山东省淄博市2012年中考数学真题试题
2012淄博市中考数学试题答案及评分标准

淄博市2012年初中学业考试数学试题(A卷)参考答案及评分标准评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.每小题只给出一种或两种解法,对考生的其它解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题(本大题共12小题,第1~3小题每题3分,第4~12小题每题4分,共45分.错选、不选或选出的答案超过一个,均记零分):题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D A C D D B A C D A B B二、填空题(本大题共5小题,每小题4分,共20分):13.2-;14.70;15.122-或;16.3;17.如110,个位或十位上的数字有一个为0,其余两个数字相等且不为0.三、解答题(本大题共7小题,共55分):18.(本题满分6分)解:方程两边都乘以(1)x-,得22(1)x x-=-,…………………………………………………3分解得0x=,………………………………………………………5分检验:当0x=时1x-≠0,0x=是原方程的解.……………… 6分19.(本题满分6分)证明:∵ABCD是平行四边形,∴A F∥CE,……………………………………………………3分∵AF=CE,∴四边形AECF 是平行四边形. ………………………………6分20.(本题满分8分)解:(1)将这7个数由小到大排列为:12.87 12.88 12.91 12.92 12.93 12.95 12.97 …………2分 所以这7个成绩的中位数是12.92(秒); ……………………3分 极差是12.97−12.87=0.1(秒).…………………………………4分 (2) 方法一:__12.9712.8712.9112.8812.9312.9212.957x ++++++=≈12.92(秒)……………………………………8分方法二:__0.070.030.010.020.030.020.0512.907x -+-+++=+≈12.92(秒).21.(本题满分8分)解:(1)抛物线的对称轴为1x =-………………………………………2分 (2)……………………………………………………………6分(3)…………8分22.(本题满分9分) 解:由25204x x --=,得212951(1),,422x x x -===-,……………3分 当152x =是29(2)04x k x -++=的根时, 21119204x x kx --+=,11404kx -+=,x … −7 −5 −3 −1 1 35…y … −9−4 −1−1−4 −9 …yxO 115722k =,75k =………………………………………………………6分 当212x =-是29(2)04x k x -++=的根时,22229204x x kx --+=, 21404kx -+=, 1722k -=,7k =-. …………………………………………………9分 23.(本题满分9分) 解:(1)当G 与D 重合时,∵四边形ABCD 是矩形,AC ,BG 是矩形ABCD 对角线,BG ⊥AC ,∴四边形ABCD 是正方形,∴x =4…………………………2分(2) 方法一:∵四边形ABCD 是矩形,BG ⊥AC ,∴∠ABF +∠CBF =90°,∠ACB +∠CBF =90°,∴∠ACB =∠ABF ,∴△ABC ∽△F AB ,…………………………………………4分∴AF ABAB BC=, ∵F 为AD 中点,∴AF =2 ,2,224xx x ==………………………5分 ∵F 为AD 中点. 由对称性得,BF =CF . ……………………………………… …6分 ∵AF ∥BC ,∴△AEF ∽△CEB ,…………………………………………8分 ∴12EF AF EB BC ==, 在Rt △CFE 中,sin ∠ECF =13EF EF CF FB ==.…………………9分 方法二:连接BD ,∵F 为AD 中点,四边形ABCD 是矩形. 由对称性得∠FBD =∠FCA ,AB =GD ∵AC ⊥BG∴∠F AE +∠AFE =∠FGD +∠GFDA B C D E F G (第23题)∵∠AFE =∠GFD ∴∠F AE =∠FGD ∴△AFC ∽△GBD∴AC CFBG BD=∵AC =BD ,BG =2CF ∴222AC CF = 22162(4)x x +=+ 22x =……………5分 以下同法一 24.(本题满分9分)解:(1) 设反比例函数解析式为xky =,∵点E (3,4)在该函数图象上, ∴43k=,12=k ,反比例函数的解析式为xy 12=;…………2分(2)∵正方形AOCB 的边长为4,点D 在线段BC 上, ∴点D 的横坐标为4, ∵点D 在xy 12=的图象上, ∴D (4,3), ∵直线b x y +-=21过点D , ∴5,3421==+⨯-b b ,直线的解析式为521+-=x y . ∵点F在直线521+-=x y 上,纵坐标为4,∴2,4521==+-x x ,F (2,4).…………………………………4分(3) ∠AOF 21=∠EOC ………………………………………………5分证明:取CB 的中点G ,连接OG ,连接EG 并延长交x 轴于点M , ∵四边形AOCB 是正方形,点F (2,4),∴点F ,G 分别是AB ,BC 的中点, ∴AO =CO ,AF =CG ,∠OAF =∠OCG =90°,∴△OAF ≌△OCG ,∴∠AOF =∠COG , ∵BG =CG ,∠B =∠GCM =90°,∠EGB =∠MGCA B y D E F G∴△EGB ≌△MGC∴EG =MG ……………………………7分在R t △OAE 中,∵2222243,5OE OA AE OE =+=+=, OM =OC +CM =OC +BE =4+1=5,∴OM =OE ,即△OEM 是等腰三角形, ∴OG 是∠EOC 的平分线, ∠AOF =∠COG 21=∠EOC .………9分。
【初中数学】山东省淄博市2012年初中毕业班数学模拟试题(共7份) 人教版5

绝密★启用前 试卷类型:A数 学 试 题注意事项:1.答题前请考生务必在答题卡及试卷的规定位置将自己的姓名、考试号、考试科目、座号等内容填写(涂)准确.2.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷(1—4页)为选择题,44分;第Ⅱ卷(5—12页)为非选择题,76分;共120分.考试时间为120分钟.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑.如需改动,须先用橡皮擦干净,再改涂其它答案.第Ⅱ卷须用蓝黑钢笔或圆珠笔直接答在试卷上.考试时,不允许使用计算器.4.考试结束后,由监考教师把第Ⅰ卷和第Ⅱ卷及答题卡一并收回.第Ⅰ卷(选择题 共44分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上.第1~4小题每题3分,第5~12小题每题4分,错选、不选或选出的答案超过一个,均记0分.1.如图,在数轴上点A 表示的数可能是(A )-2.6 (B )2.6 (C )-1.5 (D )1.52.不等式组⎪⎩⎪⎨⎧<≥-32,03x x 的所有整数解之和是(A )9(B )12 (C )15 (D )183.图中有四条互相不平行的直线所截出的七个角.关于这七个角的度数关系,下面选项中正确的是(A )∠2=∠4+∠7 (B )∠3=∠1+∠6 (C )∠1+∠4+∠6=180° (D )∠2+∠3+∠5=360°A4.已知2111=-b a ,则ba ab -的值是 (A )21(B )-21(C )2 (D )-2 5.对于反比例函数y =x1,下列说法正确的是 (A )图象经过点(1,-1) (B )图象位于第二、四象限 (C )图象是中心对称图形(D )当x <0时,y 随x 的增大而增大6.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为(A )600m (B )500m (C )400m (D )300m7.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是(A )两个外离的圆 (B )两个外切的圆 (C )两个相交的圆 (D )两个内切的圆 8.下列二次函数中,图象以直线x =2为对称轴,且经过点(0,1)的是(A )y =(x -2)2+1(B )y =(x +2)2+1 (C )y =(x -2)2-3(D )y =(x +2)2-39.如图,A ,B 是数轴上的两点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离不大于2的概率是(A )21 (B )32主视方向(C )43 (D )5410.坐标平面上有一个轴对称图形,A (3,-25),B (3,-211)两点在此图形上且互为对称点.若此图形上有一点C (-2,-9),则C 的对称点坐标为(A )(-2,1)(B )(-2,-23) (C )(-23,-9) (D )(8,-9)11.下列四个结论中,正确的是(A )方程x +x 1=-2有两个不相等的实数根 (B )方程x +x 1=1有两个不相等的实数根(C )方程x +x 1=2有两个不相等的实数根(D )方程x +x1=a (其中a 为常数,且∣a ∣>2)有两个不相等的实数根12.如图,在四边形ABCD 中,E ,F 分别是AB ,AD 的中点,若EF =2,BC =5,CD =3,则tan C 等于(A )43 (B )34(C )53(D )54第Ⅱ卷(非选择题 共76分)二、填空题:本题共5小题,满分20分,只要求填写最后结果,每小题填对得4分.13.若2x =是关于x 的方程2310x m +-=的解,则m 的值为 . 14.若822=-n m ,且2m n -=,则=+n m .15.如图,已知△ABC 是等边三角形,点B ,C ,D ,E 在同一直线上,且C G =CD ,DF =DE ,则∠E = 度.16.已知a ,b 为两个连续的整数,且a <28<b ,则a +b = .17.如图,在△ABC 中,AB =BC ,将△ABC 绕点B 顺时针旋转α度,得到△A 1BC 1,A 1B 交AC 于点E ,A 1C 1分别交AC ,BC 于点D ,F ,下列结论:①∠CDF =α,②A 1E =CF ,③DF =FC ,④AD =CE ,⑤A 1F =CE .其中正确的是___________________(写出正确结论的序号).三、解答题:本大题共7小题,共56分.解答要写出必要的文字说明、证明过程或演算步骤.18.(本题满分6分)计算:()()2201113132π-⎛⎫-+-⨯- ⎪⎝⎭19.(本题满分6分)我市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按每千米另收费.在我市,甲乘出租车走了11千米付了18.5元,乙乘出租车走了23千米付了36.5元.请你算一算出租车的起步价是多少元?以及超过3千米后每千米的车费是多少元?20.(本题满分8分)丁丁要制作一个风筝,想在一个矩形材料中裁剪出如图阴影所示的梯形翅膀,请你根据图中的数据帮助丁丁计算出BE ,CD 的长度.(精确到个位,3≈1.7)21.(本题满分8分)班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(图1).(1)请根据图1,回答下列问题:①这个班共有 名学生,发言次数是5次的男生有 人、女生有 人; ②男、女生发言次数的中位数分别是 次和 次.(2)通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数的扇形统计图如图2所示.求第二天发言次数增加3次的学生人数和全班增加的发言总次数.22.(本题满分8分)如图,在梯形ABCD 中,AD ∥BC ,AB =DC ,过点D 作DE ⊥BC,垂足为E ,并延长DE 至F ,使EF=DE .联结BF ,CF ,AC .(1)求证:四边形ABFC 是平行四边形;(2)如果DE 2=BE ·CE ,求证四边形ABFC 是矩形.23.(本题满分10分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A ,B ,C . (1)请完成如下操作:①以点O 为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②适当选用直尺、圆规画出该圆弧所在圆的圆心D 的位置(不写作法,保留痕迹),并连结AD ,CD . (2)请在(1)的基础上,完成下列问题:①写出点的坐标:C 、D ; ②⊙D 的半径= (结果保留根号);③若扇形ADC 是一个圆锥的侧面展开图,则该圆锥的底面面积为 (结果保留π); ④若已知点E (7,0),试判断直线EC 与⊙D 的位置关系并说明你的理由. 24.(本题满分10分)已知直线3+-=x y 分别交x 轴、y 轴于A ,B 两点,线段OA 上有一动点P 由原点O 向点A 运动,速度为每秒1个单位长度,过点P 作x 轴的垂线交直线AB 于点C ,设运动时间为t 秒.线段OA 上另有一动点Q 由点A 向点O 运动,它与点P 以相同速度同时出发,当点P 到达点A 时两点同时停止运动(如图).(1)直接写出t =1秒时C ,Q 两点的坐标;(2)若以Q,C,A为顶点的三角形与△AOB相似,求t的值.参考答案及评分标准说明:1、答案若有问题,请阅卷老师自行修正.2、各解答题只提供其中一种解法的评分标准,若出现不同的解法可参照各题的解法评分标准给分. 一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上.第1~4小题每题3分,第5~12小题每题4分,错选、不选或选出的答案超过一个,均记0分. ABCDC BDCDA DB二、填空题:本题共5小题,满分20分,只要求填写最后结果,每小题填对得4分. 13.-1; 14.4; 15.15; 16.11; 17.①②⑤;三、解答题:本大题共7小题,共56分.解答要写出必要的文字说明、证明过程或演算步骤. 18.(本题满分6分)原式=3+(-1)⨯1-3+4 …………………………5分 =3. …………………………6分 19.(本题满分6分)解:设这种出租车的起步价是x 元,超过3千米后每千米收费y 元,根据题得()()⎩⎨⎧=-+=-+5.363235.18311y x y x , …………………………3分解得⎩⎨⎧==5.15.6y x . …………………………5分所以这种出租车的起步价是6.5元,超过3千米后每千米收费1.5元. ……6分 20.(本题满分8分)在Rt △BEC 中,∠BCE =30º,EC =51,∴BE =317≈29,AE =63. ………3分 在Rt △AFD 中,∠F AD =45º,FD =F A =51,∴CD =63—51≈12. ………6分 ∴CD =12cm ,BE =29cm . …………………………8分 21.(本题满分8分)(1)①40;2;5. …………………………3分 ②4;5. …………………………5分 (2)发言次数增加3次的学生人数为4人. …………………………7分 全班增加的发言总次数为52次. …………………………8分 22.(本题满分8分)(1)连接BD . …………………………1分 ∵DE ⊥BC ,EF =DE ,∴BD =BF ,CD =CF . …………2分 ∵在梯形ABCD 中,AD //BC ,AB =DC , ∴四边形ABCD 是等腰梯形.∴BD =AC . …………3分 ∴AC =BF ,AB =CF .∴四边形ABFC 是平行四边形. ………4分F E D CB A(2)∵DE2 =BE·CE,EF=DE,∴EF2 =BE·CE.∴EF CEBE EF=.……6分又∵DE⊥BC,∴∠CEF=∠FEB=90°.∴△CEF∽△FEB.∴∠CFE=∠FBE.∵∠FBE+∠BFE=90°,∴∠CFE+∠BFE=90°.即∠BFC=90°.…………7分由(1)知四边形ABFC是平行四边形,∴四边形ABFC是矩形.…………8分23.(本题满分10分)(1)①如图.…………………………1分②如图.…………………………3分(2)①C(6,2),D(2,0).…………………………5分②…………………………6分③54π.…………………………8分④相切.…………………………9分理由:∵CD=CE DE=5,∴CD2+CE2=25=DE2.∴∠DCE=90°即CE⊥CD.∴CE与⊙D相切.…………………………10分24.(本题满分10分)(1)①C(1,2),Q(2,0).…………………………2分②由题意得:P(t,0),C(t,-t+3),Q(3-t,0),分两种情形讨论:情形一:当△AQC∽△AOB时,∠AQC=∠AOB=90°,∴CQ⊥OA.……………4分∵CP⊥OA,∴点P与点Q重合,OQ=OP,即3-t=t,∴t=1.5.………………6分情形二:当△ACQ∽△AOB时,∠ACQ=∠AOB=90°,∵OA=OB=3,∴△AOB是等腰直角三角形,∴△ACQ是等腰直角三角形.…………………………8分∵CP⊥O A,∴AQ=2CP,即t=2(-t+3),∴t=2.…………………………10分∴满足条件的t的值是1.5秒或2秒.。
山东省淄博市城南中学2012年初中数学学业水平考试模拟试题 人教新课标版

某某省某某市城南中学2012年学业水平考试数学模拟试题第Ⅰ卷(选择题共45分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的, 请把正确的选项涂在答题卡的相应位置上.第1~3小题,每小题3分;第4~12小题,每小题4分,错选、不选或选出的答案超过一个,均记0分.1. 计算-1-2的结果是 ( )(A)-1 (B)1 (C)-3 (D)32. 下列计算中,正确的是 ( ) (A)541-= (B)2a a = (C)824= (D)623= 3.下列运算正确的是 ( )(A)6332x x x =+ (B)8x ÷2x =4x (C) mnn m x x x = (D)()4520x x -=4. 不等式组10420x x ->⎧⎨-⎩,≤的解集在数轴上表示为 ()5. 方程组x y 12x y 5+=⎧⎨-=⎩的解是( ) (A)x 2y 1=⎧⎨=-⎩ (B)x 2y 3=-⎧⎨=⎩ (C)x 2y 1=⎧⎨=⎩ (D)x 1y 2=-⎧⎨=⎩6.用直角钢尺检查某一工件是否恰好是半圆环形,根据图所表示的情形,四个工件哪一个肯定是半圆环形( )1 02 (A).12 (B)1 02 (C)1 02(D)7.下列说法正确的是( )(A) 要调查人们对“低碳生活”的了解程度,宜采用普查方式 (B) 一组数据3,4,4,6,8,5的众数和中位数都是3 (C) 必然事件的概率是100%,随机事件的概率是50%(D) 若甲组数据的方差S 甲2=0.128,乙组数据的方差S 乙2=0.036;则乙组数据比甲组数据稳定8. 将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为 ( )(A) 45° (B) 60° (C) 75° (D) 85°9. 如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长为 ( )(A)32(B)23(C) 3(D) 610. 小明的父亲饭后出去散步,从家中出发走20分钟到一个离家900米的报亭看报10分钟后,用15分钟返回家,下列图中表示小明的父亲离家的距离y (米)与离家的时间x (分)之间的函数关系的是( )(A)(B)(C) (D)11. 反比例函数y=x6 与y=x 3在第一象限的图象如图所示,作一条平行于x 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为( ) A .23(B) 2 (C) 3 (D) 1 12.如图为菱形ABCD 与△ABE 的重迭情形,其中D 在BE 上.若AB=17,BD=16,AE=25,则DE 的长度为( )(A) 8 (B) 9 (C) 11 (D) 12第Ⅱ卷(非选择题共75分)二、填空题:本题共5小题,满分20分.只要求填写最后结果,每小题填对得4分.13. 二次函数21(2)12y x =---的顶点坐标是_____________.14. 某某移动经过11年多的不断发展,手机客户数量达到了380万,接近某某市总人口的90%,实现了近30倍增长的骄人业绩。
山东省淄博市2012年中考数学试题(含解析)

2012年山东淄博中考数学试题(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共45分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上.第1~3小题每题3分,第4~12小题每题4分,错选、不选或选出的答案超过一个,均记零分. 1.和数轴上的点一一对应的是【 】(A)整数 (B)有理数 (C)无理数(D)实数【答案】D 。
解析:本题考查的是数轴与实数的一一对应的关系。
2.要调查下面的问题,适合做全面调查的是【 】(A)某班同学“立定跳远”的成绩 (B)某水库中鱼的种类 (C)某鞋厂生产的鞋底承受的弯折次数 (D)某型号节能灯的使用寿命 【答案】A 。
解析:本题考查的是全面调查的适用情况。
3.下列命题为假命题的是【 】(A)三角形三个内角的和等于180° (B)三角形两边之和大于第三边(C)三角形两边的平方和等于第三边的平方(D)三角形的面积等于一条边的长与该边上的高的乘积的一半 【答案】C 。
解析:本题考查的是三角形的内角和定理、三角形的三边关系定理、勾股定理、三角形的面积计算公式。
4.若a b >,则下列不等式不一定成立的是【 】(A)a m b m +>+ (B)22a(m 1)b(m 1)+>+ (C)a b22-<-(D)22a b >【答案】D 。
解析:本题考查的是不等式的性质定理。
A a m b m +>+ 应用的是不等式的性质定理1,(B )22a(m 1)b(m 1)+>+ 应用的是不等式的性质定理2,(C )a b22-<-应用的是不等式的性质定理3,(D )22a b >分情况讨论,a ,b 同为正数成立,若同为负数或一正一负则不成立。
5.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是【 】(A)两条边长分别为4,5,它们的夹角为β (B)两个角是β,它们的夹边为4 (C)三条边长分别是4,5,5 (D)两条边长是5,一个角是β 【答案】D 。
2023年山东省淄博市中考数学真题试卷(解析版)

2023年山东省淄博市中考数学真题试卷及答案本试卷共8页,满分150分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将区县、学校、姓名、考试号、座号填写在答题卡和试卷规定位置,并核对条形码.2.选择题每小题选出答案后,用2B铅笔涂黑答题卡对应题目的答案标号;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.非选择题必须用0.5毫米黑色签字笔作答,字体工整、笔迹清晰,写在答题卡各题目指定区域内;如需改动,先划掉原来答案,然后再写上新答案.严禁使用涂改液、胶带纸、修正带修改.不允许使用计算器.4.保证答题卡清洁、完整,严禁折叠,严禁在答题卡上做任何标记.5.评分以答题卡上的答案为依据.不按以上要求作答的答案无效.一、选择题:本大题共10个小题,每小题4分,共40分.在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 的运算结果等于()A. 3B.C.D.【答案】B【解析】根据绝对值的性质:负数的绝对值等于它的相反数直接求解即可得到答案;解:由题意可得,,故选:B;【点拨】本题考查去绝对值符号,解题的关键是熟练掌握负数的绝对值等于它的相反数.2. 在如图所示的几何体中,其主视图、左视图和俯视图完全相同的是()A. B.C. D.【答案】D【解析】分别确定各几何体的三视图,从而得解.A. ,主视图、左视图和俯视图分别为长方形,长方形,长方形,三长方形大小不一定相同,故本选项不合题意;B. ,主视图、左视图和俯视图分别是长方形,长方形,圆,故本选项不合题意;C. ,主视图、左视图和俯视图分别是三角形,三角形,圆,故本选项不合题意;D. ,主视图、左视图和俯视图分别是圆,圆,圆,故本选项符合题意;故选:D【点拨】本题考查常见几何体的三视图;掌握常见几何体的三视图是解题的关键.3. 下列计算结果正确的是()A. B. C. D.【答案】A【解析】根据整式的加减运算法则,单项式乘以单项式的运算法则,单项式除以单项式的运算法则即可解答.解:∵与是同类项,∴,故项符合题意;∵与是同类项,∴,∴错误,故项不符合题意;∵,∴错误,故项不符合题意;∵,∴错误,故项不符合题意;故选.【点拨】本题考查了整式的加法法则,整式的减法法则,整式的乘法法则,整式的除法法则,掌握对应法则是解题的关键.4. 将含角的直角三角板按如图所示放置到一组平行线中,若,则等于()A. B. C. D.【答案】C【解析】由平行线的性质,得,由外角定理,得,可推证,从而求得.解:如图,∵,∴.∵,∴.∴.故选:C【点拨】本题考查平行线的性质,对顶角相等,三角形外角性质;由平行线的性质得到等角是解题的关键.5. 已知是方程的解,那么实数的值为()A. B. 2 C. D. 4【答案】B【解析】将代入方程,即可求解.解:将代入方程,得解得:故选:B.【点拨】本题考查分式方程的解,解题的关键是将代入原方程中得到关于的方程.6. 下列函数图象中,能反映的值始终随值的增大而增大的是( )A. B.C. D.【答案】C【解析】观察图象,由函数的性质可以解答.解:由图可知:A.函数值具有对称性.在对称轴的左侧y的值随x值的增大而增大,对称轴的右侧y的值随x值的增大而减小,该选项不符合题意;B.增减性需要限定在各个象限内,该选项不符合题意;C.图象是函数y的值随x值的增大而增大,该选项符合题意;D.图象在原点左侧是函数y的值随x值的增大而减小,该选项不符合题意;故选:C.【点拨】本题考查了二次函数图象,一次函数图象,正比例函数图象,反比例函数图象,准确识图并理解函数的增减性的定义是解题的关键.7. 为贯彻落实习近平总书记关于黄河流域生态保护和高质量发展的重要讲话精神,某学校组织初一、初二两个年级学生到黄河岸边开展植树造林活动.已知初一植树棵与初二植树棵所用的时间相同,两个年级平均每小时共植树棵.求初一年级平均每小时植树多少棵?设初一年级平均每小时植树棵,则下面所列方程中正确的是()A. B. C. D.【答案】D【解析】根据初一植树棵与初二植树棵所用的时间相同列式求解即可得到答案.解:由题意可得,,故选:D;【点拨】本题考查分式方程解决应用问题,解题的关键是找到等量关系式.8. “敬老爱老”是中华民族的优秀传统美德.小刚、小强计划利用暑期从,,三处养老服务中心中,随机选择一处参加志愿服务活动,则两人恰好选到同一处的概率是()A. B. C. D.【答案】B【解析】画出树状图展示所有9种等可能的结果数,找出两人恰好选择同一场所的结果数,然后根据概率公式求解.解:画树状图如图:共有9种等可能的结果数,其中两人恰好选择同一场所的结果数为3,∴明明和亮亮两人恰好选择同一场馆的概率,故选:B.【点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件或的结果数目,然后利用概率公式计算事件或事件的概率.9. 如图,是的内接三角形,,,是边上一点,连接并延长交于点.若,,则的半径为()A. B. C. D.【答案】A【解析】连接, 根据等腰三角形的性质得到, 根据等边三角形的性质得到,根据相似三角形的判定和性质即可得到结论.连接,∵,∴∴,∵,∴是等边三角形,∴,∵,,∴,,∴,∵,,,即的半径为,故选: .【点拨】本题考查了圆周角定理,等腰三角形的性质,等边三角形的判定和性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质度量是解题的关键.10. 勾股定理的证明方法丰富多样,其中我国古代数学家赵爽利用“弦图”的证明简明、直观,是世界公认最巧妙的方法.“赵爽弦图”已成为我国古代数学成就的一个重要标志,千百年来倍受人们的喜爱.小亮在如图所示的“赵爽弦图”中,连接,.若正方形与的边长之比为,则等于()A. B. C. D.【答案】A【解析】设的长直角边为a,短直角边为b,大正方形的边长为,小正方形的边长为x,由题意得,解得,即可求解.解:过点D作交的延长线于点N,由题意可得,两个正方形之间是4个相等的三角形,设的长直角边为a,短直角边为b,大正方形的边长为,小正方形的边长为x,即,,,由题意得,,解得,在中,,则,,则,∴,故选:A.【点拨】本题考查解直角三角形的应用、正方形的性质及勾股定理,确定A.b和x之间的关系是解题的关键.二、填空题:本大题共5个小题,每小题4分,共20分.11. 25的平方根是_____.【答案】±5【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根.∵(±5)2=25,∴25平方根是±5.【点拨】本题主要考查了平方根的意义,正确利用平方根的定义解答是解题的关键.12. 在边长为1的正方形网格中,右边的“小鱼”图案是由左边的图案经过一次平移得到的,则平移的距离是________.【答案】6【解析】确定一组对应点,从而确定平移距离.解:如图,点是一组对应点,,所以平移距离为6;故答案为:6【点拨】本题考查图形平移;确定对应点从而确定平移距离是解题的关键.13. 分解因式:2a2﹣8b2=________.【答案】【解析】先提取公因式2,再对余下的多项式利用平方差公式继续分解即可.2a2﹣8b2=2(a2﹣4b2)=2(a+2b)(a﹣2b).故答案为2(a+2b)(a﹣2b).【点拨】本题考查了提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次分解因式.14. 如图,在直线:上方的双曲线上有一个动点,过点作轴的垂线,交直线于点,连接,,则面积的最大值是________.【答案】3【解析】设,则,将三角形面积用代数式的形式表示出来,然后根据二次函数的最值,即可求解.解:依题意,设,则,则∴∵,二次函数图象开口向下,有最大值,∴当时面积的最大值是,故答案为:.【点拨】本题考查了二次函数的性质,反比例数与一次函数的性质,根据题意列出函数关系式是解题的关键.15. 如图,与斜坡垂直的太阳光线照射立柱(与水平地面垂直)形成的影子,一部分落在地面上,另一部分落在斜坡上.若米,米,斜坡的坡角,则立柱的高为________米(结果精确到米).科学计算器按键顺序计算结果(已取近似值)【答案】19.2米【解析】如图,过点D作,垂足为H,过点C作,垂足为G,则四边形为矩形,可得米,,.于是.解,得,从而(米),解中,(米).于是(米).解:如图,过点D作,垂足为H,过点C作,垂足为G,则四边形为矩形,∴米,.∴.∴.中,,(米).∴(米).中,,∴(米).∴(米).故答案为:19.2米.【点拨】本题考查解直角三角形;添加辅助线,构造直角三角形、矩形,从而运用三角函数求解线段是解题的关键.三、解答题:本大题共8个小题,共90分.解答要写出必要的文字说明、证明过程或演算步骤.16. 先化简,再求值:,其中,.【答案】;【解析】直接利用整式的混合运算法则化简进而合并得出答案.原式,当时,原式.【点拨】此题主要考查了整式的混合运算二次根式的运算,正确合并同类项是解题关键.17. 如图,在中,,分别是边和上的点,连接,,且.求证:(1);(2).【答案】(1)见解析(2)见解析【解析】(1)证明四边形是平行四边形即可;(2)用证明即可.(1)证明:四边形是平行四边形,,又.四边形是平行四边形.平行四边形对角相等(2)四边形是平行四边形,,,四边形是平行四边形,,,,在和中,,.【点拨】本题考查了平行四边形的性质和三角形全等的判定,熟练掌握平行四边形性质是解本题的关键.18. 若实数,分别满足下列条件:(1);(2).试判断点所在的象限.【答案】点在第一象限或点在第二象限【解析】运用直接开平方法解一元二次方程即可;解不等式求出解题,在分情况确定,的符号确定点所在象限解题即可.解:或,;,解得:;∴当,时,,,点在第一象限;当,时,,,点在第二象限;【点拨】本题考查点在平面直角系的坐标特征,解不等式,平方根的意义,利用不等式的性质判断点的坐标特征是解题的关键.19. 举世瞩目中国共产党第二十次全国代表大会于2022年10月在北京成功召开.为弘扬党的二十大精神,某学校举办了“学习二十大,奋进新征程”的知识竞赛活动.赛后随机抽取了部分学生的成绩(满分:100分),分为,,,四组,绘制了如下不完整的统计图表:组别成绩(:分)频数2060学生成绩频数分布直方图学生成绩扇形统计图根据以上信息,解答以下问题:(1)直接写出统计表中的________,________;(2)学生成绩数据的中位数落在________组内;在学生成绩扇形统计图中,组对应的扇形圆心角是________度;(3)将上面的学生成绩频数分布直方图补充完整;(4)若全校有1500名学生参加了这次竞赛,请估计成绩高于90分的学生人数.【答案】(1)40,80(2),72(3)见解析(4)1050【解析】(1)由题意知,共调查(人),根据,计算可得值,根据,计算求解即可;(2)根据中位数为第100,101位的数的平均数,进行判断即可,根据,计算求解即可;(3)补全统计图即可;(4)根据,计算求解即可.(1)解:由题意知,共调查(人),∴(人),∴(人),故答案为:40,80;(2)解:由题意知,中位数为第100,101位的数的平均数,∵,,∴中位数落在组内,∴,故答案为:,72;(3)解:补全条形统计图如下:【小问4详解】解:∵(人),∴估计成绩高于90分的学生人数为1050人.【点拨】本题考查了条形统计图,频数分布表,扇形统计图,中位数,圆心角,用样本估计总体.解题的关键在于从图表中获取正确的信息.20. 如图,直线与双曲线相交于点,.(1)求双曲线及直线对应的函数表达式;(2)将直线向下平移至处,其中点,点在轴上.连接,,求的面积;(3)请直接写出关于的不等式的解集.【答案】(1),(2)(3)【解析】将代入双曲线,求出的值,从而确定双曲线的解析式,再将点代入,确定点坐标,最后用待定系数法求直线的解析式即可;由平行求出直线的解析式为过点作交于,设直线与轴的交点为,与轴的交点为, 可推导出, 再由,求出则的面积数形结合求出x的范围即可.(1)将代入双曲线,∴,∴双曲线的解析式为,将点代入,∴,∴,将代入,,解得,∴直线解析式为;(2)∵直线向下平移至,∴,设直线的解析式为将点代入∴解得∴直线的解析式为∴过点作交于,设直线与轴的交点为,与轴的交点为,∴,∵,∴,∵,,,∵,,,∴的面积(3)由图可知时,【点拨】本题考查反比例函数的图象及性质,熟练掌握反比例函数的图象及性质,直线平移是性质,数形结合是解题的关键.21. 某古镇为发展旅游产业,吸引更多的游客前往游览,助力乡村振兴,决定在“五一”期间对团队*旅游实行门票特价优惠活动,价格如下表:购票人数(人)每人门票价(元)605040*题中的团队人数均不少于10人现有甲、乙两个团队共102人,计划利用“五一”假期到该古镇旅游,其中甲团队不足50人,乙团队多于50人.(1)如果两个团队分别购票,一共应付5580元,问甲、乙团队各有多少人?(2)如果两个团队联合起来作为一个“大团队”购票,比两个团队各自购票节省的费用不少于1200元,问甲团队最少多少人?【答案】(1)甲团队有48人,乙团队有54人(2)18【解析】(1)设甲团队有人,则乙团队有人,依题意得,,计算求解,然后作答即可;(2)设甲团队有人,则乙团队有人,依题意得,,计算求解即可.(1)解:设甲团队有人,则乙团队有人,依题意得,,解得,,∴(人),∴甲团队有48人,乙团队有54人;(2)解:设甲团队有人,则乙团队有人,依题意得,,解得,,∴甲团队最少18人.【点拨】本题考查了一元一次方程的应用,一元一次不等式的应用.解题的关键在于根据题意正确的列等式和不等式.22. 在数学综合与实践活动课上,小红以“矩形的旋转”为主题开展探究活动.(1)操作判断小红将两个完全相同的矩形纸片和拼成“L”形图案,如图①.试判断:的形状为________.(2)深入探究小红在保持矩形不动的条件下,将矩形绕点旋转,若,.探究一:当点恰好落在的延长线上时,设与相交于点,如图②.求的面积.探究二:连接,取的中点,连接,如图③.求线段长度的最大值和最小值.【答案】(1)等腰直角三角形(2)探究一:;探究二:线段长度的最大值为,最小值为【解析】(1)由,可知是等腰三角形,再由,推导出,即可判断出是等腰直角三角形,(2)探究一:证明,可得,再由等腰三角形的性质可得,在中,勾股定理列出方程,解得,即可求的面积;探究二:连接,取的中点,连接,取、的中点为、,连接,,,分别得出四边形是平行四边形,四边形是平行四边形,则,可知点在以为直径的圆上,设的中点为,,即可得出的最大值与最小值.(1)解:两个完全相同矩形纸片和,,是等腰三角形,,.,,,∵,∴,∴,,,,是等腰直角三角形,故答案为:等腰直角三角形;(2)探究一:,,,,,,,,,,,在中,,,解得,,的面积;探究二:连接,取的中点,连接,,取、的中点为、,连接,,,是的中点,,且,,,,,且,四边形是平行四边形,,,,,,,四边形是平行四边形,,,点在以为直径的圆上,设的中点为,,最大值为,最小值为.【点拨】本题考查四边形的综合应用,熟练掌握矩形的性质,直角三角形的性质,三角形全等的判定及性质,平行四边形的性质,圆的性质,能够确定H点的运动轨迹是解题的关键.23. 如图,一条抛物线经过的三个顶点,其中为坐标原点,点,点在第一象限内,对称轴是直线,且的面积为18(1)求该抛物线对应的函数表达式;(2)求点的坐标;(3)设为线段的中点,为直线上的一个动点,连接,,将沿翻折,点的对应点为.问是否存在点,使得以,,,为顶点的四边形是平行四边形?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.【答案】(1)(2)(3)存在,点的坐标为或或或【解析】(1)根据对称轴为直线,将点代入,进而待定系数法求解析式即可求解;(2)设,过点作轴交于点,过点作交于点,继而表示出的面积,根据的面积为,解方程,即可求解.(3)先得出直线的解析式为,设,当为平行四边形的对角线时,可得,当为平行四边形的对角线时,,进而建立方程,得出点的坐标,即可求解.(1)解:∵对称轴为直线,∴①,将点代入得,∴②,联立①②得,,∴解析式为;(2)设,如图所示,过点作轴交于点,过点作交于点,∴,,则,∴解得:或(舍去),(3)存在点,使得以,,,为顶点的四边形是平行四边形,理由如下:∵,∴,设直线的解析式为,∴,解得:,∴直线的解析式为,设,如图所示,当BP为平行四边形的对角线时,,,∵,∴,由对称性可知,,∴,∴解得:∴点的坐标为或如图3,当为平行四边形的对角线时,,,由对称性可知,,∴,∴,解得:或,∴点的坐标为或综上所述,点的坐标为或或或.【点拨】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,平行四边形的性质,轴对称的性质是解题的关键.。
淄博市中考数学试卷及答案(解析)

山东省淄博市中考数学试卷一、选择题(共12小题,每小题4分)1.(4分)(山东淄博)计算(﹣3)2等于()A.﹣9 B.﹣6 C. 6 D.9考点:有理数的乘方.分析:根据负数的偶次幂等于正数,可得答案.解答:解:原式=32=9.故选:D.点评:本题考查了有理数的乘方,负数的偶次幂是正数.2.(4分)(山东淄博)方程﹣=0解是()A.x=B.x=C.x=D.x=﹣1考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3x+3﹣7x=0,解得:x=,经检验x=是分式方程的解.故选B点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3.(4分)(山东淄博)如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6 B.8,5 C.52,53 D.52,52考点:频数(率)分布直方图;中位数;众数.专题:计算题.分析:找出出现次数最多的速度即为众数,将车速按照从小到大顺序排列,求出中位数即可.解答:解:根据题意得:这些车的车速的众数52千米/时,车速分别为50,50,51,51,51,51,51,52,52,52,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,55,55,中间的为52,即中位数为52千米/时,则这些车的车速的众数、中位数分别是52,52.故选D点评:此题考查了频数(率)分布直方图,中位数,以及众数,弄清题意是解本题的关键.4.(4分)(山东淄博)如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是()A.S1>S2>S3B.S3>S2>S1C.S2>S3>S1D.S1>S3>S2考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图,根据边角面积的大小,可得答案.解答:解:主视图的面积是三个正方形的面积,左视图是两个正方形的面积,俯视图是一个正方形的面积,S1>S3>S2,故选:D.点评:本题考查了简单组合体的三视图,分别得出三视图是解题关键.5.(4分)(山东淄博)一元二次方程x2+2x﹣6=0的根是()A.x1=x2=B.x1=0,x2=﹣2C.x1=,x2=﹣3D.x1=﹣,x2=3考点:解一元二次方程-公式法.分析:找出方程中二次项系数a,一次项系数b及常数项c,再根据x=,将a,b及c的值代入计算,即可求出原方程的解.解答:解:∵a=1,b=2,c=﹣6∴x====﹣±2,∴x1=,x2=﹣3;故选C.点评:此题考查了利用公式法求一元二次方程的解,利用公式法解一元二次方程时,首先将方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,当根的判别式大于等于0时,将a,b及c的值代入求根公式即可求出原方程的解.6.(4分)(山东淄博)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7 B. 3 C. 1 D.﹣7考点:代数式求值.专题:整体思想.分析:把x=1代入代数式求值a、b的关系式,再把x=﹣1代入进行计算即可得解.解答:解:x=1时,ax3﹣3bx+4=a﹣3b+4=7,解得a﹣3b=3,当x=﹣1时,ax3﹣3bx+4=﹣a+3b+4=﹣3+4=1.故选C.点评:本题考查了代数式求值,整体思想的利用是解题的关键.7.(4分)(山东淄博)如图,等腰梯形ABCD中,对角线AC、DB相交于点P,∠BAC=∠CDB=90°,AB=AD=DC.则cos∠DPC的值是()A.B. C. D.考点:等腰梯形的性质.分析:先根据等腰三角形的性质得出∠DAB+∠BAC=180°,AD∥BC,故可得出∠DAP=∠ACB,∠ADB=∠ABD,再由AB=AD=DC可知∠ABD=∠ADB,∠DAP=∠ACD,所以∠DAP=∠ABD=∠DBC,再根据∠BAC=∠CDB=90°可知,3∠ABD=90°,故∠ABD=30°,再由直角三角形的性质求出∠DPC的度数,进而得出结论.解答:解:∵梯形ABCD是等腰梯形,∴∠DAB+∠BAC=180°,AD∥BC,∴∠DAP=∠ACB,∠ADB=∠ABD,∵AB=AD=DC,∴∠ABD=∠ADB,∠DAP=∠ACD,∴∠DAP=∠ABD=∠DBC,∵∠BAC=∠CDB=90°,∴3∠ABD=90°,∴∠ABD=30°,在△ABP中,∵∠ABD=30°,∠BAC=90°,∴∠APB=60°,∴∠DPC=60°,∴cos∠DPC=cos60°=.故选A.点评:本题考查的是等腰梯形的性质,熟知等腰梯形同一底上的两个角相等是解答此题的关键.8.(4分)(山东淄博)如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+2考点:待定系数法求二次函数解析式;反比例函数图象上点的坐标特征.专题:计算题.分析:将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B坐标代入二次函数解析式求出b与c的值,即可确定出二次函数解析式.解答:解:将A(m,4)代入反比例解析式得:4=﹣,即m=﹣2,∴A(﹣2,4),将A(﹣2,4),B(0,﹣2)代入二次函数解析式得:,解得:b=﹣1,c=﹣2,则二次函数解析式为y=x2﹣x﹣2.故选A.点评:此题考查l待定系数法求二次函数解析式,以及反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.9.(4分)(山东淄博)如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D.若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙B.甲丙乙C.乙丙甲D.丙甲乙考点:正方形的性质;线段的性质:两点之间线段最短;比较线段的长短.分析:根据正方形的性质得出AB=BC=CD=AD,∠B=∠ECF,根据直角三角形得出AF>AB,EF>CF,分别求出甲、乙、丙行走的距离,再比较即可.解答:解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=90°,甲行走的距离是AB+BF+CF=AB+BC=2AB;乙行走的距离是AF+EF+EC+CD;丙行走的距离是AF+FC+CD,∵∠B=∠ECF=90°,∴AF>AB,EF>CF,∴AF+FC+CD>2AB,AF+FC+CD<AF+EF+EC+CD,∴甲比丙先到,丙比乙先到,即顺序是甲丙乙,故选B.点评:本题考查了正方形的性质,直角三角形的性质的应用,题目比较典型,难度适中.10.(4分)(山东淄博)如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A. 1 B. C. D. 2考点:勾股定理;线段垂直平分线的性质;矩形的性质.分析:本题要依靠辅助线的帮助,连接CE,首先利用线段垂直平分线的性质证明BC=EC.求出EC后根据勾股定理即可求解.解答:解:如图,连接EC.∵FC垂直平分BE,∴BC=EC(线段垂直平分线的性质)又∵点E是AD的中点,AE=1,AD=BC,故EC=2利用勾股定理可得AB=CD==.故选:C.点评:本题考查的是勾股定理、线段垂直平分线的性质以及矩形的性质,本题的关键是要画出辅助线,证明BC=EC后易求解.本题难度中等.11.(4分)(山东淄博)如图,直线AB与⊙O相切于点A,弦CD∥AB,E,F为圆上的两点,且∠CDE=∠ADF.若⊙O的半径为,CD=4,则弦EF的长为()A. 4 B.2C.5D. 6 考点:切线的性质.分析:首先连接OA,并反向延长交CD于点H,连接OC,由直线AB与⊙O相切于点A,弦CD∥AB,可求得OH的长,然后由勾股定理求得AC的长,又由∠CDE=∠ADF,可证得EF=AC,继而求得答案.解答:解:连接OA,并反向延长交CD于点H,连接OC,∵直线AB与⊙O相切于点A,∴OA⊥AB,∵弦CD∥AB,∴AH⊥CD,∴CH=CD=×4=2,∵⊙O的半径为,∴OA=OC=,∴OH==,∴AH=OA+OH=+=4,∴AC==2.∵∠CDE=∠ADF,∴=,∴=,∴EF=AC=2.故选B.点评:此题考查了切线的性质、圆周角定理、垂径定理以及勾股定理等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.12.(4分)(山东淄博)已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A. 6 B. 5 C. 4 D. 3考点:二次函数的性质.专题:计算题.分析:根据抛物线的顶点式得到抛物线的对称轴为直线x=h,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B都对称轴的距离可得到h<4.解答:解:∵抛物线的对称轴为直线x=h,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,∴x=h<4.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.二、填空题(共5小题,每小题4分,满分20分)13.(4分)(山东淄博)分解因式:8(a2+1)﹣16a=8(a﹣1)2.考点:提公因式法与公式法的综合运用.分析:首先提取公因式8,进而利用完全平方公式分解因式得出即可.解答:解:8(a2+1)﹣16a=8(a2+1﹣2a)=8(a﹣1)2.故答案为:8(a﹣1)2.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.14.(4分)(山东淄博)某实验中学九年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是108度.考点:扇形统计图.分析:首先计算出A部分所占百分比,再利用360°乘以百分比可得答案.解答:解:A所占百分比:100%﹣15%﹣20%﹣35%=30%,圆心角:360°×30%=108°,故答案为:108.点评:此题主要考查了扇形统计图,关键是掌握圆心角度数=360°×所占百分比.15.(4分)(山东淄博)已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形,你添加的条件是AD=DC.考点:菱形的判定;平行四边形的性质.专题:开放型.分析:根据菱形的定义得出答案即可.解答:解:∵邻边相等的平行四边形是菱形,∴平行四边形AB CD的对角线AC、BD相交于点O,试添加一个条件:可以为:AD=DC;故答案为:AD=DC.点评:此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键.16.(4分)(山东淄博)关于x的反比例函数y=的图象如图,A、P为该图象上的点,且关于原点成中心对称.△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a﹣1)x2﹣x+=0的根的情况是没有实数根.考点:根的判别式;反比例函数的性质.分析:由比例函数y=的图象位于一、三象限得出a+4>0,A、P为该图象上的点,且关于原点成中心对称,得出2xy>12,进一步得出a+4>6,由此确定a的取值范围,进一步利用根的判别式判定方程根的情况即可.解答:解:∵反比例函数y=的图象位于一、三象限,∴a+4>0,a>﹣4,∵A、P关于原点成中心对称,PB∥y轴,AB∥x轴,△PAB的面积大于12,∴2xy>12,即a+4>6,a>2∴a>2.∴△=(﹣1)2﹣4(a﹣1)×=2﹣a<0,∴关于x的方程(a﹣1)x2﹣x+=0没有实数根.故答案为:没有实数根.点评:此题综合考查了反比例函数的图形与性质,一元二次方程根的判别式,注意正确判定a的取值范围是解决问题的关键.17.(4分)(山东淄博)如图,在正方形网格中有一边长为4的平行四边形ABCD,请将其剪拼成一个有一边长为6的矩形.(要求:在答题卡的图中画出裁剪线即可)考点:作图—应用与设计作图;图形的剪拼.分析:如图先过D点向下剪出一个三角形放在平行四边形的左边,再在剪去D点下面两格的小正方形放在右面,就组成了一人矩形.解答:解:如图:点评:本题一方面考查了学生的动手操作能力,另一方面考查了学生的空间想象能力,重视知识的发生过程,让学生体验学习的过程.三、解答题(共7小题,共52分)18.(5分)(山东淄博)计算:•.考点:分式的乘除法.专题:计算题.分析:原式约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.19.(5分)(山东淄博)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.考点:平行线的性质.分析:根据垂直定义和邻补角求出∠3,根据平行线的性质得出∠2=∠3,代入求出即可.解答:解:∵AB⊥BC,∴∠ABC=90°,∴∠1+∠3=90°,∵∠1=55°,∴∠3=35°,∵a∥b,∴∠2=∠3=35°.点评:本题考查了垂直定义,平行线的性质的应用,注意:两直线平行,同位角相等.20.(8分)(山东淄博)节能灯根据使用寿命分成优等品、正品和次品三个等级,其中使用寿命大于或等于8000小时的节能灯是优等品,使用寿命小于6000小时的节能灯是次品,其余的节能灯是正品.质检部门对某批次的一种节能灯(共200个)的使用寿命进行追踪调查,并将结果整理成此表.(1)根据分布表中的数据,在答题卡上写出a,b,c的值;(2)某人从这200个节能灯中随机购买1个,求这种节能灯恰好不是次品的概率.寿命(小时)频数频率4000≤t≤5000 10 0.055000≤t<6000 20 a6000≤t<7000 80 0.407000≤t<8000 b 0.158000≤t<9000 60 c合计 200 1考点:频数(率)分布表;概率公式.分析:(1)由频率分布表中的数据,根据频率=频数÷数据总数及频数=数据总数×频率即可求出a、b、c的值;(2)根据频率分布表中的数据,用不是次品的节能灯个数除以节能灯的总个数即可求解.解答:解:(1)根据频率分布表中的数据,得a==0.1,b=200×0.15=30,c==0.3;(Ⅱ)设“此人购买的节能灯恰好不是次品”为事件A.由表可知:这批灯泡中优等品有60个,正品有110个,次品有30个,所以此人购买的节能灯恰好不是次品的概率为P(A)==0.85.点评:本题考查了读频数(率)分布表的能力和利用统计图获取信息的能力及古典概型的概率,用到的知识点:频率=频数÷数据总数,概率=所有出现的情况数与总数之比.21.(8分)(山东淄博)为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:档次每户每月用电数(度)执行电价(元/度)第一档小于等于200 0.55第二档大于200小于400 0.6第三档大于等于400 0.85例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各月电多少度?考点:二元一次方程组的应用.分析:某户居民五、六月份共用电500度,就可以得出每月用电量不可能都在第一档,分情况讨论,当5月份用电量为x度≤200度,6月份用电(500﹣x)度,当5月份用电量为x 度>200度,六月份用电量为(500﹣x)度>x度,分别建立方程求出其解即可.解答:解:当5月份用电量为x度≤200度,6月份用电(500﹣x)度,由题意,得0.55x+0.6(500﹣x)=290.5,解得:x=190,∴6月份用电500﹣x=310度.当5月份用电量为x度>200度,六月份用电量为(500﹣x)度,由题意,得0.6x+0.6(500﹣x)=290.5,300=290.5,原方程无解.∴5月份用电量为190度,6月份用电310度.点评:本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,分类讨论思想的运用,解答时由总价=单价×数量是关键.22.(8分)(山东淄博)如图,在直角坐标系中,点A的坐标是(0.3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形A OB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图),求证:△AOC≌△ABP;由此你发现什么结论?(2)求点C在x轴上移动时,点P所在函数图象的解析式.考点:一次函数综合题.分析:(1)由等边三角形的性质易证AO=AB,AC=AP,∠CAP=∠OAB=60°;然后由图示知∠CAP+∠PAO=∠OAB+∠PAO,即∠CAO=∠PAB.所以根据SAS证得结论;(2)利用(1)中的结论PB⊥AB.根据等边三角形的性质易求点B的坐标为B(,).再由旋转的性质得到当点P移动到y轴上的坐标是(0,﹣3),所以根据点B、P的坐标易求直线BP的解析式.解答:(1)证明:∵△AOB与△ACP都是等边三角形,∴AO=AB,AC=AP,∠CAP=∠OAB=60°,∴∠CAP+∠PAO=∠OAB+∠PAO,∴∠CAO=∠PAB,在△AOC与△ABP中,∴△AOC≌△ABP(SAS).∴∠COA=∠PBA=90°,∴点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°.故结论是:点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°;(2)解:点P在过点B且与AB垂直的直线上.∵△AOB是等边三角形,A(0,3),∴B(,).当点C移动到点P在y轴上时,得P(0,﹣3).设点P所在的直线方程为:y=kx+b(k≠0).把点B、P的坐标分别代入,得,解得,所以点P所在的函数图象的解析式为:y=x﹣3.点评:本题综合考查了待定系数法求一次函数解析式,旋转的性质,全等三角形的判定与性质等知识.解答(2)题时,求得点P位于y轴负半轴上的坐标是解题的关键.23.(9分)(山东淄博)如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD.连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.考点:相似三角形的判定与性质;等腰直角三角形;三角形中位线定理.分析:(1)根据等腰三角形的性质,可得AM是高线、顶角的角平分线,根据直角三角形的性质,可得∠EAB+∠EBA=90°,根据三角形外角的性质,可得答案;(2)根据三角形中位线的性质,可得MF与AC的关系,根据等量代换,可得MF与BD 的关系,根据等腰直角三角形,可得BM与NM的关系,根据等量代换,可得NM与BC 的关系,根据同角的余角相等,可得∠CBD与∠NMF的关系,根据两边对应成比例且夹角相等的两个三角形相似,可得答案.解答:(1)答:△BMN是等腰直角三角形.证明:∵AB=AC,点M是BC的中点,∴AM⊥BC,AM平分∠BAC.∵BN平分∠ABE,AC⊥BD,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∴∠MNB=∠NAB+∠ABN=(∠BAE+∠ABE)=45°.∴△BMN是等腰直角三角形;(2)答:△MFN∽△BDC.证明:∵点F,M分别是AB,BC的中点,∴FM∥AC,FM=AC.∵AC=BD,∴FM=BD,即.∵△BMN是等腰直角三角形,∴NM=BM=BC,即,∴.∵AM⊥BC,∴∠NMF+∠FMB=90°.∵FM∥AC,∴∠ACB=∠FMB.∵∠CEB=90°,∴∠ACB+∠CBD=90°.∴∠CBD+∠FMB=90°,∴∠NMF=∠CBD.∴△MFN∽△BDC.点评:本题考查了相似三角形的判定与性质,利用了锐角是45°的直角三角形是等腰直角三角形,两边对应成比例且夹角相等的两个三角形相似.24.(9分)(山东淄博)如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有无数个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由.考点:圆的综合题;三角形的外角性质;等边三角形的性质;勾股定理;矩形的判定与性质;垂径定理;圆周角定理;切线的性质.专题:综合题;探究型.分析:(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标;当点P在y轴的负半轴上时,同理可求出符合条件的点P的坐标.(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,然后结合切线的性质、三角形外角的性质、矩形的判定与性质、勾股定理等知识即可解决问题.解答:解:(1)以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2.在优弧AP1B上任取一点P,如图1,则∠APB=∠ACB=×60°=30°.∴使∠APB=30°的点P有无数个.故答案为:无数.(2)①当点P在y轴的正半轴上时,过点C作CG⊥AB,垂足为G,如图1.∵点A(1,0),点B(5,0),∴OA=1,OB=5.∴AB=4.∵点C为圆心,CG⊥AB,∴AG=BG=AB=2.∴OG=OA+AG=3.∵△ABC是等边三角形,∴AC=BC=AB=4.∴CG===2.∴点C的坐标为(3,2).过点C作CD⊥y轴,垂足为D,连接CP2,如图1,∵点C的坐标为(3,2),∴CD=3,OD=2.∵P1、P2是⊙C与y轴的交点,∴∠AP1B=∠AP2B=30°.∵CP2=CA=4,CD=3,∴DP2==.∵点C为圆心,CD⊥P1P2,∴P1D=P2D=.∴P2(0,2﹣).P1(0,2+).②当点P在y轴的负半轴上时,同理可得:P3(0,﹣2﹣).P4(0,﹣2+).综上所述:满足条件的点P的坐标有:(0,2﹣)、(0,2+)、(0,﹣2﹣)、(0,﹣2+).(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.①当点P在y轴的正半轴上时,连接EA,作EH⊥x轴,垂足为H,如图2.∵⊙E与y轴相切于点P,∴PE⊥OP.∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°.∴四边形OPEH是矩形.∴OP=EH,PE=OH=3.∴EA=3.∵∠EHA=90°,AH=2,EA=3,∴EH===∴OP=∴P(0,).②当点P在y轴的负半轴上时,同理可得:P(0,﹣).理由:①若点P在y轴的正半轴上,在y轴的正半轴上任取一点M(不与点P重合),连接MA,MB,交⊙E于点N,连接NA,如图2所示.∵∠ANB是△AMN的外角,∴∠ANB>∠AMB.∵∠APB=∠ANB,∴∠APB>∠AMB.②若点P在y轴的负半轴上,同理可证得:∠APB>∠AMB.综上所述:当点P在y轴上移动时,∠APB有最大值,此时点P的坐标为(0,)和(0,﹣).点评:本题考查了垂径定理、圆周角定理、勾股定理、等边三角形的性质、矩形的判定与性质,切线的性质、三角形外角性质等知识,综合性强.同时也考查了创造性思维,有一定的难度.构造辅助圆是解决本题关键.。
中考数学真题知识分类练习试卷:有理数(含答案)
有理数一、单选题1.【湖南省娄底市中考数学试题】的相反数是()A. B. C. - D.【答案】C2.【山东省德州市中考数学试题】3的相反数是()A. 3B.C. -3D.【答案】C分析:根据相反数的定义,即可解答.详解:3的相反数是﹣3.故选C.点睛:本题考查了相反数,解决本题的关键是熟记相反数的定义.3.【山东省淄博市中考数学试题】计算的结果是()A. 0B. 1C. )1D.【答案】A【解析】分析:先计算绝对值,再计算减法即可得.详解:=﹣=0,故选:A.点睛:本题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法则.4.【山东省潍坊市中考数学试题】( )A. B. C. D.【答案】B分析:根据绝对值的性质解答即可.详解:|1-|=.故选B.点睛:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.【江西省中等学校招生考试数学试题】)2的绝对值是A. B. C. D.【答案】B6.【浙江省金华市中考数学试题】在0)1))))1四个数中,最小的数是()A. 0B. 1C.D. )1【答案】D分析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.详解:∵-1<-<0<1,∴最小的数是-1,故选D.点睛:本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.7.【浙江省金华市中考数学试题】在0)1))))1四个数中,最小的数是()A. 0B. 1C.D. )1【答案】D8.【江苏省连云港市中考数学试题】地球上陆地的面积约为150 000 000km2.把“150 000 000”用科学记数法表示为()A. 1.5×108B. 1.5×107C. 1.5×109D. 1.5×106【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.详解:150 000 000=1.5×108,故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.【江苏省盐城市中考数学试题】盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C. D.【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|.10.n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将146000用科学记数法表示为:1.46×105.故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|.10.n为整数,表示时关键要正确确定a的值以及n的值.10.【湖北省孝感市中考数学试题】的倒数是()A. 4B. -4C.D. 16【答案】B分析:根据乘积是1的两个数互为倒数解答.详解:∵-×(-4)=1,∴的倒数是-4.故选:B.点睛:此题考查的知识点是倒数,关键掌握求一个数的倒数的方法.注意:负数的倒数还是负数.11.【安徽省中考数学试题】的绝对值是()A. B. 8 C. D.【答案】B【分析】根据绝对值的定义“一个数的绝对值是数轴上表示这个数的点到原点的距离”进行解答即可.【详解】数轴上表示数-8的点到原点的距离是8.所以-8的绝对值是8.故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.12.【重庆市中考数学试卷(A卷)】的相反数是()A. B. C. D.【答案】A【分析】根据只有符号不同的两个数互为相反数进行求解即可得.【详解】2与-2只有符号不同,所以2的相反数是-2.故选A.【点评】本题考查了相反数的定义,属于中考中的简单题13.【浙江省衢州市中考数学试卷】)3的相反数是()A. 3B. )3C.D. )【答案】A14.【浙江省绍兴市中考数学试卷】如果向东走记为,则向西走可记为()A. B. C. D.分析首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.详解:如果向东走2m时,记作+2m,那么向西走3m应记作−3m.故选C.点睛:考查了相反意义的量,相反意义的量用正数和负数来表示.15.【天津市中考数学试题】计算的结果等于()A. 5B.C. 9D.【答案】C分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.16.【山东省滨州市中考数学试题】若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A. 2+))2)B. 2)))2)C. ))2)+2D. ))2))2【答案】B17.【江苏省连云港市中考数学试题】)8的相反数是()A. )8B.C. 8D. )【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:-8的相反数是8,故选:C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.18.【江苏省盐城市中考数学试题】-的相反数是()A. B. - C. D.【答案】A分析:只有符号不同的两个数叫做互为相反数.详解:-的相反数是.故选:A.点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.19.【湖北省黄冈市中考数学试题】-的相反数是) )A. -B. -C.D.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:-的相反数是.故选C.点睛:本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.学科&网20.【四川省宜宾市中考数学试题】3的相反数是()A. B. 3 C. )3 D. ±【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:3的相反数是﹣3,故选C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.21.【广东省深圳市中考数学试题】260000000用科学计数法表示为( )A. B. C. D.【答案】B22.【四川省成都市中考数学试题】5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.1万=10000=104.详解:40万=4×105,故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.23.【天津市中考数学试题】今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B二、填空题24.【山东省德州市中考数学试题】计算:=__________)分析:根据有理数的加法解答即可.详解:|﹣2+3|=1.故答案为:1.点睛:本题考查了有理数的加法,关键是根据法则计算.25.【湖北省黄冈市中考数学试题】实数16 800 000用科学计数法表示为______________________.【答案】1.68×107分析:用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.详解:16800000=1.68×107.故答案为:1.68×107.点睛:此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.26.【江苏省南京市中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________)【答案】(答案不唯一)分析:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.又根据绝对值的定义,可以得到答案.详解:设|a|=-a,|a|≥0,所以-a≥0,所以a≤0,即a为非正数.故答案为:-1(答案不唯一).点睛:本题综合考查绝对值和相反数的应用和定义.27.【江苏省南京市中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________)【答案】(答案不唯一)三、解答题28.【江苏省南京市中考数学试卷】如图,在数轴上,点)分别表示数).)1)求的取值范围.)2)数轴上表示数的点应落在()A.点的左边B.线段上C.点的右边【答案】(1).(2)B.。
2024年淄博市中考数学试卷
选择题下列数中,是无理数的是:A. 3/2B. √4C. π(正确答案)D. -1在平面直角坐标系中,点A(2,3)关于x轴对称的点的坐标是:A. (-2,3)B. (2,-3)(正确答案)C. (-2,-3)D. (3,2)已知三角形ABC的三边长为a, b, c,且满足a2 + b2 = c2 + 2ab,则三角形ABC是:A. 锐角三角形B. 直角三角形(正确答案)C. 钝角三角形D. 等腰三角形函数y = 2x + 1与y = 2x - 3的图象:A. 平行B. 相交于一点C. 重合D. 互为垂直(正确答案)解不等式组{ x - 1 > 0, 2x < 6 } 的解集是:A. x > 1B. x < 3C. 1 < x < 3(正确答案)D. 无解若关于x的一元二次方程x2 - 2x + m = 0有两个相等的实数根,则m的值为:A. 0B. 1(正确答案)C. 2D. 3在圆内接四边形ABCD中,若∠A:∠B:∠C = 2:3:4,则∠D的度数为:A. 60°B. 90°(正确答案)C. 120°D. 150°下列计算正确的是:A. 3a + 2b = 5abB. a6 ÷ a2 = a3C. (a + b)2 = a2 + 2ab + b2(正确答案)D. a3 · a4 = a12某商店进行打折促销,原价为a元的商品打八折后售价为:A. 0.8a元(正确答案)B. 0.2a元C. 1.2a元D. a元- 0.2a元。
淄博市2012年学业考试数学试题答案
淄博市2012年初中学业考试 数学试题(A 卷)参考答案及评分标准评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分. 2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.每小题只给出一种或两种解法,对考生的其它解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题(本大题共12小题,第1~3小题每题3分,第4~12小题每题4分,共45分.错选、不选或选出的答案超过一个,均记零分):二、填空题 (本大题共5小题,每小题4分,共20分) :13. 14.70; 15.122-或; 16.3;17.如110,个位或十位上的数字有一个为0,其余两个数字相等且不为0. 三、解答题 (本大题共7小题,共55分) : 18.(本题满分6分)解:方程两边都乘以(1)x -,得 22(1)x x -=-,…………………………………………………3分解得0x =,………………………………………………………5分检验:当0x =时1x -≠0,0x =是原方程的解.……………… 6分19.(本题满分6分)证明:∵ABCD 是平行四边形,∴A F ∥CE ,……………………………………………………3分 ∵AF =CE ,∴四边形AECF 是平行四边形. ………………………………6分20.(本题满分8分)解:(1)将这7个数由小到大排列为:12.87 12.88 12.91 12.92 12.93 12.95 12.97 …………2分 所以这7个成绩的中位数是12.92(秒); ……………………3分 极差是12.97−12.87=0.1(秒).…………………………………4分 (2) 方法一:__12.9712.8712.9112.8812.9312.9212.957x ++++++=≈12.92(秒)……………………………………8分方法二:__0.070.030.010.020.030.020.0512.907x -+-+++=+≈12.92(秒).21.(本题满分8分)解:(1)分 (2)……………………………………………………………6分(3)8分22.解:由25204x x --=,得212951(1),,422x x x -===-,……………3分 当152x =是29(2)04x k x -++=的根时,21119204x x kx --+=,11404kx -+=,5722k =,75k =………………………………………………………6分 当212x =-是29(2)04x k x -++=的根时,22229204x x kx --+=, 21404kx -+=,1722k -=,7k =-. …………………………………………………9分23.(本题满分9分)解:(1)当G 与D 重合时,∵四边形ABCD 是矩形,AC ,BG 是矩形ABCD 对角线,BG ⊥AC ,∴四边形ABCD 是正方形,∴x =4…………………………2分(2) 方法一:∵四边形ABCD 是矩形,BG ⊥AC ,∴∠ABF +∠CBF =90°,∠ACB +∠CBF =90°,∴∠ACB =∠ABF ,∴△ABC ∽△F AB ,…………………………………………4分∴AF ABAB BC=, ∵F 为AD 中点,∴AF =2,2,4xx x ==………………………5分 ∵F 为AD 中点. 由对称性得,BF =CF . ……………………………………… …6分 ∵AF ∥BC ,∴△AEF ∽△CEB ,…………………………………………8分 ∴12EF AF EB BC ==, 在Rt △CFE 中,sin ∠ECF =13EF EF CF FB ==.…………………9分 方法二:连接BD ,∵F 为AD 中点,四边形ABCD 是矩形. 由对称性得∠FBD =∠FCA ,AB =GD ∵AC ⊥BG∴∠F AE +∠AFE =∠FGD +∠GFD ∵∠AFE =∠GFD ∴∠F AE =∠FGD ∴△AFC ∽△GBD ∴AC CFBG BD=∵AC =BD ,BG =2CF∴222AC CF = 22162(4)x x +=+x =5分 以下同法一 24.(本题满分9分)A B CDE F G(第23题)解:(1) 设反比例函数解析式为xky =,∵点E (3,4)在该函数图象上, ∴43k=,12=k ,反比例函数的解析式为xy 12=;…………2分(2)∵正方形AOCB 的边长为4,点D 在线段BC 上, ∴点D 的横坐标为4, ∵点D 在xy 12=的图象上, ∴D (4,3), ∵直线b x y +-=21过点D , ∴5,3421==+⨯-b b ,直线的解析式为521+-=x y . ∵点F在直线521+-=x y 上,纵坐标为4,∴2,4521==+-x x ,F (2,4).…………………………………4分(3) ∠AOF 21=∠EOC ………………………………………………5分证明:取CB 的中点G ,连接OG ,连接∵四边形AOCB 是正方形,点F (2,4),∴点F ,G 分别是AB ,BC 的中点, ∴AO =CO ,AF =CG ,∠OAF =∠OCG =90∴△OAF ≌△OCG ,∴∠AOF =∠COG , ∵BG =CG ,∠B =∠GCM =90°,∠EGB =∠MGC ∴△EGB ≌△MGC ∴EG =MG ……………………………7分在R t △OAE 中,∵2222243,5OE OA AE OE =+=+=, OM =OC +CM =OC +BE =4+1=5,∴OM =OE ,即△OEM 是等腰三角形, ∴OG 是∠EOC 的平分线, ∠AOF =∠COG 21=∠EOC .………9分。
2012年全国中考数学试题分类解析汇编(159套63专题)专题45_梯形(附答案)
2012年全国中考数学试题分类解析汇编(159套63专题)专题45:梯形一、选择题1. (2012广东广州3分)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC 于点E,且EC=3,则梯形ABCD的周长是【】A.26 B.25 C.21 D.202. (2012江苏无锡3分)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于【】A. 17 B.18 C.19 D.203. (2012福建漳州4分)如图,在等腰梯形ABCD中,AD∥BC,AB=DC,∠B=80o,则∠D的度数是【】A.120o B.110o C.100o D.80o4. (2012湖北十堰3分)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为【】A.22 B.24 C.26 D.285. (2012四川宜宾3分)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=12 AB,点E、F分别为AB.AD的中点,则△AEF与多边形BCDFE的面积之比为【】A.17B.16C.15D.146. (2012四川达州3分)如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:①EF∥AD;②S△ABO=S△DCO;③△OGH是等腰三角形;④BG=DG;⑤EG=HF。
其中正确的个数是【】A、1个B、2个C、3个D、4个7. (2012山东临沂3分)如图,在等腰梯形ABCD中,AD∥BC,对角线AC.BD相交于点O,下列结论不一定正确的是【】A.AC=BD B.OB=OC C.∠BCD=∠BDC D.∠ABD=∠ACD8. (2012山东烟台3分)如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为【】A .4B .5C .6D .不能确定9. (2012广西北海3分)如图,梯形ABCD 中AD//BC ,对角线AC 、BD 相交于点O ,若AO∶CO =2:3,AD =4,则BC 等于:【 】A .12B .8C .7D .610. (2012广西贵港3分)如图,在直角梯形ABCD 中,AD//BC ,∠C=90°,AD =5,BC=9,以A 为中心将腰AB 顺时针旋转90°至AE ,连接DE ,则△ADE 的面积等于【 】A .10B .11C .12D .1311. (2012内蒙古呼和浩特3分)已知:在等腰梯形ABCD 中,AD∥BC,AC⊥BD,AD=3,BC=7,则梯形的面积是【 】A .25B .50C .D 12. (2012黑龙江龙东地区3分)如图,已知直角梯形ABCD 中,AD∥BC,∠ABC=90°,AB=BC=2AD ,点E 、F 分别是AB 、BC 边的中点,连接AF 、CE 交于点M ,连接BM 并延长交CD 于点N ,连接DE 交AF 于点P ,则结论:①∠ABN=∠CBN; ②DE∥BN; ③△CDE 是等腰三角形;④EM 3 :; ⑤EPM ABCD 1S S 8∆=梯形,正确的个数有【 】A. 5个B. 4个C. 3个D. 2个二、填空题1. (2012上海市4分)如图,已知梯形ABCD ,AD∥BC,BC=2AD ,如果AD=aAB=b ,那么AC = ▲ (用a b,表示).2. (2012江苏南通3分)如图,在梯形ABCD 中,AB∥CD,∠A+∠B=90º,AB =7cm ,BC=3cm ,AD =4cm ,则CD = ▲ cm .3. (2012江苏扬州3分)已知梯形的中位线长是4cm ,下底长是5cm ,则它的上底长是 ▲ cm .4. (2012福建厦门4分)如图,在等腰梯形ABCD 中,AD∥BC,对角线AC 与BD 相交于点O ,若OB =3,则OC = ▲ .5. (2012湖北咸宁3分)如图,在梯形ABCD 中,AD∥BC,︒=∠90C ,BE 平分∠ABC 且交CD 于E ,E 为CD 的中点,EF∥BC 交AB 于F ,EG∥AB 交BC 于G ,当2=AD ,12=BC 时,四边形BGEF 的周长为 ▲ .6. (2012湖北黄冈3分)如图,在梯形ABCD 中,AD∥BC ,AD=4,AB=CD=5,∠B=60°,则下底BC 的长为 ▲ .7. (2012湖南长沙3分)如图,等腰梯形ABCD 中,AD∥BC,AB=AD=2,∠B=60°,则BC 的长为▲ .8. (2012湖南常德3分)若梯形的上底长是10厘米,下底长是30厘米,则它的中位线长为 ▲ 厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年中考数学试题(山东淄博)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共45分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上.第1~3小题每题3分,第4~12小题每题4分,错选、不选或选出的答案超过一个,均记零分.1.和数轴上的点一一对应的是【】(A)整数 (B)有理数 (C)无理数 (D)实数【答案】D。
2.要调查下面的问题,适合做全面调查的是【】(A)某班同学“立定跳远”的成绩 (B)某水库中鱼的种类(C)某鞋厂生产的鞋底承受的弯折次数 (D)某型号节能灯的使用寿命【答案】A。
3.下列命题为假命题的是【】(A)三角形三个内角的和等于180°(B)三角形两边之和大于第三边(C)三角形两边的平方和等于第三边的平方(D)三角形的面积等于一条边的长与该边上的高的乘积的一半【答案】C。
4.若a b>,则下列不等式不一定成立的是【】(A)a m b m+>+(B)22a(m1)b(m1)+>+ (C)a b22-<-(D)22a b>【答案】D。
5.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是【】(A)两条边长分别为4,5,它们的夹角为β(B)两个角是β,它们的夹边为4(C)三条边长分别是4,5,5(D)两条边长是5,一个角是β【答案】D 。
6.九张同样的卡片分别写有数字-4,-3,-2,-1,0,1,2,3,4,任意抽取一张,所抽卡片上数字的绝对值小于2的概率是【 】(A)19(B)13(C)59(D)23【答案】B 。
7.化简222a 1a 1a a a 2a 1+-÷--+的结果是【 】 (A)1a(B)a(C)11a a +- (D)11a a -+ 【答案】A 。
8.如图,OA⊥OB,等腰直角三角形CDE 的腰CD 在OB 上,∠ECD=45°,将三角形CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OCCD的值为【 】(A)12(B)13【答案】C 。
9.如图,⊙O 的半径为2,弦AB=,点C 在弦AB 上,AC B 14A =,则OC 的长为【 】【答案】D 。
10.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2012—2013赛季全部32场比赛中最少得到48分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x 场,要达到目标,x 应满足的关系式是【 】(A)2x(32x)+-≤48(D)2x≥48--≥48 (C)2x(32x)+-≥48 (B)2x(32x)【答案】A。
11.如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形,且它的一条直角边等于斜边的一半.这样的图形有【】(A)4个(B)3个(C)2个(D)1个【答案】C。
12.骰子是6个面上分别写有数字1,2,3,4,5,6的小立方体,它任意两对面上所写的两个数字之和为7.将这样相同的几个骰子按照相接触的两个面上的数字的积为6摆成一个几何体,这个几何体的三视图如图所示.已知图中所标注的是部分面上的数字,则“※”所代表的数是【】(A)2 (B)4 (C)5 (D)6第Ⅱ卷(非选择题共75分)二、填空题:本题共5小题,满分20分.只要求填写最后结果,每小题填对得4分.13= ▲ .【答案】14.如图,AB∥CD,CE交AB于点E,EF平分∠BEC,交CD于F.若∠ECF=40°,则∠CFE=▲ 度.【答案】70。
15.关于x,y的二元一次方程组x y1mx3y53m+=-⎧⎨-=+⎩中,m与方程组的解中的x或y相等,则m的值为▲ .【答案】2或12 -。
16.如图,AB,CD是⊙O的弦,AB⊥CD,BE是⊙O的直径.若AC=3,则DE=▲ .【答案】3。
17.一个三位数,其各位上的三个数字的平方和等于其中两个数字乘积的2倍,请写出符合上述条件的一个三位数▲ .【答案】101。
三、解答题:本大题共7小题,共55分.解答要写出必要的文字说明、证明过程或演算步骤.18.解方程:x22x11x+=--.【答案】解:去分母,得()x22x1-=-,去括号,得x22x2-=-,移项,合并同类项,得x0-=,化x的系数为1,得x0=。
经检验,x0=是原方程的根。
∴原方程的解为x0=。
19.如图,在□ABCD中,点E,F分别在BC,AD上,且AF=CE.求证:四边形AECF是平行四边形.【答案】证明:∵四边形ABCD 是平行四边形,∴AD∥BC。
∴AF∥CE。
又∵AF=CE,∴四边形AECF 是平行四边形。
20.截止到2012年5月31日,“中国飞人”刘翔在国际男子110米栏比赛中,共7次突破13秒关卡.成绩分别是(单位:秒):12.97 12.87 12.91 12.88 12.93 12.92 12.95 (1)求这7个成绩的中位数、极差;(2)求这7个成绩的平均数(精确到0.01秒).【答案】解:(1)∵将7次个成绩从小到大排列为:12.87,12.88,12.91,12.92,12.93,12.95,12.97, ∴这7个成绩的中位数12.92秒;极差为12.97-12.87=0.1(秒)。
(2)这7个成绩的平均数为112.8712.8812.9112.9212.9312.9512.9712.927≈(++++++)(秒)。
21.已知:抛物线21y (x 1)4=-+.(1)写出抛物线的对称轴; (2)完成下表;(3)在下面的坐标系中描点画出抛物线的图象.【答案】解:(1)抛物线的对称轴为x=-1。
(2)填表如下:(3)描点作图如下:22.一元二次方程25x 2x 04--=的某个根,也是一元二次方程29x (k 2)x 04-++=的根,求k 的值. 【答案】解:解25x 2x 04--=得1215x =x =22-,。
把1x=2代入29x (k 2)x 04-++=得2119(k 2)0224⎛⎫-++= ⎪⎝⎭,解得k=8。
把5x=2-代入29x (k 2)x 04-++=得2559(k 2)0224⎛⎫-+++= ⎪⎝⎭,解得k= 275-。
∴k 的值为8或275-。
23.在矩形ABCD 中,BC=4,BG 与对角线AC 垂直且分别交AC ,AD 及射线CD 于点E ,F ,G ,AB=x .(1)当点G 与点D 重合时,求x 的值;(2)当点F 为AD 中点时,求x 的值及∠ECF 的正弦值.【答案】解:(1)当点G 与点D 重合时,点F 也与点D 重合。
∵矩形ABCD 中,AC⊥BD,∴四边形ABCD 是正方形。
∵BC=4,∴x= AB= BC=4。
(2)∵点F 为AD 中点,BC=4,∴AF=2。
∵矩形ABCD 中,AD∥BC,∴△AEF∽△BEB。
∴AE FE AF 21CE BD CB 42====。
∴CE=2AE BD=2FE ,。
∴AC=3AE BF=3FE ,。
∵矩形ABCD 中,∠ABC=∠BAF=900,∴在Rt△ABC 和Rt△BAF 中由勾股定理得222222AC =AB +BC BF =AF +AB ,, 即()()2222223AE =x +43FE =2+x ,。
两式相加,得()2229AE +FE =2x +20。
又∵AC⊥BG,∴在Rt△ABE 中,2222AE +FE =AB =x 。
∴229x =2x +20,解得。
∴222212013212048132528AE =+16=FE =4+=CE =4AE =4=976397636363⎛⎫⎛⎫⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭,,。
∴在Rt△CEF 中由勾股定理得22248528576CF =FE +CE =+636363=。
∴()22248CF163sin ECF ===57612EF48∠。
∴sin ∠24.如图,正方形AOCB 的边长为4,反比例函数的图象过点E (3,4).(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC 交于点D ,直线1y x b 2=-+过点D ,与线段AB 相交于点F ,求点F的坐标;(3)连接OF,OE,探究∠AOF与∠EOC的数量关系,并证明.【答案】解:(1)设反比例函数的解析式kyx =,∵反比例函数的图象过点E(3,4),∴k43=,即k=12。
∴反比例函数的解析式12yx =。
(2)∵正方形AOCB的边长为4,∴点D的横坐标为4,点F的纵坐标为4。
∵点D在反比例函数的图象上,∴点D的纵坐标为3,即D(4,3)。
∵点D在直线1y x b2=-+上,∴134b2=-?,解得b=5。
∴直线DF为1y x52=-+。
将y4=代入1y x52=-+,得14x52=-+,解得x2=。
∴点F的坐标为(2,4)。
(3)∠AOF=12∠EOC。
证明如下:在CD上取CG=CF=2,连接OG,连接EG并延长交x轴于点H。
∵AO=CO=4,∠OAF=∠OCG=900,AF=CG=2,∴△OAF≌△OCG(SAS)。
∴∠AOF=∠COG。
∵∠EGB=∠HGC,∠B=∠GCH=900,BG=CG=2,∴△EGB≌△HGC(AAS)。
∴EG=HG。
设直线EG:y mx n=+,∵E(3,4),G(4,2),∴43m n24m n=+⎧⎨=+⎩,解得,m2n=10=⎧⎨⎩-。
∴直线EG:y2x10=-+。
令y2x10=0=-+,得x5=。
∴H(5,0),OH=5。
在Rt△AOF中,AO=4,AE=3,根据勾股定理,得OE=5。
∴OC=OE。
∴OG是等腰三角形底边EF上的中线。
∴OG是等腰三角形顶角的平分线。
∴∠EOG=∠GOH。
∴∠EOG=∠GOC=∠AOF,即∠AOF=12∠EOC。