超临界流体萃取的基本流程

合集下载

超临界萃取技术

超临界萃取技术

1.超临界流体萃取的简介超临界流体萃取(Supercritical fluidextraction,简称SFE)是用超临界条件下的流体作为萃取剂,由液体或固体中萃取出所需成分(或有害成分)的一种分离方法。

超临界流体(Supercritical fluid,简称SCF)是指操作温度超过临界温度和压力超过监界压力状态的流体。

在此状态下的流体,具有接近于液体的密度和类似于液体的溶解能力,同时还具有类似于气体的高扩散性、低粘度、低表面张力等特性。

因此SCF具有良好的溶剂特性,很多固体或液体物质都能被其溶解。

常用的SCF有二氧化碳、乙烯、乙烷、丙烯、丙烷和氨等.其中以二氧化碳最为常用。

由于SCF在溶解能力、传递能力和溶剂回收等方面具有特殊的优点.而且所用溶剂多为无毒气体.避免了常用有机溶剂的污染问题。

早在100多年前,人们就观察到临界流体的特殊溶解性能,但在相当长时间内局限于实验室研究及石油化工方面的小型应用。

直到20世纪70年代以后才真正进入发展高潮。

1978年召开了首届专题讨论会,1979年首台工业装置投入运行,标志着超临界萃取技术开始进入工业应用。

超临界萃取之所以受到青睐,是由于它与传统额液-液萃取或浸取相比,有以下优点:①萃取率高;②产品质量高;③萃取剂易于回收;④选择性好。

1.超临界萃取的基本原理1.1.超临界流体特性所谓超临界流体(SCF),是指一类压强高于临界压强Pc,温度高于临界温度Tc,的流体,这种流体既不是液体,也不是气体,是一类特殊的流体。

超临界流体的物性较为特殊。

表1将超临界流体的这些物性与气体、液体的表1超临界流体的物性及与普通流体物性的比较相应值作了比较。

从表中可以看出:①超临界流体的密度接近于液体密度,而比气体密度高得多。

另一方面.超临界流体是可压缩的,但其压缩性比气体小得多;②超临界流体的扩散系数与气体的扩散系数相比要小得多,但比液体的扩散系数又高得多;③超临界流体的粘度接近于气体的粘度,而比液体粘度低得多。

超临界萃取实验报告

超临界萃取实验报告

超临界萃取实验报告超临界萃取实验报告摘要:本实验旨在研究超临界萃取技术在提取天然产物中的应用。

通过使用超临界CO2作为溶剂,对某种天然植物中的有效成分进行提取,并对提取效果进行评估。

实验结果表明,超临界萃取技术在提取天然产物中具有高效、环保等优势,对于制备高纯度的天然成分具有重要意义。

引言:超临界萃取是一种基于超临界流体的提取技术,其在分离纯化天然产物中具有广泛应用。

超临界流体是指在临界温度和临界压力下,气体和液体的性质同时存在的状态。

超临界CO2是最常用的超临界流体之一,由于其低毒性、无残留、易回收等特点,成为了天然产物提取的理想溶剂。

实验方法:1. 准备样品:选择某种天然植物作为样品,将其研磨成细粉。

2. 超临界萃取装置:使用超临界萃取设备,将CO2加压至超临界状态。

3. 萃取过程:将样品放入超临界萃取器中,以一定温度和压力下进行萃取。

4. 分离回收:通过减压和降温,将提取物和溶剂分离,并回收溶剂。

实验结果:通过超临界萃取技术,我们成功地从天然植物中提取出目标成分,并对提取物进行了分析。

实验结果显示,超临界CO2对于提取目标成分具有较高的选择性和提取效率。

此外,由于超临界CO2的低温性质,提取物中的热敏性成分得到了有效保护,保持了其活性和稳定性。

讨论:超临界萃取技术相比传统的有机溶剂提取具有许多优势。

首先,超临界CO2是一种无毒、无污染的溶剂,对环境友好。

其次,超临界CO2易于回收,可以循环利用,降低了成本。

此外,超临界CO2的温度和压力可以调节,适用于不同成分的提取。

因此,超临界萃取技术在制备高纯度的天然产物中具有广阔的应用前景。

结论:本实验通过超临界萃取技术成功地提取出了天然植物中的目标成分,并对其进行了分析。

实验结果表明,超临界CO2具有高效、环保等优点,适用于提取天然产物中的有效成分。

超临界萃取技术在制备高纯度的天然产物中具有重要意义,对于开发天然药物、食品添加剂等具有广泛的应用前景。

超临界流体萃取

超临界流体萃取
44
7.3.4 在化工方面的应用
在美国超临界技术还用来制备液体燃料。 以甲苯为萃取剂,在Pc=100atm,Tc=400~ 440℃条件下进行萃取,在SCF溶剂分子的扩散 作用下,促进煤有机质发生深度的热分解,能使 三分之一的有机质转化为液体产物。此外,从 煤炭中还可以萃取硫等化工产品。美国最近研 制成功用超临界二氧化碳既作反应剂又作萃取 剂的新型乙酸制造工艺。俄罗斯、德国还把 SFE法用于油料脱沥青技术。
47
8.2 SFE-SFC联用
SFE-SFC直接联用在大分子分析中较 具优势,在环境有机污染物和其它方面 也很有发展前途。
48
8.3 SFE-HPLC、SFE-TLC联用
SFE-HPLC具有高选择性、高灵敏度、 自动化程度高等特点。
29
七、超临界流体萃取技术的应用
7.1
超临界CO2萃取技术在中药开
发方面的应用
7.2 超临界流体技术在其他方面的应用
30
7.1超临界CO2萃取技术在中药开发方面的应用
在超临界流体技术中,超临界流体萃取技术 与天然药物现代化关系密切。SFE对非极性和中 等极性成分的萃取,可克服传统的萃取方法中因 回收溶剂而致样品损失和对环境的污染,尤其适 用于对温热不稳定的挥发性化合物提取;对于极 性偏大的化合物,可采用加入极性的夹带剂如乙 醇、甲醇等,改变其萃取范围提高抽提率。因此 其在中草药的提取方面具有着广泛的应用。
好,廉价易得等优点。
12
2.2 超临界流体萃取
溶质在SCF中的溶解度大致可认为随SCF的密度 增大而增大。
SCF的密度随流体压力和温度的改变而发生十分 明显的变化。
在较高压力下,使溶质溶解于SCF中,然后使 SCF溶液的压力降低,或温度升高,这时溶解 于SCF中的溶质就会因SCF的密度下降,溶解 度降低而析出。

超临界萃取技术

超临界萃取技术

超 临 界 流 体 萃 取 的 应 用
医药工业 化学工业
中草药提取 酶,纤维素精制
金属离子萃取 烃类分离 共沸物分离 高分子化合物分离 植物油脂萃取
食品工业
酒花萃取 植物色素提取 天然香料萃取 化妆品原料提取精制
化妆品香料
压缩机
萃取釜
制冷MVC-760L
二氧化碳循环泵

超临界萃取技术的应用
应 用 范 围
还有其他辅助设备,如阀门,流量计等。
4.超临界流体萃取的方法
热 交 换 器
萃 取 釜
分 离 釜
CO2
热交换器 压缩机或泵 过滤器 超临界 CO 2 萃取的基本流程
三种超临界流体萃取流程示意图
4. 超临界流体萃取的方法
(2)影响工艺流程的因素: 萃取过程系统的组成各不相同,在设计工 艺流程时,仍有一些共同的因素要考虑 原料的性质、 萃取条件 萃取操作方式 分离操作方式 溶剂的回收和处理等。
一、概 述
(Super fluid extraction,简称SFE)
原理:
是利用超临界流体(SCF),即温度和压 力略超过或靠近超临界温度(Tc)和临界 压力(Pc),介于气体和液体之间的流体 作为萃取剂,从固体或液体中萃取出某种 高沸点和热敏性成分,以达到分离和纯化 目的的一种分离技术。
超临界流体萃取过程:
超临界流体萃取技术
(Super fluid extraction,简称SFE)
超临界流体萃取(supercriticl fluid
extraction)也叫流体萃取、气体萃取 或蒸馏萃取 作为一种分离过程,是基于一种溶剂 对固体或液体的萃取能力和选择性, 在超临界状态下较之在常温常压下可 得到极大的提高。

超临界流体萃取过程

超临界流体萃取过程

是近 20 年来迅速发展起来的一种新型的萃取分离技术。
是利用超临界流体 (Supercritical fluid, 简称 SCF) 作为萃取 剂,该流体具有气体和液体之间的性质,且对许多物质均具 有很强的溶解能力,分离速率远比液体萃取剂萃取快,可以 实现高效的分离过程。目前, 超临界流体萃取已形成了一
③、离心萃取器 离心萃取器是利用离心力的作用使两相快速混合、快速 分离的萃取设备。可按两相接触方式分为逐级接触式和微分 接触式两类。 A、转筒式离心萃取器 转筒式离心萃取器是一种单级
接触式设备 , 如图所示。重液和轻液由设备底部的三通管同 时进入混合室,在搅拌桨的作用下,两相充分混合进行传 质,然 后一起进入高速旋转的转鼓。转鼓中混合液在离心力的作用 下,重相被甩向转鼓外缘,轻相被挤向转鼓的中心部位。两相 分别经顶部的轻、重相堰流至相应的收集室 , 并经各自的排 出口排出。转筒式离心萃取器结构简单,效率高,易于控制,运 行可靠。
卢威式离心萃取 器的优点 : 可以靠离
心力的作用处理密
度差小或易产生乳
化现象的物系 ; 设备
结构紧凑 , 占地面积 小 ; 效率较高。缺点
是 : 动能消耗大 , 设备
费用也较高。
C、波德式离心萃取器 波德式离心萃取器又称为离心薄膜萃取器, 简称POD 离心萃取器,是一种微分接触式萃取设备。主要由一水平 空心轴和一随轴高速旋转的圆柱形转鼓以及固定外壳组 成。转鼓由一多孔的长带卷绕而成,其转速一般为
塔、转盘塔等。
②、物系的性质 A、对密度差较大、界面张力较小的物系,可选用无外加能 量的设备;对界面张力较大或粘度较大的物系 ,可选用有外加能 量的设备;对密度差很小,界面张力小,易于乳化的物系,可选用离 心萃取设备。 B、对有较强腐蚀性的物系,可选用结构简单的填料塔、脉 冲填料塔;对于放射性元素的提取,可选用混合澄清器、脉冲塔。 C 、对含有固体悬浮物或易生成沉淀的物系 , 容易堵塞 , 需 要定期清洗 , 可选用混合澄清器、转盘塔,也可考虑选用往复 筛板塔、脉冲塔,因为这些设备具有一定的自洗能力。 对稳定 性差、要求在设备内停留时间短的物系,可选用离心萃取器;对 要求停留时间较长的物系,可选用混合澄清器。

超临界流体萃取技术

超临界流体萃取技术

2.1超临界流体的基本性质
2.1超临界流体的基本性质
表一 一些浸出溶剂的沸点与临界特性表
溶剂 乙烯 二氧化碳 乙烷
沸点/℃
临界温度Tc/℃
临界压力Pc/MPa
临界密度ρc/(ɡ/cm2)
-103.9 -78.5 -88.0 -44.7
9.2 31.0 32.2 91.8
5.03 7.38 4.88 4.62
流量 计 分 萃 高压 泵
二 氧 化 碳 气 瓶
解 析 釜
解 析 釜 离 柱
取 釜
冷箱 贮 罐
夹 带 剂 罐
高压 泵
4.超临界流体萃取的特点
(1)具有广泛的适应性
由于超临界状态流体溶解度特异增高的现象 是普遍存在。因而理论上超临界流体萃取技术可 作为一种通用高效的分离技术而应用。
( 2 ) 萃 取 效 率 高 , 过 程 易 于 调 节 超临界流体兼具有气体和液体特性,因而超 临界流体既有液体的溶解能力,又有气体良好的 流动和传递性能。并且在临界点附近,压力和温 度的少量变化有可能显著改变流体溶解能力,控 制分离过程
吸附法
3.2基本工艺流程
超临界流体萃取的工艺流程一般是由萃取( CO2 溶 解组分)和分离( CO2 和组分的分离)两步组成。 包括高压泵及流体系统、萃取系统和收集系统三 个部分。
超临界流体萃取的基本流程
萃 取 釜
分 离 釜
热 交 换 器
CO2
热交换器 压缩机 高压泵 过滤器
超临界流体萃取的流程
3.1超临界流体萃取的典型流程
解析方法(一)
压力高,投资大,能 耗高,操作简单,常 温萃取
等温法
3.1超临界流体萃取的典型流程 能耗相对较少,对热 敏 性 物 质 有 影 响

超临界流体萃取

超临界流体萃取

1.2与其他分离方法的联系 a 蒸馏-物质在流动的气体中,利用蒸汽压不同进行蒸发分
离。
b. 液-液萃取-利用溶质在不同溶液中溶解度不同。 c. 超临界流体萃取-利用SCF,依靠被萃物在不同蒸 汽压下所具有不同化学亲和力和溶解力(蒸汽压-相 分离作用。
1.3 发展史
①1896年 英国 Hanny等通过实验发现金属卤化物可被超 临界乙醇和四氯化碳溶解,但当P降低,金属卤化物又重 新析出。 ②20世纪50年代 Todd等理论上提出SCF萃取分离的可能 性。 ③1978年 一系列SFE有关的学术会议 ④中国 1981年刚刚起步
根据分离对象和分离目的来选择极性或非极性溶剂
2.5夹带剂的使用
(1)单一组分的超临界溶剂缺点包括:
①某些物质在纯超临界流体中溶解度很低,如超临界CO2 只能有效地萃取亲脂性物质,不适合糖、氨基酸等极性 物质 ②选择性不高,导致分离效果不好;
③溶质溶解度对温度、压力的变化不够敏感,使溶质与 超临界流体分离时耗费的能量增加。
P1V 1 P 2V 2 T1 T2
2.2 基本原理
(1)原理:
利用超临界流体在临界区附近,温度和压力微小的变 化,而引起流体密度大的变化,而非挥发性溶质在超 临界流体中溶解度大致和流体的密度成正比。保持T恒 定,增大P,流体密度增大,溶质溶解度增大,萃取能 力增强;降低P,流体密度减小,溶质溶解度降低,萃 取剂与溶质分离。从而能很好的固体或液体中萃取出 某种高沸点或热敏性成分
第八节 超临界流体萃取
1.概述 2.超临界流体萃取的理论基础
3.超临界流体萃取的基本过程
4.超临界流体萃取的应用
5.超临界流体萃取的优缺点
1. 超临界流体萃取-概述
1.1定义

超临界流体萃取

超临界流体萃取

第三章超临界流体萃取定义:即用超临界流体作为萃取剂的萃取过程一、超临界流体指处于临界温度Tc和临界压力Pc之上的流体(它不是气体也不是液体)。

超临界C02(研究最多、应用最广)1、临界压力(7.39 MPa)适中;2、临界温度(31.1 ℃)接近室温;3、便宜易得;4、无毒、惰性,是理想的绿色溶剂;5、极易从萃取产物中分离出来。

典型应用:咖啡因、植物油脂、天然香料与药物的萃取。

超临界流体的特性(1)密度、粘度和扩散系数的特点密度比气体大得多,与液体接近,使其对溶质有较大的溶解度。

粘度接近气体,比液体小得多。

扩散系数介于气体和液体之间,是气体的几百分之一, 是液体的几百倍。

与液体相比,超临界流体粘度小、扩散系数大使其传质速率大大高于液体。

(2)溶解特性在临界点附近,压力和温度的变化可引起超临界流体密度急剧变化, 相应地使溶质在超临界流体中的溶解度发生急剧变化,因而可利用压力与温度的改变来实现萃取和分离。

有机物在超临界流体中溶解度的变化:低于临界压力时,几乎不溶解;高于临界压力时,溶解度随压力急剧增加。

二、超临界流体萃取原理流体在临界区附近,压力和温度的微小变化,会引起流体的密度大幅度变化,而非挥发性溶质在超临界流体中的溶解度大致上和流体的密度成正比。

利用流体在超临界状态下对物质有特殊增加的溶解度,而在低于临界状态下基本不溶解的特性. (1)超临界流体萃取过程一般分两步(以超临界C02为例)(2)超临界流体萃取特点① 高压下进行,设备及工艺技术要求高, 投资比较大。

② 可以在接近室温下完成(对超临界C02而言),特别适用于热敏性天然产物的分离。

③ 分离工艺流程简单,主要由萃取器和分离器二部分组成,而且萃取和分离通过改变温度和压力即可实现。

④ 超临界流体循环使用,无需溶剂回收设备,不产生二次污染。

⑤ 被萃取物中基本无萃取剂残留。

(1)萃取原料装入萃取釜,超临界C02从釜底进入,与被萃取物料充分接触,选择性溶解出被萃取物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超临界流体萃取的基本流程超临界流体萃取的基本流程包括以下步骤:
1.超临界流体的形成。

2.溶质在超临界流体中的扩散传质(萃取过程)。

3.溶质与流体的分离。

具体来说,超临界流体萃取工艺设备主要有萃取釜、分离釜、压缩机和换热器,并可组成以下3种典型的工艺流程:
●变压萃取:流程操作通常在等温下进行,萃取后含溶质的超临界
流体经膨胀阀减压后,因溶解度降低而析出溶质。

●变温萃取:流程操作在等压下进行,并通过加热升温的方法使溶
质与萃取剂分离开来。

●吸附萃取:流程在分离釜中放置适当的吸附剂,利用吸附剂吸附
萃取相中的溶质,从而将溶质与萃取剂分离开来。

以上是超临界流体萃取的基本流程和具体的工艺流程,希望对你有帮助。

相关文档
最新文档