齐次型微分方程求解
齐次线性微分方程。

11
与特征方程的根对应的微分方程的解为
特征方程的根
微分方程通解中的对应项
单实根 r
给出一项 Ce rx
一对单复根 r1,2 i
给出两项 ex C1 cos x C2 sin x
k 重实根 r
一对k 重复根 r1,2 i
给出k 项
C1 C 2 x C k x k1 e rx .
讨论:
(i)如果 2 p q 0, 即λ不是特 征根。 要使(3)成立,
Q(x)应是一 个m 次多项式,不妨设
Q x Qm ( x) b0 x m b1 x m1 bm1 x bm
代入(3)式,比较两端同次幂的系数即可确定bi i 0,1,2,m,
y C1 C2 xe rx . y ex C1 cos x C2 sinx
9
例 1 求下列微分方程的通解
1y"2 y'3 y 0; 2y"2 y' y 0;
解 (1)所给微分方程的特征方程为 r 2 2r 3 0
特征根为: r1 1,r2 3 因此所求通解为 y C1e x C2e 3x .
x
e
2
x
C3 cos
2
x C4 sin
2
x.
13
四、二阶常系数非齐次线性微分方程
二阶常系数非齐次线性微分方程一般式是
y" py'qy f x
(1)
其中p、q是常数。
由定理3,只要求出(1)的一个特解 y*及(1)对应的齐次方程
y" py'qy 0
的通解Y, 即可求得(1)的通解 : y Y y* .
第三节 一阶线性微分方程

sin 2 y e cos y dy dy C
sin y
dy C
sin y
)C
e sin y [2 sin ye sin y 2 e sin y cos y dy C ]
2(sin y 1) Ce
sin y
将 x 1 , y 0 代入上式 , 得 C 3 ,
x0 P ( x )dx x x0 P ( x )dx ye dx y 0 . x0 Q ( x ) e
x x
小结
1.齐次线性微分方程
y P ( x ) y 0
y Ce P ( x )dx ;
2. 非齐次线性微分方程 (1) 公式
所求特解为 x 2(sin y 1) 3e sin y .
例6 如图所示,平行于 y 轴的动直线被曲 线 y f ( x ) (0 f ( x ) x 3 )与 y x 3 ( x 0) 截下的线段PQ之长数值上等于阴影部分的面积, 求曲线 f ( x ).
解
1 1 y ln ydy C ln y
1 1 2 2 (ln y ) C ln y
( x cos y sin 2 y ) y 1 例5 求特解 y x 1 0
1 解 将方程变形 , 得 dy , dx x cos y sin 2 y
y P ( x ) y Q ( x )
y e P ( x )dx [ Q( x ) e P ( x )dx dx C ];
P ( x )dx
( 2)令 y u( x )e
用常数变易法求解.
微分方程中的常系数齐次线性方程求解

微分方程中的常系数齐次线性方程求解在微积分学中,常系数齐次线性方程是一类常见的微分方程。
它们的解可以通过一定的方法得到。
在本文中,我们将介绍如何求解常系数齐次线性方程。
一、什么是常系数齐次线性方程常系数齐次线性方程是指形如y″+ay′+by=0的微分方程,其中a和b为常数。
它们的特点是方程中的未知函数及其导数的系数都是常数。
二、求解常系数齐次线性方程的方法1. 特征方程法特征方程法是求解常系数齐次线性方程的一种常用方法。
具体步骤如下:(1)写出微分方程的特征方程,特征方程就是对应的代数方程。
对于y″+ay′+by=0,其特征方程为r²+ar+b=0。
(2)解特征方程,求得特征根。
设特征根为r₁和r₂,则特征方程的解为r₁和r₂。
根的个数和重根的情况会影响方程的解形式。
(3)根据特征根求解原方程的解。
当r₁和r₂为不同的实根时,原方程的通解可以表示为y=C₁e^(r₁x)+C₂e^(r₂x),其中C₁和C₂为常数。
当r₁和r₂为不同的复数根时,通解可以表示为y=e^(αx)(C₁cos(βx)+C₂sin(βx)),其中α为实部,β为虚部。
2. 代入法代入法也是一种常用的求解常系数齐次线性方程的方法。
具体步骤如下:(1)设定未知函数的形式。
根据方程的阶数,设定未知函数的形式,如y=e^(mx)。
(2)将未知函数及其导数带入微分方程,消去常数,得到相应的代数方程。
(3)解代数方程,得到未知函数的表达式。
根据代数方程的解,确定未知函数的形式。
(4)确定未知函数的常数。
根据给定的初始条件,确定未知函数中的常数值。
3. 傅里叶级数法对于特定的边界条件,常系数齐次线性方程还可以通过傅里叶级数法进行求解。
该方法主要适用于周期性边界条件的问题。
三、实例分析为了更好地理解求解常系数齐次线性方程的方法,我们来看一个具体的实例。
例题:求解方程y″+3y′+2y=0.解法:首先写出特征方程r²+3r+2=0,解得特征根r₁=-1,r₂=-2.特征根不相等,所以方程的通解为y=C₁e^(-x)+C₂e^(-2x)。
第十二章 齐次方程

例2
求解微分方程
x2
dx xy
y2
dy 2y2
. xy
解
dy dx
2y2 x2 xy
xy y2
2 1
y 2
x
y x
y
y
2
,
x x
令u y , 则 dy xdu udx, x
u
xu
2u2 1 u
u u2
,
[1 ( 1 1) 2 1 ]du dx ,
2 u2 u u2 u1
y2 2C( x C ) 2
抛物线
所求旋转轴为 ox轴的旋转抛物面方程为
y2 z2 2C( x C ). 2
例4 dy x y dx x y
解
dy dx
1 1
y
x y
令 u y x
则 dy u x du
dx
dx
x 代入化简 并分离变量
1u 1 u2
du
1 x
dx
两边积分 arctan u 1 ln(1 u2 ) ln x ln c
得通解代回
X Y
x h, y k,
(2) 0, 未必有解, 上述方法不能用.
当b1 0时, a1与b中必至少有一个为零.
若 b 0, 可分离变量的微分方程.
若 b 0,a1 0,
令 z ax by,
dy 1 ( dz a), dx b dx
1 ( dz a) f (z c)
令u y, 得 u x du 1
1 u2 ,
x
dx
u
分离变量
udu
dx ,
(1 u2 ) 1 u2 x
tdt
dx
令 1 u2 t 2,
§7.3 齐次方程

dv y = 1+ v 2 dy
x 令v= , y
dx dv =v+ y dy dy
积分得 ln ( v + 1 + v 2 ) = ln y - ln C
y 2 2y v y 2 2 = 1 故有 ( v ) = 1 + v C C C2 C 2 得 y = 2 C ( x + ) (抛物线) 2 故反射镜面为旋转抛物面.
化为标准形式 dy x 1 = ======== ⑶常见形式: 2 y y dx xy + y + ( )2 x x ⑷解法: y ①化标准形式;②变量替换 u = ;
2
③分离变量;④求通解;⑤回代。如:
x
dy y = f( ) 如: dx x
⑴—关于y的微分方程
dy du y = u +x 代入原方程, 得: 令 u = ,则y=ux, dx dx x du u + x = f (u) ⑵—关于u的微分方程 dx du 整理:x = f (u) - u 可分离变量的方程 dx du dx = 分离变量,得: f (u) - u x
tx - ty x - y = = f ( x, y ) ⑵ f (tx, ty ) = tx + ty x + y
故⑵是齐次函数,且是0次齐次函数.
⑵引言:上节课学习了可分离变量的微分方程,并
求它的通解及在定解条件下求特解。但实际上可分
离变量的微分方程只占少数,还有不可直接分离变
量的方程,如:求通解
1 1 1 2 1 dx [ ( - )+ ]du = , 2 u- 2 u u- 2 u-1 x
3 1 ln(u - 1) - ln(u - 2) - ln u = ln x + ln C , 2 2
二阶变系数线性齐次微分方程的一些解法

二阶变系数线性齐次微分方程的一些解法二阶变系数线性齐次微分方程的求解方法有多种,其中常用的有拉普拉斯变换、迭代、改型四阶 Runge-Kutta 法等。
1、拉普拉斯变换:拉普拉斯变换可以用于求解二阶变系数线性齐次微分方程。
该方法被称为拉普拉斯变换是由波扎西在1820年提出的,其原理是使用一种变换把微分方程变换成容易求解的线性方程组。
例如:考虑以下方程:$y\prime\prime +222ty\prime +529y=0$可以使用以下四步法将其转换为可以直接求解的形式:(1) 用拉普拉斯变量$z=y\prime$,等号右边变为:$z\prime+222tz+529y=0$(2)$y\prime=z$,两边同时乘以$e^{\int{222t}dt}$,此时等号两边的导数消去,得:$e^{\int{222t}dt}z+222te^{\int{222t}dt}y=0$,再变形得:$z+222te^{\int{-222t}dt}y=0$(3)将等号两边都乘以$e^{\int{-222t}dt}$,则有:$e^{\int{-222t}dt}z+222y=0$(4)等号两边同时除以$222$,则有:$\frac{e^{\int{-222t}dt}}{222}z+y=0$这样就可以将方程变换为可以直接求解的标准形式:$\frac{dz}{dt}+p(t)z+q(t)y=0$,这就是二阶变系数线性齐次微分方程的拉普拉斯变换所得到的结果。
2、迭代法迭代法是指通过某种规则迭代取不断精确的数据,从而求解问题的方法。
它指定了一系列迭代公式,用来在定义域上以增量方式估计近似解。
迭代法可以用来求解二阶变系数线性齐次微分方程,其基本原理是首先对方程进行拉弦展开(也叫做多项式拟合),然后分别求出每次迭代时的Y和V值,并用它们来更新下一次的Y和V 值,从而不断地进行反复的迭代操作,直到找到足够精确的解。
齐次微分方程解法

齐次微分方程解法一、齐次微分方程的定义与形式齐次微分方程是指形如F(dx,dy)=0的一阶微分方程,其中函数F是关于dx和dy的二元函数。
齐次微分方程的一般形式可以表示为y′=f(x,y)。
其中,若f(x,y)满足关系式f(tx,ty)=f(x,y),则称该方程为齐次微分方程。
二、齐次微分方程的解法齐次微分方程的解法可以通过变量替换和分离变量的方法来实现。
以下是详细的解法步骤:步骤一:变量替换对于形如y′=f(x,y)的齐次微分方程,我们可以进行如下的变量替换:y=vx。
通过这一变换,我们可以将原方程转化为关于v和x的方程。
步骤二:求解变量替换后的方程将变量替换后的方程带入原方程,并求解出v和x的关系。
步骤三:求解原方程将步骤二中求解得到的v和x的关系带入变量替换的方程,得到y和x的关系,从而求解出原方程的解。
三、具体案例分析以下为具体的案例分析,通过实例来说明齐次微分方程的解法。
案例一:y′=yx步骤一:变量替换令y=vx,则原方程可以变为dydx =vx。
步骤二:求解变量替换后的方程将变量替换后的方程带入原方程:vx′dx =vx。
整理得到x⋅x′=1。
步骤三:求解原方程将步骤二中求解得到的v和x的关系带入变量替换的方程,得到y=vx。
代入方程x⋅x′=1,求解得到x=ln|C|,其中C为常数。
从而可以得到原方程的解为y=ln|C|⋅x。
案例二:y′=x+yx步骤一:变量替换令y=vx,则原方程可以变为dydx =x+vxx。
步骤二:求解变量替换后的方程将变量替换后的方程带入原方程:vx′dx =x+vxx。
整理得到x⋅x′=v。
步骤三:求解原方程将步骤二中求解得到的v和x的关系带入变量替换的方程,得到y=vx。
代入方程x⋅x′=v,求解得到x=e C,其中C为常数。
从而可以得到原方程的解为y=e C⋅x。
四、总结齐次微分方程是一类常见的微分方程,其解法可通过变量替换和分离变量的方法来求解。
常系数高阶齐次线性微分方程

总结词
通过幂级数展开来求解高阶线性微分方 程的一种方法。
VS
详细描述
幂级数法的基本思想是将未知函数表示为 一个幂级数,然后利用微分方程的性质, 将原方程转化为一个递推关系式,求解这 个递推关系式可以得到幂级数的系数,从 而得到原方程的解。这种方法适用于具有 特定形式的未知函数的高阶线性微分方程 。
积分因子法
计算
根据求解方法,通过计算得到通解的具体形 式。
05 方程的应用实例
在物理问题中的应用
量子力学
常系数高阶齐次线性微分方程在 量子力学中用于描述粒子的波函 数随时间的变化。例如,在求解 氢原子能级问题时,需要用到此 类方程。
波动问题
在研究波动问题,如声波、电磁 波等时,常系数高阶齐次线性微 分方程可以用来描述波的传播和 演化。
热传导问题
在求解热传导问题时,常系数高 阶齐次线性微分方程可以用来描 述温度随时间和空间的变化。
在工程问题中的应用
控制系统
在控制系统的分析和设计中,常系数高阶齐次线性微分方程用于描述系统的动态特性。例如,在航空航天、化工等领 域中,此类方程被广泛应用于各种控制系统的建模和仿真。
信号处理
在信号处理中,常系数高阶齐次线性微分方程用于描述信号的滤波、预测和补偿等过程。例如,在通信、雷达和图像 处理等领域中,此类方程被广泛应用于信号处理算法的设计和实现。
02 方程的解法
特征方程法
总结词
通过解特征方程来求解高阶线性微分方程的一种方法。
详细描述
特征方程法的基本思想是将高阶线性微分方程转化为多个一阶线性微分方程来求解。首先,我们对方程进行整理, 得到一个关于未知函数和其导数的多项式方程,然后令其为0,得到一个关于未知函数的多项式方程,即特征方 程。求解特征方程,可以得到一组根,对应于原方程的一组解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般式是这样的ay''+by'+cy=f(x)
第一步:求特征根
令ar²+br+c=0,解得r1和r2两个值,(这里可以是复数,例如(βi)²=-β²)第二步:通解
1、若r1≠r2,则y=C1*e^(r1*x)+C2*e^(r2*x)
2、若r1=r2,则y=(C1+C2x)*e^(r1*x)
3、若r1,2=α±βi,则y=e^(αx)*(C1cosβx+C2sinβx)
第三步:特解
f(x)的形式是e^(λx)*P(x)型,(注:P(x)是关于x的多项式,且λ经常为0)则y*=x^k*Q(x)*e^(λx)(注:Q(x)是和P(x)同样形式的多项式,例如P(x)是x²+2x,则设Q(x)为ax²+bx+c,abc都是待定系数)
1、若λ不是特征根k=0 y*=Q(x)*e^(λx)
2、若λ是单根k=1 y*=x*Q(x)*e^(λx)
3、若λ是二重根k=2 y*=x²*Q(x)*e^(λx)(注:二重根就是上面解出
r1=r2=λ)
f(x)的形式是e^(λx)*P(x)cosβx或e^(λx)*P(x)sinβx
1、若α+βi不是特征根,y*=e^λx*Q(x)(Acosβx+Bsinβx)
2、若α+βi是特征根,y*=e^λx*x*Q(x)(Acosβx+Bsinβx)(注:AB都是待定系数)
第四步:解特解系数
把特解的y*'',y*',y*都解出来带回原方程,对照系数解出待定系数。
最后结果就是y=通解+特解。
通解的系数C1,C2是任意常数。