张量基础知识PPT课件
合集下载
张量分析——初学者必看PPT

§A-2 矢量的基本运算
A 张量分析
四、矢量的并乘(并矢)
a ai ei , b b j e j
并乘
ab ai ei b j e j ai b j ei e j
a2b1e2 e1 a2b2 e2 e2 a2b3e2 e3 a3b1e3e1 a3b2 e3e2 a3b3e3e3
ab a1b1e1e1 a1b2 e1e2 a1b3e1e3
§A-3 坐标变换与张量的定义
A 张量分析
x x cos y sin y x sin y cos
x x cos y sin y x sin y cos
约定
S ai xi a j x j
用拉丁字母表示3维,希腊字母表2维
一、求和约定和哑指标
§ A-1 指标符号
双重求和
Aij xi y j
i 1 j 1
3
3
Aij xi y j A11x1 y1 A12 x1 y2 A13 x1 y3 A21x2 y1 A22 x2 y2 A23 x2 y3 A31x3 y1 A32 x3 y2 A33 x3 y3
两个二阶张量点积的结果为一个新的二阶张量,这 相当于矩阵相乘
§A-4 张量的代数运算
A 张量分析
五、张量的双点积
两个张量点积的结果仍为张量。新张量的阶数是 原两个张量的阶数之和减 4
A : B ( Aijk ei e j ek )( Brster es et ) Aijk Brst jr ks ei et Aijk B jkt ei et S
A B ( Aijk ei e j ek ) ( Brst er es et ) Aijk Brst ei e j kr es et Aijk Bkst ei e j es et S
《张量基础知识》课件

2 线性变换(linear transformation)
线性变换是指一个向量到另一个向量的映射,保持向量的加法和数乘运算。
3 奇异值分解(SVD)
奇异值分解是将矩阵分解为三个矩阵乘积的形式,被广泛应用于数据降维和信号处理。
总结
1 张量的概述
2 张量的运算和应用
张量是一种多维数组,用于表示和处理多 维数据。
《张量基础知识》PPT课 件
# 张量基础知识
什么是张量?
1 张量的定义
张量是一种多维数组, 用于表示和处理多维数 据。它具有多个轴和形 状,可以存储和计算多 维数据。
2 张量的基本特征
张量具有数据类型、维 度和形状。它可以是标 量、向量、矩阵或更高 维度的数组。
3 张量的分类
张量根据维度和形状的 不同可以分为标量、向 量、矩阵和高阶张量。
2 张量的象性
3 张量的幺模性
张量的象性描述了张量 在基向量变换下的行为。 张量的象性可以用来研 究线性变换和坐标变换。
张量的幺模性表示张量 在坐标变换中的不变性。 幺模张量在物理和拓扑 学中具有重要应用。
张量的相关概念
1 秩(rank)
秩是张量的非零元素的个数。秩为0的张量是标量,秩为1的张量是向量。
张量具有丰富的运算和广泛的应用,涵盖 物理学、数学和机器学习等领域。
3 张量的性质和相关概念的介绍
4 知识点总结
张量具有特定的性质和相关概念,如对称 性、象性和幺模性。
总结张量基础知识的关键概念和要点。
Q&A
1 相关问题解答
回答听众提出的与张量基础知识相关的问题。
2 课程结束
感谢听众参与本次张量基础知识课程, 张量乘法
张量加法是对应位置元素的相加操作。两 个形状相同的张量可以直接相加。
线性变换是指一个向量到另一个向量的映射,保持向量的加法和数乘运算。
3 奇异值分解(SVD)
奇异值分解是将矩阵分解为三个矩阵乘积的形式,被广泛应用于数据降维和信号处理。
总结
1 张量的概述
2 张量的运算和应用
张量是一种多维数组,用于表示和处理多 维数据。
《张量基础知识》PPT课 件
# 张量基础知识
什么是张量?
1 张量的定义
张量是一种多维数组, 用于表示和处理多维数 据。它具有多个轴和形 状,可以存储和计算多 维数据。
2 张量的基本特征
张量具有数据类型、维 度和形状。它可以是标 量、向量、矩阵或更高 维度的数组。
3 张量的分类
张量根据维度和形状的 不同可以分为标量、向 量、矩阵和高阶张量。
2 张量的象性
3 张量的幺模性
张量的象性描述了张量 在基向量变换下的行为。 张量的象性可以用来研 究线性变换和坐标变换。
张量的幺模性表示张量 在坐标变换中的不变性。 幺模张量在物理和拓扑 学中具有重要应用。
张量的相关概念
1 秩(rank)
秩是张量的非零元素的个数。秩为0的张量是标量,秩为1的张量是向量。
张量具有丰富的运算和广泛的应用,涵盖 物理学、数学和机器学习等领域。
3 张量的性质和相关概念的介绍
4 知识点总结
张量具有特定的性质和相关概念,如对称 性、象性和幺模性。
总结张量基础知识的关键概念和要点。
Q&A
1 相关问题解答
回答听众提出的与张量基础知识相关的问题。
2 课程结束
感谢听众参与本次张量基础知识课程, 张量乘法
张量加法是对应位置元素的相加操作。两 个形状相同的张量可以直接相加。
张量分解学习PPT课件

.
26
CP分解
张量的低秩近似
◦ 然而在低秩近似方面,高阶张量的性质比矩阵SVD差
Kolda给出了一个例子,一个立方张量的最佳秩-1近似并不 包括在其最佳秩-2近似中,这说明张量的秩-k近似无法渐进 地得到
下面的例子说明,张量的“最佳”秩-k近似甚至不一定存在
X a1ob 1oc2a1ob2oc1a2ob 1oc1
纤维:x i j :
.
6
基本概念及记号
切片(slice)
水平切片:X i : :
侧面切片:X : j :
正面切片:X ::k ( X k )
.
7
基本概念及记号
内积和范数
◦ 设 X,Y¡I1× I2× L× IN
内积:
I1 I2
IN
X,Y
L x y i1i2LiN i1i2LiN
i11i21 iN1
R
X§A,B,C¨arobrocr r1
X
c1 b 1
c2 b2
L
cR b R
a1
a2
aR
三阶张量的CP分解
.
20
CP分解
CP分解的矩阵形式
◦ 因子矩阵:秩一张量中对应的向量组成的矩阵,如
A a 1 a2 LaR
◦ 利用因子矩阵,一个三阶张量的CP分解可以写成展开形式
X (1) A C e B T X (2) B C e A T X (3) C B e A T
◦ 对于高阶张量,有
X ┈ λ ;A (1 ),A (2 ),L ,A (N ) Rra ( r 1 )o a ( r 2 )o L o a ( r N ) r 1
其展开形式为
X ( n ) A ( n ) d i a g ( λ ) A ( N ) e L e A ( n 1 ) e A ( n 1 ) e L e A ( 1 )T
【张量分析ppt课件】张量分析课件第三章 张量代数

按§2.5节三中(g)式面积矢量记法有:
dH 0 r u(r ) (r )dV
试证明物体 Ω 对o点的动量矩为:
H0 J ω
Ω
式中 称为物体 Ω 对o点的二阶惯性矩张量(注:J 不是四阶单位张量。但 J表达式中的 I是二阶单位张量)。 u (r ) ω r 证: H (r u) dV r (ω r ) dV (r r )ω (r ω)r ) dV
I u (ii ii ) (u j i j ) u j iiij ui ii u
设存在另一二阶张量 I ,且满足 u I I u 。则: u I u I o ; uo ∵ I I O ; I I (唯一性) ∴ 3.
A : J ( Amn imin ) : (ii i j ii i j ) Amnmi jn ii i j Amn imin A
二阶张量与二阶张量的(一)点乘:
A B (Aij ii i j) ( Bmn imin) (Aij Bmn )ii (i j im )in Aij Bjn ii in
二阶张量与二阶张量的(双)点乘:
A : B ( Aij ii i j ) : ( Bmn imin ) ( Aij Bmn )(ii im )(i j in ) Aij Bij
A P2 A P2
A0 P2 Φ0 P4
Φ0 P4
(3.1-11)
A : Φ0 A
0 0
的 n ; A ; A ; ; 分别称为一阶单位张量、二阶单位张量和四 阶单位张量。 上式定义的一阶、二阶和四阶单位张量具有性质: u u V n 1. u A0 A0 ii ii ij ii i j (3.1-12) 2. I 为单位二阶张量。 ii i j 且记 A ; A 为 I 。即 I ii ii ij。并称
数学张量分析PPT课件

x y z
第6页/共92页
右散度表示为: diva a
diva a
ei i a je j
ij
a j xi
ai xi
iai
a1 a2 a3 x1 x2 x3
显然 diva diva
今后对于矢量场的左散度和右散度不加区别
第7页/共92页
张量的散度
关于二阶张量场 T T的P左散度定义为:
间点的位置。两者由下列坐标变换联系起来:
xi xi xi' i, i ' 1,2,3
第23页/共92页
若 xi'是的线性函数,则 x i' 也是一个斜角坐标,而且坐标变换为:
xi
Ai i'
x i'
x i
x i'
xi'
这里
Ai i'
为变换系数,它是常数。
若 x i不是 xi' 的线性函数,则 xi' 称为曲线坐标。
标量的梯度:
标量函数:
f f (r)
则梯度为:
f gradf eii f
展开后有:
原式 1 f e1 2 f e2 3 f e3
f i f j f k x y z
第1页/共92页
矢量的梯度: 左梯度
grad a a (i ei )(a j ej ) (eii )(a j e j )
a ai gi ai gi
由 eijk 的定义可知,下列混合积等式成立:
gig jgk gi g j gk gig jgk eijk gig jgk gi g j gk gig jgk eijk
这两个量定义为爱丁顿(Eddington)张量并分别记为 和ijk 。ijk 由此定义可知
第6页/共92页
右散度表示为: diva a
diva a
ei i a je j
ij
a j xi
ai xi
iai
a1 a2 a3 x1 x2 x3
显然 diva diva
今后对于矢量场的左散度和右散度不加区别
第7页/共92页
张量的散度
关于二阶张量场 T T的P左散度定义为:
间点的位置。两者由下列坐标变换联系起来:
xi xi xi' i, i ' 1,2,3
第23页/共92页
若 xi'是的线性函数,则 x i' 也是一个斜角坐标,而且坐标变换为:
xi
Ai i'
x i'
x i
x i'
xi'
这里
Ai i'
为变换系数,它是常数。
若 x i不是 xi' 的线性函数,则 xi' 称为曲线坐标。
标量的梯度:
标量函数:
f f (r)
则梯度为:
f gradf eii f
展开后有:
原式 1 f e1 2 f e2 3 f e3
f i f j f k x y z
第1页/共92页
矢量的梯度: 左梯度
grad a a (i ei )(a j ej ) (eii )(a j e j )
a ai gi ai gi
由 eijk 的定义可知,下列混合积等式成立:
gig jgk gi g j gk gig jgk eijk gig jgk gi g j gk gig jgk eijk
这两个量定义为爱丁顿(Eddington)张量并分别记为 和ijk 。ijk 由此定义可知
最新张量分析第一章ppt课件

132,321,213
0,当 i , j , k 中有取值相同者.
1
1
3
2
3
2
偶排列
奇排列
21
矢量叉积 a b ( a 2 b 3 a 3 b 2 ) e 1 ( a 1 b 2 a 2 b 1 ) e 3 ( a 3 b 1 a 1 b 3 ) e 2 用置换符号可写成
a b c ( ijka jb k ) ( c i)
23
1.2 恒等式 ijk istjs kt jt ks
第一种证明:
11 12 13 1 0 0
1r 1s 1t
I 21 22 23 0 1 0 1 rst I 2r 2s 2t rst
31 32 33 0 0 1
3r 3s 3t
ir is it ijkrst jr js jt
a b abco s
点积满足
abba
a ( b c ) a b a c
11
(5)矢量的叉积
e1 e2 e3 aba1 a2 a3
b1 b2 b3
(a2b3a3b2)e1(a1b2a2b1)e3(a3b1a1b3)e2
注意:
a b b a
axb
O
b
a -axb
12
质量守恒,动量守恒,能量守恒,热力学基本定律 3)连续介质的本构方程
描述各种连续介质模型对外部作用的响应;
3
第一章 连续介质力学的数学基础
重点掌握: 1. 张量的概念 满足坐标变换规律 运算法则 2 .证明一些恒等式 3 .梯度,散度,旋度等概念
7
第一章 连续介质力学的数学基础
1.1 矢量
1.1.1矢量的概念
在三维欧几里得空间内, 具有大小和方向 的有向 线段.
0,当 i , j , k 中有取值相同者.
1
1
3
2
3
2
偶排列
奇排列
21
矢量叉积 a b ( a 2 b 3 a 3 b 2 ) e 1 ( a 1 b 2 a 2 b 1 ) e 3 ( a 3 b 1 a 1 b 3 ) e 2 用置换符号可写成
a b c ( ijka jb k ) ( c i)
23
1.2 恒等式 ijk istjs kt jt ks
第一种证明:
11 12 13 1 0 0
1r 1s 1t
I 21 22 23 0 1 0 1 rst I 2r 2s 2t rst
31 32 33 0 0 1
3r 3s 3t
ir is it ijkrst jr js jt
a b abco s
点积满足
abba
a ( b c ) a b a c
11
(5)矢量的叉积
e1 e2 e3 aba1 a2 a3
b1 b2 b3
(a2b3a3b2)e1(a1b2a2b1)e3(a3b1a1b3)e2
注意:
a b b a
axb
O
b
a -axb
12
质量守恒,动量守恒,能量守恒,热力学基本定律 3)连续介质的本构方程
描述各种连续介质模型对外部作用的响应;
3
第一章 连续介质力学的数学基础
重点掌握: 1. 张量的概念 满足坐标变换规律 运算法则 2 .证明一些恒等式 3 .梯度,散度,旋度等概念
7
第一章 连续介质力学的数学基础
1.1 矢量
1.1.1矢量的概念
在三维欧几里得空间内, 具有大小和方向 的有向 线段.
《张量分析本科》课件

2
流体力学
流体力学中的张量可描述液体和气体的流动性质,从而帮助工程师设计和优化流体系 统。
3
材料科学
张量在材料的力学行为、热膨胀和磁性等方面的研究中起着重要作用,有助于材料性 能的改进。
经济学中的张量应用
金融风险评估 市场分析 关联性, 对风险评估和投资决策具有重要意义。
《张量分析本科》PPT课 件
这个课程将介绍张量的定义、基本概念、运算和性质,以及它在物理学、工 程学和经济学等领域的应用。
张量的定义和基本概念
张量是一个多维数组,具有特定的变换规律。它在数学和物理学中扮演着重 要角色,能够描述物体在各个方向上的变化。
张量的运算和性质
张量可以进行加法、乘法等运算,还具有一些特殊的性质,如对称性、反对称性和行列式等。这些运算 和性质是研究和应用张量的基础。
学科交叉
张量分析作为一门综合性学科, 促进了不同学科之间的交流与 合作,推动了学科发展的跨越 性进展。
学习资源推荐
1 书籍和教材推荐
2 网上教程和视频
《张量分析导论》、《张量分析教程》等 是学习和研究张量分析的重要参考资源。
有许多免费的网上教程和视频,可以帮助 初学者快速入门和掌握张量分析的基本概 念和应用。
张量在市场需求、价格和产量之间的关系分 析中,能够提供深入洞察和科学决策支持。
张量分析可以用于挖掘大规模数据集中的模 式和趋势,为经济预测和决策提供准确和可 靠的依据。
张量分析的重要性
科学研究
张量分析在各个学科的科学研 究中发挥着重要作用,帮助解 决复杂问题和揭示自然规律。
技术发展
随着科技的发展和应用领域的 拓展,张量分析为新技术的发 展提供了关键理论基础。
张量的坐标表示和变换规律
张量分析课件-1.6 张量的基本概念

T ij βki βl jT kl
T
i j
Tij βik β ljTkl
j k j l T β β i i l T k
β β T
l j
i k
k l
同一坐标系内,张量的逆变、协变、混变分量之间 满足指标升降关系。m 阶张量可以有 nm 种分量的集合。 n 维空间中 m 个矢量分量进行并乘运算所得到 nm 个数的集合可构成 m 阶张量。例如:
t Tijk βir β s β j k Trst
T
ij k
β β β T
t k
i r
j s
rs t
t r T i jk βri β s β T j k st
1.6.2.1 张量的实体表示法(并矢表示法)
j i T T ij gi g j Tij g i g j T i j gi g j T i g gj k i j k T T ijk gi g j gk Tijk g i g j g k T ij g g g T g g g k i j jk i
基张量(基矢量的并矢)线性无关。
在张量的实体表示法中,分量指标的排列顺序和相配 基矢量的排列顺序是一一对应的,不能随意更换。例如
T T gi g j T g j gi T gi g j T g j gi
ij ji ji ij
1.6.3
度量张量
G g ij gi g j gij g i g j δ ij gi g j δi j g iT
st i
T
ij
β β T rs
r i s j rs s j r s s r
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如: ajixi bj
akixi bj akixi bk
在晶体物理中所涉及的张量分析是比较简单的,晶体的
对称性的操作对应的坐标变换,一般使用三维正交直角坐标
系的变换就够了。本章中将只限于介绍这种坐标系中所定义
的张量。
.
2
2.1标量、矢量、张量
一、标量 在物理学中,有一些量是没有方向而言的,如温度、质
量、密度等,这些物理量只需要一个数值即可描述,我们把 这种物理量称为标量。
有相同的方向,此时J与E的关系变为
J1 11E112E213E3 J2 21E122E223E3 J3 31E132E233E3
.
5
或表示成分量形式
3
Ji ijEj (i1,2,3) j1
矩阵形式
J1 111213 E1 J2 212223 E2 J3 313233 E3
.
6
此处σ不再是一个数,而是9个数构成一个方阵,称为电导率
.
8
一、坐标变换
如图所示,设有直角坐标
系OX1X2X3,其三个方向的单
位矢为 e1,e2,e3,经过旋转
变换为新的坐标系
OX'IX'2X'3,在新的坐标系
里的单位矢为 e'1,e'2,e'3,令
新坐标系中在旧坐标系中的
方向余弦为aij (j=1,2,3 )
,则
.
9
e'1 a e11 1 a e 12 2 a e13 3 e'2 a e21 1 a e 22 2 a e23 3 e'3 a e31 1 a e 32 2 a e33 3
第二章 张量的基本知识
.
1
张量的提出:
晶体具有各向异性,从而使得晶体的物理性质在不同方 向上也存在着差异。晶体的各向异性是一种很普遍的特性, 特别是很多现象如热电、压电、电光、声光、非线性光学效 应等物理现象都完全是因为晶体的各向异性才能表现出来。 于是,人们实践中探索出了一套描述各向异性性质的数学方 法,这种方法就是张量方法。
表示对该指标在它的取值范围内求和,并称这
样的指标为哑指标。
.
15
Aijxiyj A11x1y1A12x1y2A13x1y3 A21x2y1A22x2y2A23x2y3 A31x3y1A32x3y2A33x3y3
.
16
1 求和约定仅对字母指标有效
2 同一项内二对哑标应使用不同指标,如
aix jixj
有些量虽然在坐标变换时数值不变,但其符号在第二类 点操作时发生改变,这称为赝标量。
.
3
二、矢量
有一些物理量,它既有大小,又有方向,如力、速度、 电场强度等,这些物理量需要指明其大小和方向才能完全描
述,称为矢量。取直角坐标系OX1X2X3,设有矢量 f ,在三 个坐标轴方向上的投影分别为 f 1, f 2, f 3 ,于是我们将 f 表 为: f (f1, f2, f3)。
或简写为
3
e'i ae ij j ( i1,2,3) j1
反之,有
3
ei ajei 'j (i1,2,3)
j1
.
10
表示成矩阵形式为
e'1 e'2
a11 a21
a12 a22
a13e1
a23e2
e'3
a31
a32
a33e3
将以上关系列成方阵形式则为
aij cose'(iej)
X1 X2 X3 (老坐标轴)
3 i 1
i3 1aix jixj
3 哑指标可以换用不同的字母指标
.
17
2.自由标 定义:凡在同一项内不重复出现的指标。如
ajixi bj j 为自由标
j 1 a 1x 1 1a 1x 2 2a 1x 3 3b 1
.
18
1 同一个方程中各项自由标必须相同
2 不能改变某一项的自由标,但所有项的 自由标可以改变
ui( i=1,2,3)~ u1,u2,u3~ u, v, w
11 12 13
ij(i, j 1,2,3)~21
22
2
3
31 32 33
.
14
求和约定 哑指标和自由标 1. 求和约定和哑指标
Sa 1x 1a 2x2 a nxn
n
n
S aixi ajxj
i1
j1
约定
Saixi ajxj
凡在某一项内,重复一次且仅重复一次的指标,
( 新坐标系) X1' a11 a12 a13
X2' a21 a22 a23
X3' a31 a32 a33
称9的a的分量组成的方阵称为坐标出了新老坐标之. 间变换的规律。
11
二、矢量分量的变换 设有一矢量p,其在旧坐标系中的分量为p1,p2,p3,
在新坐标系中的分量为p1*,p2*,p3*,由于是同一个 矢量p,故有
张量,这是一个二阶张量。于是,各向异性晶体中的欧姆定
律可表示为
JE
11 12 13
21
22
23
31 32 33
张量的定义:一般来说,在物理学中,有一些量需要用9个分 量来描述,这种物理量就是二阶张量。
.
7
2.2 张量的数学定义
描述物理量的矢量和张量应与坐标轴的选择无关。就是 说,当坐标轴变换时,矢量和张量的所有分量都随之变换, 但作为描述物理量的矢量和张量本身是不变的。因此,分量 的变换必有一定的规律。接下来我们就来讨论一下坐标变换 时分量变换的规律。
pp1e1p2e2p3e3 p*1e*1p*2e*2p*3e*3
.
12
即为
P 1 *
P 2 *
P 3 * e e 1 2 * * P 1 *
P 2 *
a 11a 12a 1 3e 1
e 1
P 3 * a 21a 22a 2 3 e2 P 1 P 2 P 3 e2
e3 *
a 31a 32a 3 3 e3
e3
于是得
PP*A
P*PA 1
注:此处P与P*均为行向量
.
13
为了表示方便我们下面引入指标符号的概念
指标符号:
x1,x2xn 记作
xi(i1,2,n)
下标符号 i 称为指标;n 为维数
指标 i 可以是下标,如 xi 也可以是上标,如 xi
定义这类符号系统为指标符号,一般采用下标
xi( i=1,2,3)~ x1,x2,x3 ~ x, y, z
与赝标量概念相似,我们可以引入赝矢量,赝矢量与矢 量的区别在于其变换多了一个符号的改变。例如各种轴矢量 (磁场强度、磁感应强度等)就是赝矢量。
.
4
三、张量
先看一个例子:对于均匀导体,在电场强度E的作用下,其 电流密度J和电场强度E有相同方向,即均匀导体的欧姆定律
J E
其中σ为电导率,是标量。
但是对于晶体,由于各向异性,一般情况下J与E并不具