,7,9,□,□,15,17,19.(3)2,4,6,8,10,□,□,16,18,20.(4)1,4,7,10,□,□,19,22,25.(5) 5,10,15,20,□,□,35,40,45.例2 找出下面的数列的规律并填空.1,1,2,3,5,8,13,□,□,55,89.例3 找出下面数列的生成规律并填空.1,2,4,8,16,□,□,128,256.例4 找出下面数列的规律,并填空.1,2,4,7,11,□,□,29,37.例5 找出下面数列的规律,并填空:1,3,7,15,31,□,□,255,511.例6 找出下面数列的生成规律,并填空.1,4,9,16,25,□,□,64,81,100.例7 一辆公共汽车有78个座位,空车出发.第一站上1位乘客,第二站上2位,第三站上3位,依此下去,多少站以后,车上坐满乘客?例8 如果第一个数是3,以后每隔6个数写出一个数,得到一列数:3,10,17,……,73.这里3叫第一项,10叫第二项,17叫第三项,试求73是第几项?例9 一天,爸爸给小明买了一包糖,数一数刚好100块.爸爸灵机一动,又拿来了10个纸盒,接着说:“小明,现在你把糖往盒子里放,我要求你在第一个盒子里放2块,第二个盒子里放4块,第三个盒子里放8块,第四个盒子里放16块,……照这样一直放下去.要放满这10个盒,你说这100块糖够不够?”小朋友,请你帮小明想一想?习题四1.从1开始,每隔两个数写出一个自然数,共写出十个数来.2.从1开始,每隔六个数写出一个自然数,共写出十个数来.3.在习题一和习题二中,按题目要求写出的两个数列中,除1以外出现的最小的相同的数是几?4.自2开始,隔两个数写一个数:2,5,8, (101)可以看出,2是这列数的第一项,5是第二项,8是第三项,等等.问101是第几个数?5.如图4-1所示,“阶梯形”的最高处是4个正方形叠起来的高度,而且整个图形包括了10个小正方形.如果这个“阶梯形”的高度变为12个小正方形叠起来那样高,那么,整个图形应包括多少个小正方形?6.如图4-2所示,把小立方体叠起来成为“宝塔”,求这个小宝塔共包括多少个小立方体?7.开学的第一个星期,小明准备发起成立一个趣味数学小组,这时只有他一个人.他决定第二个星期吸收两名新组员,而每个新组员要在进入小组后的下一个星期再吸收两名新组员,求开学4个星期后,这个小组共有多少组员?8.图4-3所示为细胞的增长方式.就是说一个分裂为两个,再次分裂变为4个,第三次分裂为8个,……照这样下去,问经过10次分裂,一个细胞变成几个?9.图4-4所示是一串“黑”、“白”两色的珠子,其中有一些珠子在盒子里,问(1)盒子里有多少珠子?(2)这串珠子共有多少个?第五讲自然数列趣题本讲的习题,大都是关于自然数列方面的计数问题,解题的思维方法一般是运用枚举法及分类统计方法,望同学们能很好地掌握它.例1 小明从1写到100,他共写了多少个数字“1”?例2 一本小人书共100页,排版时一个铅字只能排一位数字,请你算一下,排这本书的页码共用了多少个铅字?例3 把1到100的一百个自然数全部写出来,用到的所有数字的和是多少?顺便提请同学们注意的是:一道数学题的解法往往不只一种,谁能寻找并发现出更简洁的解法来,往往标志着谁有更强的数学能力.比如说这道题就还有更简洁的解法,试试看,你能不能找出来?习题五1.有一本书共200页,页码依次为1、2、3、……、199、200,问数字“1”在页码中共出现了多少次?2.在1至100的奇数中,数字“3”共出现了多少次?3.在10至100的自然数中,个位数字是2或是7的数共有多少个?4.一本书共200页,如果页码的每个数字都得用一个单独的铅字排版(比如,“150”这个页码就需要三个铅字“1”、“5”和“0”),问排这本书的页码一共需要多少个铅字?5.像“21”这个两位数,它的十位数字“2”大于个位数字“1”,问从1至100的所有自然数中有多少个这样的两位数?6.像“101”这个三位数,它的个位数字与百位数字调换以后,数的大小并不改变,问从100至200之间有多少个这样的三位数?7.像11、12、13这三个数,它们的数位上的各个数字相加之和是(1+1)+(1+2)+(1+3)=9.问自然数列的前20个数的数字之和是多少?8.把1到100的一百个自然数全部写出来,用到的所有数字的和是多少?9.从1到1000的一千个自然数的所有数字的和是多少?第六讲找规律(一)例1 观察下面由点组成的图形(点群),请回答:(1)方框内的点群包含多少个点?(2)第(10)个点群中包含多少个点?(3)前十个点群中,所有点的总数是多少?例2 图6—2表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的.仔细观察后,请你回答:(1)五层的“宝塔”的最下层包含多少个小三角形?(2)整个五层“宝塔”一共包含多少个小三角形?(3)从第(1)到第(10)的十个“宝塔”,共包含多少个小三角形?例3 下面的图形表示由一些方砖堆起来的“宝塔”.仔细观察后,请你回答:(1)从上往下数,第五层包含几块砖?(2)整个五层的“宝塔”共包含多少块砖?(3)若另有一座这样的十层宝塔,共包含多少块砖?习题六1.观察图6—4中的点群,请回答:(1)方框内的点群包含多少个点?(2)第10个点群中包含多少个点?(3)前十个点群中,所有点的总数是多少?2.观察下面图6—5中的点群,请回答:(1)方框内的点群包含多少个点?(2)推测第10个点群中包含多少个点?(3)前10个点群中,所有点的总数是多少?3.观察图6—6中的点群,请回答:(1)方框内的点群包含多少个点?(2)推测第10个点群包含多少个点?(3)前十个点群中,所有点的总数是多少?4.图6—7所示为一堆砖.中央最高一摞是10块,它的左右两边各是9块,再往两边是8块、7块、6块、5块、4块、3块、2块、1块.问:(1)这堆砖共有多少块?(2)如果中央最高一摞是10O块,两边按图示的方式堆砌,问这堆砖共多少块?5.图6—8所示为堆积的方砖,共画出了五层.如果以同样的方式继续堆积下去,共堆积了10层,问:(1)能看到的方砖有多少块?(2)不能看到的方砖有多少块?第七讲找规律(二)例1仔细观察下面的图形,找出变化规律,猜猜在第3组的右框空白格内填一个什么样的图?例2按顺序仔细观察图7—5、7—6的形状,猜一猜第3组的“?”处应填什么图?例3观察图7—7的变化,请先回答:在方框(4)中应画出怎样的图形?再答按(1)、(2)、(3)、……的顺序数下去,第(10)个方框中是怎样的图形?例4观察图7—10的变化,请先回答:第(4)、(8)个图中,黑点在什么地方?第(10)、(18)个图中,黑点在什么地方?习题七1.仔细观察图7—14,找找变化规律,猜猜在第3组的空白格内填一个什么样的图?2.仔细观察图7—15,找找变化规律,猜猜在第3组的空白格内填一个什么样的图?3.仔细观察图7—16,找找变化规律,猜猜在第3组的空白格内填一个什么样的图?4.按顺序仔细观察下列图形,猜一猜第3组的“?”处应填什么图?5.按顺序仔细观察下列图形,猜一猜第3组的“?”处应填什么图?6.按顺序仔细观察下列图形,猜一猜第3组的“?”应填什么图?7.按顺序仔细观察下列图形,猜一猜第3组的“?”应填什么图?8.仔细观察下列图形的变化,请先回答:①在方框(4)中应画出怎样的图形?②再按(1)、(2)、(3)、……的顺序数下去,第(10)个方框是怎样的图形?9.仔细观察下列图形的变化,请先回答:①在方框(4)中应画出怎样的图形?②再按(1)、(2)、(3)、……的顺序数下去,第(10)个方框是怎样的图形?第八讲找规律(三)数学家看问题,总想找规律.我们学数学,也要向他们学习.找规律,要从简单的情况着手,仔细观察,得到启示,大胆猜想,找出一般规律,还要进行验证,最后还需要证明(在小学阶段不要求同学们进行证明).例1沿直尺的边缘把纸上的两个点连起来,这个图形就叫做线段.这两个点就叫线段的端点,如图8—1—1所示.不难看出,线段也可以看成是直线上两点间的部分.如果一条直线上标出11个点,如图8—1—2所示,任何两点间的部分都是一条线段,问共有多少条线段.例2如图8—2中(1)~(5)所示两条直线相交只有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,……那么,11条直线相交最多有多少交点?例3如图8—4所示,一张大饼,切1刀最多切成2块,切2刀最多切成4块,切3刀最多切成7块,……问切10刀最多切成多少块?习题八1.如图8—6所示,直线上有13个点,任意两点间的部分都构成一条线段,问共构成多少条线段?2.如图8—7所示,两条直线最多有一个交点,三条直线最多有三个交点,四条直线最多有六个交点,……,问十三条直线最多有几个交点?3.图8—8所示为切大饼示意图,已知切1刀最多切成2块,切2刀最多切成4块,切3刀最多切成7块,……,问切12刀最多切成多少块?4.如图8—9所示,将自然数从小到大沿三角形的边成螺旋状,排列起来,2在第一个拐弯处,4在第二个拐弯处,7在第三个拐弯处,……,问在第十个拐弯处的自然数是几?5.如图8—10所示为切大饼的示意图.切一刀只有一种切法,切两刀有2种切法,切三刀有4种切法,……,问切十一刀有多少种切法(规定:三刀或三刀以上不能切在同一点上,如图8—11所示)?第九讲填图与拆数填图是一种运算游戏,它要求把一些数字按照一定的规则填进各类图形.这不仅可以提高运算能力,而且更能促使你积极地去思考问题、分析问题,使你的智力得到更好地发展.例1请你把1、2、3这三个数填在图9.1中的方格中,使每行、每列和每条对角线上的三个数字之和都相等.例2请把1~9九个数字填入图9—5中,要求每行、每列和每条对角线上三个数的和都要等于15.例3 如下面图9—9所示有八张卡片.卡片上分别写有1、2、3、4、5、6、7、8八个数.现在请你重新按图 9—10进行排列,使每边三张卡片上的数的和等于:①13,②15.例4 图9—13是由八个小圆圈组成的,每个小圆圈都有直线与相邻的小圆圈相接连.请你把1、2、3、4、5、6、7、8八个数字分别填在八个小圆圈内,但相邻的两个数不能填入有直线相连的两个小圆圈(例如,你在最上头的一个小圆圈中填了5,那么4和6就不能填在第二层三个小圆圈中了).习题九1.在图9—15,9—16中,只能用图中已有的三个数填满其余的空格,并要求每个数字必须使用3次,而且每行、每列及每条对角线上的三个数之和都必须相等.2.把10、12、14这三个数填在图9—17的方格中,使每行、每列和每条对角线上的三个数之和都相等.3.在图9—18中,三个圆圈两两相交形成七块小区域,分别填上1~7七个自然数,在一些小区域中,自然数3、5、7三个数已填好,请你把其余的数填到空着的小区域中,要求每个圆圈中四个数的和都是15.4.与第3题的图相似,只是已经把1、4、6三个数填好,请你继续把图9—19填满.5.图9—20中有三个大圆,在大圆的交点上有六个小圆圈.请你把1、2、3、4、5、6六个数分别填在六个小圆圈里,要求每个大圆上的四个小圆圈中的数之和都是14.6.图9—21是由四个三角形组成的,每个三角形上都有三个小圆圈.请你把1、2、3、4、5、6、7、8、9这九个数填在九个小圆圈中,让每个三角形上的三个数之和都是15.7.图9—22是由四个扁而长的圆圈组成的,在交点处有8个小圆圈.请你把1、2、3、4、5、6、7、8这八个数分别填在8个小圆圈中.要求每个扁长圆圈上的四个数字的和都等于18.十讲有些数学题,要求把符合条件的算式或得数全部找出来;若漏掉一个,答案就不对.做这种题,特别强调有秩序的思考.例1 从2个5分硬币、5个2分硬币、10个1分硬币中,拿出1角钱来,有多少种不同的拿法?例2 5个茶杯的价钱分别是9角、8角、6角、4角和3角,3个茶盘的价钱分别是7角、5角和2角;如果一个茶杯配一个茶盘,一共可以配成多少种不同价钱的茶具?例3 将无法区分的7个苹果放在三个同样的盘子里,允许有的盘子空着不放.问共有多少种不同的放法?例4把一个整数表示成若干个小于它的自然数之和,通常叫做整数的分拆.问整数4有多少种不同的分拆方式?例5 邮局门前共有5级台阶.若规定一步只能登上一级或两级,问上这个台阶共有多少种不同的上法?习题十1.现有5分币一枚,2分币三枚,1分币六枚,若从中取出6分钱,有多少种不同的取法?2.从1个5分,4个2分,8个1分硬币中拿出8分钱,你能想出多少种不同的拿法?3.把3个无法区分的苹果放到同样的两个抽屉里,有多少种不同的放法?4.把4个苹果放到同样的2个抽屉里,有多少种不同的放法?5.整数6有多少种不同的分拆方式?6.用分别写着1,2,3的三张纸片,可以组成多少个不同的三位数?7.一个盒中装有七枚硬币,两枚1分的,两枚5分的,两枚1角的,一枚5角的,每次取出两枚,记下它们的和,然后放回盒中.如此反复地取出和放回,那么记下的和至多有多少种不同的钱数?8.一个外国小朋友手中有4张3分邮票和3张5分邮票.请你帮他算一算,他用这些邮票可以组成多少种不同的邮资?第十一讲考虑所有可能情况(二)例1象右边竖式那样十位数字和个位数字顺序相颠倒的一对二位数相加之和是99,问这样的两位数共有多少对?例2 一些十位数字和个位数字相同的二位数可以由十位数字和个位数字不同的两个二位数相加得到,如12+21=33(人们通常把12和21这样的两个数叫做一对倒序数).问在100之内有多少对这样的倒序数?例3 规定:相同的字母代表同一个数字,不同的字母代表不同的数字.请问,符合下面的算式的数字共有多少组?例4 把整数10分拆成三个不同的自然数之和共有多少种不同的分拆分式?例5将1、2、3、4、5填入下图11-1的五个空格中,使横行和竖行的三个数之和相等.问共有多少种不同的填法?习题十一1.想一想,下面算式中的△和□中,各有多少对不同的填法?2.见下式,满足下式的两个二位数,共有多少对?3.见图11—5,将1、2、3、4、5、6六个数填在下图中的黑点处,使每条线的三个数之和相等,共有多少种不同的填法?4.把整数20分拆成不大于9的三个不同的自然数之和,有多少种不同的分拆方式?5.把整数19分拆成不大于9的三个不同的自然数之和,有多少种不同的分拆方式?6.十位数字大于个位数字的二位数共有多少个?7.两个整数之积是144,差为10,求这两个数.8.三个不完全相同的自然数的乘积是24.问由这样的三个数所组成的数组有多少个?9.(1,1,8)是一个和为10的三元自然数组.如果不考虑顺序,那么和为10的三元自然数组有多少个[注意:“不考虑顺序”的意思是指如(1,1,8)与(1,8,1)是相同的三元自然数组]?第十二讲仔细审题解数学题很关键的一步是审题.如果把题目看错了,或是把题意理解错了,那样解题肯定是得不出正确的答案来的.什么叫审题?扼要地讲,审题就是要弄清楚:未知数是什么?已知数是什么?条件是什么?有一种类型的数学题叫“机智题”.在这一讲要通过解这种题体会如何审题.例1①树上有5只小鸟,飞起了1只,还剩几只?②树上有5只小鸟,“叭”地一声,猎人用枪打下来1只,树上还剩几只?例2 要把一个篮子里的5个苹果分给5个孩子,使每人得到1个苹果,但篮子里还要留下一个苹果,你能分吗?例3两个父亲和两个儿子一起上山捕猎,每人都捉到了一只野兔.拿回去后数一数一共有兔3只.为什么?例4 一个小岛上住着说谎的和说真话的两种人.说谎人句句谎话,说真话的人句句是实话.假想某一天你去小岛探险,碰到了岛上的三个人A、B和C.互相交谈中,有这样一段对话:A说:B和C两人都说谎;B说:我没有说谎;C说:B确实在说谎.小朋友,你能知道他们三个人中,有几个人说谎,有几个人说真话吗?例5 如图12—5,三根火柴棍可以组成一个等边三角形,再加三根火柴棍,请你组成同样大小的四个等边三角形.例6一笔画出由四条线段连接而成的折线把九个点串起来,你能做到吗?(见图12—7).习题十二1.①一个学生花2角钱买了2个练习本,花5角钱能买几个练习本?②在上学的路上2个学生拾到了2角钱,问5个学生捡到多少钱?2.桌上放着一堆糖果,两个母亲和两个女儿,还有一个外祖母和一个外孙女,每人拿了一块,这堆糖果就被拿完了,而这堆糖只有3块.这是为什么?3.天上飞着几只大雁:两只在后,一只在前;一只在后,两只在前;一只在两只中间,三只排成一条线.请你猜猜看,天上共有几只雁?4.小强带了5元钱上街,他到书店买了3本书,应付一元五角钱,可是售货员找给他五角钱,你说售货员一定错了吗?5.一栋大楼内有60盏灯,关掉其中的一半后,还剩下多少盏灯?6.大海中有一个小岛,小岛上住着的100名妇女中有一半人只戴一只耳环.余下的妇女中一半人戴两只耳环,另一半人不戴耳环.问这100名妇女共戴有多少只耳环?7.有一人一天读20页书,第三天因病没读,其他日子都按计划读了书.问第十二天他读了多少页书?8.一家文具店卖某种文具,文具的价钱是:五个是2元,五十个是3元,而五百个、五千个、五万个都是3元.问五十万个是几元?9.王老师有一个孩子,李老师也有一个孩子,两位老师共有多少个孩子?10.一个长方形,剪掉一个角时,剩下的部分还有几个角?11.图中12—10正方体形的纸盒六个面的正中都有一个洞口,旁边放着三根圆木棍,洞口的直径能容棍子通过去.请你将三根木棍从三个洞口穿到另外三个洞口,而且每根棍子穿好后就不再拔出来,你能做得到吗?12.一家冷饮店规定,喝完汽水后,用4个空汽水瓶可以换1瓶汽水.老师带着32个学生进店后,他只买了24瓶汽水.问每个学生能喝到一瓶汽水吗?13.两条直线垂直相交,可以组成4个直角,如图12—11所示,那么三根直线相交时最多能组成多少个直角呢?14.图12—12有12个点.请你用一笔画出由五条线段连接成的折线,把12个点串起来.15.图12—13有16个点,请你用一笔画出由六条线段连接成的折线,把16个点串起来.第十三讲猜猜凑凑有些数学题可以用猜猜凑凑的方法求出答案.猜,很难一次猜中;凑,也不一定凑得准.那不要紧,再猜再凑,对于比较简单的问题,最后总能凑出答案来.数学家说,猜猜凑凑也是一种数学方法,它的正式的名字叫“尝试法”.有时,它还是一种极为有效的方法,数学上的有些重大的发现往往都是大数学家们大胆地猜出来的.猜,要大胆;凑,要细心.要知道猜的对不对,还要根据题目中的条件进行检验.例1小明心中想到三个数,这三个数的和等于这三个数的积,你知道小明想的三个数都是什么吗?例3 一些老人去赶集,买了一堆大鸭梨,一人一梨多一梨,一人两梨少两梨,问几个老人几个梨?例4 100个和尚分100个馒头,大和尚每人分3个馒头,小和尚3人分1个馒头,恰好分完.问大和尚、小和尚各多少人?例5 甲、乙、丙三个小朋友在操场跑步.甲2分钟跑一圈,乙3分钟跑一圈,丙5分钟跑一圈.如果他们三人同时从同一起点起跑,问多少分钟后他们三人再次相遇?。

六年级奥数专题 计数方法(学生版)

计数方法,掌握常见的计数方法,会使用这些方法来解决问题最简单的计数问题,只需一一列举就可以;复杂的计数问题则需要借助排列与组合的相关知识予以解决.一般地,从n 个不同的元素中,任取m(m ≤n)个不同的元素,按照一定的顺序排成一列,叫做从n 个不同元素中任取m 个元素的一个排列.我们主要来研究满足某种条件的排列的个数.相同的排列应满足:它们所含的元素均相同;它们的顺序也一样.一般地,从n 个不同元素中取出m 个元素的排列的个数称为从n 个不同元素中取出m 个元素的排列数,记作:m n A (m ≤n).从n 个元素中取出m 个元素排成一排,有多少种排法,是从n 个元素中取出m 个元素的排列数.这个问题可以看成有m 个位置,从n 个元素中取m 个元素放到m 个位置中,可分m 个步骤:第①步:第1个位置有n 种选择;第②步:第2个位置有n-1种选择;第③步:第3个位置有n-2种选择;……第m 步:第m 个位置有n-m+1种选择.由乘法原理:m n A = n ×(n- 1)×(n- 2)×…×(n-m+1).——乘积中共有m 项特别地,当m=n 时,()1...21m n n n A A n n ==⨯-⨯⨯叫做n 个元素的全排列数.1×2×3×…×n 称为n 的阶乘,记作n!因此()!!m n n A n m =- (m ≤n). 排列数乘积形式的公式:m n A =n ×(n- 1)×(n- 2)×…×(n-m+1).排列数阶乘形式的公式:()!!m n n A n m =- (m ≤n).有时我们只需从若干元素中取出一些就可以了,这种问题称为组合问题,组合问题与排列问题的区别就是:组合问题是将元素取出即可,不需排序,而排列问题是取出后要进行排序.一般地,从n 个不同元素中任取m(m ≤n)个不同的元素并成一组,叫做从n 个不同元素中取出,n 个元素的组合.从n 个不同元素中,每次取出m 个元素的组合总数,叫做从n 个不同元素中取出m 个元素的组合数,记作m n C (m ≤n).从n 个元素中取出m 个元素的排列问题可以看成分两步完成:第①步:从n 个元素中取出m 个元素,这时有多少种取法?实际上就是从n 个元素中取出m 个元素的组合数m n C ;第②步:对取出的m 个元素进行排列,排法数就是m m A .由乘法原理可知:m m m n n m A C A =⨯,因此,m m n n m mA C A =. 将排列数公式代人得:()()().1...1.1...3.2.1m n n n n m C m m --+=-或 ()!!!m n n C n m m =- 常用的计数方法有:分类枚举、插板、整体、递推、排除、概率等等。

完整版一年级奥数知识点

一年级数学奥数指导姓名:1一年级奥数知识点分类一、排队问题二、多种选择三、找规律——数字四、找规律——图形五、植树问题六、锯木材七、速算与巧算(一)八、速算与巧算(二)九、数数与计数(一)十、数数与计数(二)——数图形十一、填数与拆数十二、自然数串趣十三、单数与双数十四、分组与组式十五、不等与排序十六、综合练习2排队问题1、小动物们排成一排去春游,小猴子的前方有10 只小动物,后边有21 只小动物,参加春游的小动物一共有多少只?2、小朋友站成一排做操,小林的左侧有12 个小朋友,右侧有 17 个小朋友,这一排一共有多少个小朋友?3、妈妈排队买菜,妈妈的前方有14 个人,后边有 15 个人,排队买菜的一共有多少人?4、一队小朋友排队上车,一共有16 个小朋友,小明的前方有 5 个小朋友,小明的后边有几个小朋友?5、有 17 个不一样颜色的气球摆成一排,红色气球的左侧有7 个气球,红色气球的右侧有几个气球?6、一队小朋友一共有21 人,从后往前数,小明是第9 个,小明的前方有几个小朋友?7、一排宿舍共有 23 间,从左往右数,王老师的宿舍是第7 间,王老师宿舍的右侧还有几间?8、小朋友排成一队做操,小华的左侧有8 个小朋友,小亮的右侧有 5 个小朋友,小亮在小华的左侧,并且与小华相邻,排队做操的一共有多少个小朋友?9、小朋友排成一队做操,小明的左侧有8 个小朋友,小红的右侧有 5 个小朋友,小明在小红的左侧,小明和小红之间还有 3 个小朋友,排队做操的一共有多少个小朋友?3二、多种选择1、小华从学校到汽车站有 2 条路可走,从汽车站到图书室有 1 条路可走,小华从学校到汽车站搭车去图书室,有几种不一样的走法?2、从小强家到小红家有 3 条路能够走,从小红家到老师家有 2 条路能够走,那么,小强先到小红家,再和小红一块到老师家,有几种不一样的走法?3、从小明家道学校有3 条路可走,从学校到公园有 1 条路可走,小明从家经过学校到公园,有几种不一样的走法?4、丽丽从家到书店有 3 条路可走,从书店到电影院有 2 条路可走,丽丽从家到书店再到电影院,有几种不一样的走法?5、小狗、小猴、小兔 3 只小动物排队,有几种不一样的排法?6、小明、小丽、小红 3 个小朋友排成一行,有几种不一样的排法?7、小军、小华、小明 3 个小朋友进行跳棋比赛,每 2 个小朋友要赛一次,一共要赛几次?8、小丽、小红、小方、小强 4 个小朋友进行乒乓球比赛,比赛前每 2 个小朋友都要握一次手,他们一共要握多少次手?4三、找规律——数字一、找规律填数字1、 2 ,4 ,6 , 8,(),12,(),162、15,12,9 ,(),33、 5 ,10 ,15 , 20,(),()4、 5 ,6 ,11, 17, 28,()5、 1 ,3 ,4 , 7 , 11 ,(),()6、15,25,35,(),(),65, 757、90,(),(),60, 50,(),()8、11,22, 33,(),(),66,()9、1, 3, 6,10,(),(),2810、(1,2),( 3, 5),(5, 8),(7,11),(,)11、(1,9),( 3, 7),(2,8),( 4,),(,5)二、简单的推理1、已知:□ +○ =12,□-2=6 ,那么:□ =_○=_2、已知:□ - ○ =8,○+3=5,那么:□ =_○=_3、已知:○ +○ +□=17,□+□=6,那么:□ =_○ =_4、已知:○ +○ +○+□=15,□ +□ =6,那么:□ =_○=_5、已知:○ +○+□+□=22,○ +○ =10那么:□ =_○=_二、填一填5找规律——图形4、5、67、8、6植树问题1、花坛的一头到另一头,一共种了4 棵小树,每相邻 2 棵小树相距 5 米,这个花坛长多少米?2、同学们在一段马路的一边种树,从马路的一头到另一头一共种了 6 棵树,每相邻 2 棵树之间相距 4 米,这段马路一共长多少米?3、教室的墙上从一头到另一头,一共挂了 6 个气球,每相邻两个气球之间相距 1 米,教室的墙长多少米?4、一栋楼房一共长20 米,在楼房前从左往右一共植了 6 棵树,你能知道每相邻 2 棵树之间相距多少米?5、学校的教课楼长18 米,从这头到那头一共植7 棵树,每相邻 2 棵树之间相隔多少米?6、5 个小朋友手拉手围成一圈做游戏,假如每相邻 2 个小朋友之间相隔 1 米,围成的圆圈一共长多少米?7、在花坛的四周每隔 4 米植一棵树,一共植了8 棵树,这个花坛的四周一共长多少米?8、圆形游泳池四周每隔3 米植一棵树,一共植了 6 棵树,这个圆形游泳池的四周一共长多少米?9、一根 6 米长的竹竿,每隔一米做一个标志,一共需要做多少个标志?7锯木材1、一根木材每锯一次需要 4 分钟,将这根木材锯成了 3 段,一共需要多少分钟?2、一根木材长 10 米,每 2 米锯成一段,需要锯多少次?3、一根绳索每打一个结需要 3 分钟,将这根绳索用结分红 5 部分,一共需要多少分钟?4、一位工人师傅将一根木材锯成了5 段用了 8 分钟,那么这个工人师傅每锯一次需要几分钟?5、爸爸将一根木材聚成了 4 段,用了 9 分钟,爸爸每锯一次需要几分钟?6、小红将一张纸条撕成 6 段用了 10 秒,小红每撕一次要用多长时间?7、工人师傅将一根钢管截成 3 段用了 6 分钟,工人师傅要将此外一根钢管截成 6 段,需要多长时间?8、小红家住在 6 楼,她从 1 楼走到 6 楼,需要走几层?9、小丽家住在 5 楼,小丽从 1 楼走到 2 楼用了 10 秒,那么小红从 1 楼走到 5 楼需要多少秒?10、小刚家住在6楼,他每上一层楼要用8 秒,那么小刚从 1 楼走到 6 楼,要用多少秒?8七、速算与巧算(一)1、计算(凑十法)1+2+3+4+5+6+7+8+9+102、计算(凑整法)1+3+5+7+9+11+13+15+17+19 2+4+6+8+10+12+14+16+18+202+13+25+44+18+37+56+753、计算(用已知求未知)1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+204、计算(改变运算次序)(带着“+”、“ - ”号迁居)10-9+8-7+6-5+4-3+2-11-2+3-4+5-6+7-8+9-10+11习题1. 13+14+15+16+17+252.2+3+4+5+15+16+17+18+203.21+22+23+24+25+26+27+28+29 4.5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20 5. 22-20+18-16+14-12+10-8+6-4+2-06.10-20+30-40+50-60+70-80+90八、速算与巧算(二)1.三个小朋友分 5 糖。

高斯小学奥数五年级下册含答案第14讲_数论相关的计数

第十四讲数论相关的计数在前面的学习中,我们学习了解决计数问题的一些基本方法,包括:枚举法、树形图、分类讨论、加法原理和乘法原理、排列与组合等.计数问题是多种多样的,它经常与其他的知识联系在一起,比如几何、数论、数字谜等等.今天让我们来研究一下结合了数论知识的计数问题.例1.恰好能同时被6,7,8,9整除的四位数有多少个?「分析」大家还记得公倍数怎么求吗?练习1、恰好能同时被4,5,6整除的三位数有多少个?例2.用1、2、3、4、5、7这6个数字各一次组成六位数,并且使这个六位数是11的倍数,有多少种不同的方法?「分析」根据11的整除特性,通过分析奇位数字和与偶位数字和,再结合本题的已知条件可以获得解题的线索.练习2、用1,2,3,4各一次组成四位数,使得它是11的倍数,有多少种不同的方法?例3.从1~10这10个数中选出2个数,请问:(1)要使这2个数的乘积能被3整除,一共有多少种不同的选法?(2)要使这2个数的和能被3整除,一共有多少种不同的选法?「分析」(1)两个数的乘积能被3整除,那么这两个数中至少有一个能被3整除.如何选取才能保证选到3的倍数呢?(2)要考虑两个数的和是否能被3整除,只需要考虑每个数除以3的余数的情况,那么怎样的两个数相加才能被3整除呢?练习3、从1~12这12个数中选出2个数,请问:(1)要使这2个数的乘积能被3整除,一共有多少种不同的选法?(2)要使这2个数的和能被3整除,一共有多少种不同的选法?例4.如果称能被8整除或者含有数字8的自然数为“吉利数”,那么在1至200这200个自然数中有多少个“吉利数”?「分析」这道题目可以从两方面入手,8的倍数和含有数字8的数,注意其中重复的情况.练习4、在1至200这200个自然数中,含有数字9或者能被9整除的有多少个?前面几个例题都是计数与整除相结合的题目.而除了整除之外,与数字相关的问题也属于数论的范畴,下面我们来看两道与数字有关的计数问题.例5.有一种“上升数”,这些数的数字从左往右依次增大,将所有的四位“上升数”按从小到大的顺序排成一行:1234,1235,1236,…,6789.请问:此列数中的第100个数是多少?「分析」数字从左往右依次增大的数是“上升数”,那么四位“上升数”一共有多少个呢?显然,不能将前100个“上升数”都写出来,那怎么才能方便的计算出第100个数呢?例6.一个正整数,如果从左到右看和从右到左看都是一样的,那么称这个数为“回文数”.例如:1331,7,202,66都是回文数,而220则不是回文数.请问:六位回文数有多少个?五位回文数又有多少个?五位的回文数中,有多少个是4的倍数?「分析」“回文数”一定是左右对称的,不妨从左往右分析,一旦左面的一个数字确定,右面一定有一个数字和其相同.回文联数学当中有回文数,在文学当中也有回文联.回文联,它是我国对联修辞奇葩(pā)中的一朵.用回文形式写成的对联,既可顺读,也可倒读,不仅它的意思不变,而且颇具趣味.兹举数例如下.其一:河南省境内有一座山名叫鸡公山,山中有两处景观:“斗鸡山”和“龙隐岩”.有人就此作了一副独具慧眼的回文联:斗鸡山上山鸡斗龙隐岩中岩隐龙其二:厦门鼓浪屿鱼脯浦,因地处海中,岛上山峦叠峰,烟雾缭绕,海淼淼水茫茫,远接云天.于是,一副饶有趣味的回文联便应运而生:雾锁山头山锁雾天连水尾水连天其三:清代,北京城里有一家饭馆叫“天然居”,乾隆皇帝曾就此作过一副有名的回文联:客上天然居居然天上客上联是说,客人上“天然居”饭馆去吃饭.下联是上联倒着念,意思是没想到居然像是天上的客人.乾隆皇帝想出这副回文联后,心里挺得意.即把它当成一个联,向大臣们征对下联,大臣们面面相觑,无人言声.只有大学士纪晓岚即席就北京城东的一座有名的大庙——大佛寺,想出了一副回文联:人过大佛寺寺佛大过人上联是说,人们路过大佛寺这座庙.下联是说,庙里的佛像大极了,大得超过了人.纪学士的下联,想得挺不错.这副回文联放到乾隆皇帝的一块,就组成一副如出一口的新回文联了:客上天然居居然天上客人过大佛寺寺佛大过人其四:湛江德邻里有一副反映邻里之间友好关系,鱼水深情的回文联,至今传颂不衰:邻居爱我爱居邻鱼傍水活水傍鱼作业1.1~100中,7的倍数有多少个?除以7余2的数有多少个?2.从1~15中,选出2个数,使它们的和是3的倍数,共有多少种选法?3.用1、2、3、4、5、8、9组成不重复的七位数,其中有多少个能被11整除?4.如果把三位的“上升数”从小到大排列一下,如123、124、…,那么第20个上升数是多少?5.有一类六位数,组成每个数的六个数字互不相同,并且每个数中任意两个相邻的数字组成的两位数都能被3整除.这类六位数共有多少个?第十四讲 数论相关的计数例题:例7. 答案:18详解:一个数能被6,7,8,9整除,即是6,7,8,9的倍数.6,7,8,9的最小公倍数为504,所有满足条件的数都是504的倍数.999950419423÷=,故1~9999中共有19个数是504的倍数.9995041495÷=,故1~999中共有1个数是504的倍数.则四位数中有19118-=个数是504的倍数.即能同时被6,7,8,9整除的四位数有18个.例8. 答案:72详解:用1,2,3,4,5,7各一次组成六位数,六个数字的和为22.若为11的倍数,则奇位和与偶位和的差只能为0.奇位填1,3,7,偶位填2,4,5,考虑到1,3,7可以互换,2,4,5可以互换,故共有3333A A 36⨯= 种填法.同理奇位填2,4,5,偶位填1,3,7,也有36种填法,共72种填法.例9. 答案:(1)24;(2)15详解:(1)若两个数的乘积是3的倍数,则其中至少有一个数是3的倍数.1~10中是3的倍数的有3,6,9这3个数,不是3的倍数的有7个.分两种情况:<1>两个数中只有一个是3的倍数,有1137C C 21⨯=种选法;<2>两个数均为3的倍数,有23A 3=种选法.共有24种选法.另解:排除法:不加任何条件选两个数的方式减去,没有3的倍数的情况,22107C -C 24=;(2)将1~10这10个数按除以3的余数不同进行分类.除以3余0的有(3,6,9), 除以3余1的有(1,4,7,10),除以3余2的有(2,5,8).若两数之和为3的倍数,分两种情况:<1>两个数除以3均余0.有23C 3=种选法.<2>其中一个数除以3余1,另一个数除以3余2.有1143C C 12⨯=种选法.共有31215+=种选法.例10. 答案:56详解:可以将题目条件分成两部分,先看能被8整除的数,200825÷=,因此能被8整除的数有25个.再看含有数字8的数,我们可以从反面考虑较为方便,即看不含有数字8的数有多少个.百位可以选0或1(百位选0,表示其为两位数),十位可以选除8以外的9个数,个位也可选除8以外的9个数,共有299162⨯⨯=个数不含有数字8.0~199共有200个数,含有数字8的有20016238-=个.考虑到有些数既能被8整除,又含有数字8,这样的数有8,48,88,128,168,以及80和184,共7个数.因此吉利数有2538756+-=个.例11. 答案:3479详解:若上升数的首位为1,剩下的3位可以从2~9中选,且顺序一定,有38C 56=种选法,即首位为1的上升数有56个.同理,若首位为2,剩下的3位可以从3~9中选,有37C 35=种选法,即首位为2的上升数有35个.再考虑首位为3的上升数,依次为3456,3457,3458,3459,3467,3468,3469,3478,3479.即第100个上升数为3479.例12. 答案:900;900;200详解:六位“回文数”应为abccba 的形式,a 有1~9这9种选择,b 有0~9这10种选择,c 有0~9这10种选择,由乘法原理这样的数共有91010900⨯⨯=个.五位“回文数”应为abcba 的形式,a 有1~9这9种选择,b 有0~9这10种选择,c 有0~9这10种选择,由乘法原理这样的数共有91010900⨯⨯=个. 若回文数为4的倍数,则末两位为4的倍数,可为04,08,12,16,……,96共24个数,除去20,40,60,80这四个不满足条件的数,共有20种选择.考虑到c 有0~9这10种选择,故共有2010200⨯=个五位回文数是4的倍数.“练习:1. 答案:15简答:4、5、6的最小公倍数是60,三位数中60的倍数有99960115÷-≈个.2. 答案:8简答:用1,2,3,4各一次组成四位数,四个数字的和为10.若为11的倍数,则奇位和与偶位和的差只能为0.奇位填1,3,偶位填2,4,考虑到1,3,可以互换,2,4,可以互换,故共有224⨯=种填法.同理奇位填2,4,偶位填1,3,也有4种填法,共8种填法.3. 答案:38;22简答:解法同例3.4. 答案:55简答:先看能被9整除的数,2009222÷=,因此能被9整除的数有22个.再看含有数字9的数,仍可从反面考虑,即看不含有数字9的数有多少个.百位可以选0或1(百位选0,表示其为两位数),十位可以选除9以外的9个数,个位也可选除9以外的9个数,共有299162⨯⨯=个数不含有数字9.0~199共有200个数,含有数字9的有20016238-=个.考虑到有些数既能被9整除,又含有数字9,这样的数有9,99,189,90,198,共5个数.因此含有数字9或者能被9整除的有2238555+-=个.作业6. 答案:14,15简答:1007142÷=,7的倍数有14个;100298-=,98714÷=,14115+=.除以7余2的有15个.7. 答案:35简答:1~15中,除以3余0、余1和余2的都有5个.和为3的倍数,那么两数可能是余1+余2或者余0+余0.第一种有5525⨯=种选法,第二种有25C 10=种选法,一共有35种选法.8. 答案:432简答:能被11整除,说明这个七位数奇数位之和与偶数位之和的差是11的倍数.而奇数位之和与偶数位之和的和是123458932++++++=,那么奇数位之和与偶数位之和可以都是16,或者是27和5,后面这种情况不可能.偶数位有3个数字,和为16可能是952++,943++,853++.那么一共可以组成4343A A 3432⨯⨯=个能被11整除的七位数.9. 答案:157简答:前两位为12的上升数有7个,前两位为13的上升数有6个,前两位为14的上升数有5个.那么第19个上升数是156,第20个上升数是157.10. 答案:72简答:如果首位数字除以3余0,那么其余的所有数字也都除以3余0,这样的话一定会重复,这样的六位数不存在.如果首位数字除以3余1,那么后面的数字除以3的余数依次是2、1、2、1、2.这样的六位数有3333A A 36⨯=个.如果首位数字除以3余2,这样的六位数也有36个.一共有72个.。

一年级奥数天天练-题目

一年级奥数天天练-题目一年级奥数天天练题目1. 难度:★★★★小学一年级奥数天天练:简单的推理孙、钱、李分别是三位老师的姓,根据下面三句话,请同学们猜一猜,三位老师各姓什么。

(1)甲不姓孙。

(2)姓钱的不是丙。

(3)甲和乙正在听姓李的老师讲课。

2.难度:★★★★★小学一年级奥数天天练:简单的推理有三个同样的立方体,每个立方体的六个面上分别写着“天“、“宇“、“学“、“校“、“优“、“秀“。

根据下面三个图形,找出“宇“和“秀“的对面是什么。

3. 难度:★★★★小学一年级奥数天天练:奇数与偶数傍晚开电灯,小虎淘气,一连拉了7下开关。

请你说说这时灯是亮了还是没亮?那么,拉8下呢?拉9下呢?你都能知道灯是亮还是不亮吗?4.难度:★★★★★小学一年级奥数天天练:奇数与偶数一队小朋友表演球操,每人都拿着一个球,其中拿篮球的比拿排球的多1人,拿排球的比拿足球的多1人。

如果拿足球的人数是奇数,这队小朋友的人数是奇数还是偶数? 5. 难度:★★★★ 小学一年级奥数天天练:间隔趣题在一条长15米的小路上从头到尾每隔5米栽一棵树,要栽多少棵树?6.难度:★★★★★小学一年级奥数天天练:间隔趣题一个正方形花坛四周长40米,每隔5米摆一盆月季花,四个角都摆,一共需要多少盆月季呢?7. 难度:★★★★小学一年级奥数天天练:多1少1把一根钢管截成10段,每截一次的时间为1分钟,共要几分钟截完?8.难度:★★★★★小学一年级奥数天天练:多1少1甲乙两人比赛爬楼梯,甲跑到4层楼时,乙恰好跑到3层楼,照这样计算,甲跑到16层楼时,乙跑到几层楼?9. 难度:★★★★小学一年级奥数天天练:排序用三张数字卡片4、7、0,可以排出多少个不同的三位数?其中最大的比最小的大多少?10.难度:★★★★★ 小学一年级奥数天天练:排序全区六所小学举行足球赛,每个学校派出一个代表队,要求规定每两个校队之间都要赛一场,问一共要赛多少场?11. 难度:★★★★小学一年级奥数天天练:拼图形请用一个正五边形和五个大小相等的等腰三角形拼成一个“五角星“(等腰三角形底边边长与五边形边长相等)12.难度:★★★★★小学一年级奥数天天练:数数与计数一个小组的小学生共有5人,已知他们都做了语文作业或数学作业。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.数一数,填一填
6.数一数下面物体中各有几个小 正方体.

)个 (
)个

) 个
7.数一数下面物体中各有几个小 正方体.

)个

)个
Hale Waihona Puke • 鼓楼的钟打点报时,5点钟打5下需要4秒钟。 问中午12点时打12下需要几秒钟?
• 1、有一本书,小华第一天看了2页,以后 每一天都比前一天多看2页,第4天看了多 少页?
• 2、桌子上有三盘桃子,第一盘比第三盘多 3只,第三盘比第二盘少5只。问:哪盘桃 子最少?
• 3、 • 13个小朋友玩"老鹰抓小鸡"的游戏,已经抓 住了5只"小鸡",还有几只没抓住?
• 20个小朋友排成一队去春游。从排头往后 数,小刚是第9个;从排尾往前数,小莉是 第16个,问小刚和小莉中间有几个人?
• 例2 小朋友在一段马路的一边种树。每隔1 米种一棵,共种了11棵,问这段马路有多 长?
• 把一根粗细一样的木头锯成5段,需要4分 钟。 • ①如果把这根木头锯成10段,需要几 分钟? • ②如果把这根木头锯成100段,需要几 分钟?
• 7. 找出下面的数列的规律并填空.
• 1,1,2,3,5,8,13,( ),( ),55, 89
2. 0、3、6、9、12、( )、( )
• 9. 小动物们举行动物运动会,在长跑比赛 中有4只动物跑在小松鼠的前面,有3只动 物跑在小松鼠的后面,一共有几只动物参 加长跑比赛?
三、数图形
• 1.数平面图形:
• 9.给下列图形,再添加( 就能组成一个大正方体.
)个小正方体,
• 10.数一数下面物体中各有几个小正方体.
11.数一数下面物体中各有几个小 正方体.
• 12.数一数,下图中一共有( )个正方体. • A.6个 B.7个 C.8个
• 3.摆一摆,数一数.下面每个图形分别是由 几个小正方体组成的.
一、我会动脑筋
• 小朋友排队,小红前面4个人,后面3个人, 问这队共有几个人?
• 2、排好队,来报数, • 正着报数我报七, • 倒着报数我报九, • 一共多少小朋友?
• 例3 • 少先队员排成队去参观科技馆。从排头数 起刘平是第20个;从排尾数起,张英是第 23个。已知刘平的前一个是张英。问这队 少先队员共有多少人?
• 6.用正方体摆成下图,数一数一共有几个小 正方体,其中几个能看见,几个看不见?
一共( )个 看见( )个 看不见( )个 个
一共( )个 看见( )个 看不见( )个
一共( )个 看见( )个 看不见( )
7.数一数下面每个立体图形各有 几个小正方体.
8.数一数,下面的立体图形是由 几个小正方体搭成的?
• 1.下图有(
)个正方形?
• 2.下图有(
)个长方形?
• 3.下图有(
)个三角形?
• 4.数图形:(
)个长方形

)个正方形
• .数立体图形注意: • 一层一层数,每一层都不能遗漏被挡住的 个数. • 认真思考,结果要用算式表达出来.
• 5.数一数下面的图形各由几个小正方体组成, 并画出从它们的正面看到的形状.
• 4、海盗抓小孩去无人岛,一共抓了15个小 孩,他让小孩排队报数,第一次把报单数 的孩子都送去了无人岛,接着让剩下的孩 子报数,又把报单数的孩子送去了无人岛, 把其他孩子放回了家。问强盗放多少个孩 子回家?
• 5、 • 5只兔子和4只猫一样重,那么一只兔重还 是一只猫重?
• 6、小明把一根木棍锯成2段需要2分钟,那 么依照这样的速度,把一根木棍据成3段需 要多少分钟?
相关文档
最新文档