近场天线增益测量方法的选择
电子科技大学课件《天线测量》第四章增益测量

第四章 增益测量第一节 引言天线的方向增益(通常称方向性系数)是表征天线所辐射的能量在空间分布情况的量,定义为在相同辐射功率情况下,该天线辐射强度),(ϕθp 与平均辐射强度之比,即0p 0),(),(p p D ϕθϕθ=(4﹒1) 由于辐射强度正比于电场强度的平方,因此,方向性系数也可写为 22),(),(E E D ϕθϕθ=(相同辐射功率) (4﹒2)式中,),(ϕθE 是该天线在),(ϕθ方向产生相同电场强度的条件下,点源天线的总辐射功率与该天线的总辐射功率之比,即 ),(),(0ϕθϕθT TP P D =(相同电场强度) (4﹒3)一般情况均指最大辐射方向的方向性系数,因此,式(4﹒1)、(4﹒2)、(4﹒3)可写为2020E Ep p D m m m == (相同辐射功率)mToTP P =(相同电场强度) (4﹒4) 方向性系数是以辐射功率为基点,没有考虑天线能量转换率。
为了更完整地描述天线的特性,我们以天线输入功率为基点,将该天线与点源天线作比较,于是,仿照方向性系数所定义的量就叫做天线的功率增益(通常称为增益系数),即22),(),(E E G ϕθϕθ= (相同输入功率) (4﹒5)或),(),(0ϕθϕθin inP P G =(相同电场强度) (4﹒6)式中,和in P 0),(ϕθin P 分别是点源天线和该天线的输入功率。
若指天线最大辐射方向的增益,则式(4﹒5)和(4﹒6)可写为 22E E G m m =(相同输入功率)inminP P 0=(相同电场强度) (4﹒7) 将式( 4﹒7)进行简单的换算,则有Am inm mTmT oT oT in inm oin m D P P P P P P P P G ηη••=•==00 (4﹒8) 式中,0η和A η分别是点源天线和某天线的效率。
令点源天线效率10=η,并因一般谈及方向性系数或增益系数均指最大发射方向,为简化书写,我们将足标“”去掉,于是式(4﹒8)就变为m D G A η= (4﹒9) 可见,天线的增益系数等于天线的效率与方向性系数之积。
天线增益的简易测试

天线增益的简易测试----b8d2de14-715a-11ec-b175-
7cb59b590d7d
1、天线增益的定义:
g=η*D增益=方向性*效率
半波振子方向性为1.641.64,用dbi表示,即2.15dbi(i即以各向同性的点源为参考)
增益一般采用比较法测量:
a.在相同条件下,dbd,再加2db即得dbi。
gd=p0/pd|
b.在相同条件下,的功率密度之比,即:
gd=s0/sd|
c.在相同条件下,点的场强的平方之比,即:
gd=| e0 | ^2/| ed | ^2|
d.在相同条件下,半波振子天线与某天线在最大辐射方向上同一点处产生相同场强时发射
,电源控制单元为自制(参见:bg1lqx05-10-10
4,测试步分贝表示:
gg(db)=10lg(pg/px)
实物照片如下:
在不需要计算的情况下,推导并计算了仪表指针的偏转角度和功率,
绘制了包含两条增益刻线、这样就可以直接读出测试功率和天线增益了,绝对功率数值并不重要了。
测试原/增益,调整发射功率使表头指针指到0db处。
将开关
调整功率是天线的增益。
-频率曲线,如果场地条件允许,改变被测天线和。
天线测试方法

天线测试方法天线是无线通信系统中不可或缺的组成部分,它的性能直接影响着通信质量和覆盖范围。
因此,对天线进行有效的测试是非常重要的。
本文将介绍一些常用的天线测试方法,希望能对大家有所帮助。
首先,我们来谈谈天线的VSWR测试。
VSWR(Voltage Standing Wave Ratio)即驻波比,是衡量天线匹配度的重要参数。
VSWR测试可以通过天线分析仪来实现,通过测量输入输出端口的反射系数,从而得到VSWR值。
通常情况下,VSWR值越小,说明天线的匹配度越好,性能也越稳定。
其次,天线增益测试也是非常重要的。
天线的增益直接影响信号的传输距离和覆盖范围。
增益测试可以通过天线测试仪器来实现,一般通过将天线放置在标准测试环境中,然后测量天线的辐射功率和参考天线的辐射功率,从而计算出天线的增益值。
另外,天线的方向图测试也是必不可少的。
方向图测试可以帮助我们了解天线辐射功率随方向的变化情况,这对于确定天线的辐射范围和覆盖方向非常重要。
通常情况下,方向图测试需要使用天线测试仪器,并在不同方向进行测量,最终得到天线的辐射功率分布图。
此外,天线的极化测试也是天线测试的重要内容之一。
天线的极化状态直接影响着信号的传输效果,因此需要对天线的极化特性进行测试。
极化测试可以通过天线测试仪器来实现,一般通过测量天线在不同极化状态下的辐射功率,从而得到天线的极化特性。
最后,我们还需要对天线的耐压和耐候性进行测试。
耐压测试主要是测试天线在额定工作电压下的性能,以及在异常情况下的耐压能力。
而耐候性测试则是测试天线在不同环境条件下的性能表现,例如高温、低温、潮湿等环境下的性能稳定性。
综上所述,天线测试是确保无线通信系统正常运行的重要环节,通过对天线的VSWR、增益、方向图、极化、耐压和耐候性等方面进行全面测试,可以有效地保证天线的性能稳定性和可靠性。
希望本文介绍的天线测试方法对大家有所帮助,也希望大家在实际工作中能够重视天线测试工作,确保通信系统的稳定运行。
各种近远场天线测量系统比较

按照天线场区的划分,天线测量系统可分为远场测量系统和近场测量系统。
1.远场测量系统远场测量系统按使用环境可分为室外远场测量系统和室内远场测量系统。
室外远场需要较长的测量距离,通常用天线高架法来尽量减小地面反射,其他架设方法还有地面反射法和斜距法。
室外远场测量需要在合适的外部环境和天气下进行,同时,室外远场对安全和电磁环境有较高要求。
室内远场在微波暗室中进行,暗室四周和上下铺设吸波材料来减小电磁反射。
如果暗室条件满足远场测量条件,可选择传统远场测量法,如果测量距离不够远场条件,可以选择紧缩场,通过反射天线在被测天线处形成平面电磁波。
2.近场测量系统近场测量在天线辐射近场区域实施。
在三至五个波长的辐射近场区,感应场能量已完全消退。
采集这一区域被测天线辐射的幅度和相位数据信息,通过严格的数学计算就可以推出被测天线测远场方向图。
按照扫描方式的不同,常用的近场测量系统可以分为平面近场系统、柱面近场系统和球面近场系统。
(1)近场测量系统平面近场测量系统在辐射近场区的平面上采集幅相信息,这种类型的测试系统适用于增益>15dBi的定向天线、阵列天线等,最大测量角度<± 70 º。
(2)柱面测量系统柱面近场测量系统在辐射近场区的柱面上采集幅相信息,这种类型的测试系统适用于扇形波束和宽波瓣的天线。
(3)球面测量系统球面近场测量系统在辐射近场区的球面上采集幅相信息,这种类型的测试系统适用于低增益的宽波瓣或全向天线。
3.如何选择天线测量系统,需要考虑到的几个重要的特性和指标:1.天线应用领域;2.远场角度范围:远场波瓣图坐标系、各种天线性能参数定义、副瓣和后瓣特性;3.电尺寸:根据电尺寸和计算出远场距离;4.方向性指标:宽波瓣或窄波瓣;5.工作频率和带宽:工作频率设计到吸波材料尺寸和暗室工程设计及造价;6.环境和安全性要求:天气、地表环境等因素;7.其他因素:转台或铰链、通道切换开关等。
天线增益测试方法

天线增益测试方法引言:天线增益是天线在特定方向上辐射或接收无线信号的能力。
在无线通信系统中,天线增益的测试是非常重要的,因为它直接影响到信号的传输和接收质量。
本文将介绍几种常用的天线增益测试方法。
一、理论计算法理论计算法是一种基于数学模型的天线增益测试方法。
它通过天线的物理特性参数以及信号传输的理论模型,计算出天线在特定方向上的增益值。
这种方法通常需要天线的几何参数、频率、天线材料等信息,并结合天线辐射方向图和功率密度图进行计算。
理论计算法具有较高的精度和准确性,但需要掌握天线理论知识和专业计算工具。
二、场强测试法场强测试法是一种实测天线增益的方法。
它通过在特定位置上设置场强测试仪器,测量天线接收到的信号强度,然后与参考天线进行对比,计算出天线的增益值。
场强测试法可以直接测量天线的实际性能,适用于各种类型的天线。
但需要在实际测试中考虑到环境因素对测试结果的影响。
三、标称增益测试法标称增益测试法是一种基于天线制造商提供的标称增益值进行测试的方法。
它通过查阅天线的规格书或制造商提供的技术资料,找到天线的标称增益值,并在实际使用中进行验证。
这种方法简单直接,适用于无法进行准确测量的情况。
但需要注意,标称增益值是制造商提供的理论值,实际性能可能会有一定差异。
四、比较测试法比较测试法是一种通过对比不同天线的性能进行测试的方法。
它通过选择一组具有不同增益的天线,在相同条件下进行测试,然后比较它们的信号强度,计算出增益值。
这种方法简单易行,适用于快速测试和筛选天线。
但需要注意选择合适的参考天线和测试环境,以保证测试结果的准确性。
五、模拟仿真法模拟仿真法是一种使用电磁场仿真软件进行天线增益测试的方法。
它通过在仿真软件中建立天线模型、设定工作频率和辐射方向,进行电磁场仿真计算,得出天线的增益值。
这种方法可以模拟不同工作条件下的天线性能,提前评估天线的性能。
但需要具备电磁场仿真软件的使用技能和较高的计算资源。
六、实测法实测法是一种直接在实际应用环境中进行天线增益测试的方法。
天线增益测量教学设计

天线增益测量教学设计教学设计: 天线增益测量一、教学目标:1. 理解天线增益的概念及其重要性;2. 掌握测量天线增益的方法和步骤;3. 能够根据测量结果评估天线性能的好坏。
二、教学内容:1. 天线增益概念和定义;2. 天线增益的测量方法和步骤;3. 天线增益的评估标准。
三、教学步骤:1. 导入部分(10分钟):a. 引入天线增益概念,解释其在通信系统中的作用;b. 提问学生:你认为如何测量天线增益?你希望通过测量天线增益能得到哪些信息?2. 理论讲解(30分钟):a. 分析天线增益的定义及其在通信领域中的应用;b. 介绍天线增益的测量方法:一是理论计算法,二是实测法;c. 解释天线增益的评估标准,如dB、dBi等。
3. 实验操作(40分钟):a. 设计实验装置:包括信号源、功率计、天线、介质等;b. 使用理论计算法进行测量:通过计算天线的射频功率Gt和接收功率Gr,应用增益定义公式计算天线增益;c. 使用实测法进行测量:通过在实验装置中加入用于接收和发射天线的移动终端,通过测量终端的接收功率和发射功率计算天线增益。
4. 数据处理(20分钟):a. 分析并比较理论计算法和实测法的测量结果;b. 讨论天线增益与其它因素(如频率、天线形状等)的关系;c. 利用测量结果评估天线的性能。
5. 总结归纳(10分钟):a. 总结天线增益的概念、测量方法和评估标准;b. 提问学生:什么因素会影响天线增益?如何进一步优化天线性能?四、教学资源:1. 实验装置(信号源、功率计、天线、介质等);2. 计算器、电脑等;3. 教师课件和实验指导书;4. 相关参考书籍和资料。
五、教学评估:1. 实验报告:要求学生填写实验记录和数据分析,以及对测量结果的评估和总结;2. 学生讨论:鼓励学生在实验结束后参与讨论、分享观点和经验;3. 教师评估:根据学生的实验操作和讨论表现,以及实验报告的综合评价,对学生的掌握程度进行评估。
六、教学延伸:1. 继续优化天线性能的方法和策略;2. 深入研究天线参数和增益的相关知识;3. 探究不同频率下天线增益的变化规律。
天线增益测量.

第一章概念1.1 定义1.1.1 功率增益天线在某方向上的辐射强度(每单位立体角内天线所辐射的功率)与天线从其信号源所得的净功率的比值称为天线在该方向的功率增益。
功率增益表征天线固有的性质,不包括因阻抗或极化失配所引起的系统损失。
在确定整个系统的功率传递时,要测量和考虑天线的输入阻抗与天线的极化。
1.1.2 峰值功率增益功率增益的最大值称为峰值功率增益。
本文所指的公路增益测量均为峰值功率增益测量,知道了辐射方向图就可确定任何其它方向的增益。
1.2 测量方法概述1.2.1功率增益测量方法分类功率增益测量方法可分为两大类:绝对法和比较法。
1.2.1.1 绝对法分类绝对增益测量不需要预先知道测量中所使用的任一天线的增益。
这种方法通常用于增益标准天线的定标。
除了专门从事标准定标的实验室外,其它实验室很少采用这种方法。
1.2.1.2 增益传递法增益传递发也称增益比较法,它是增益测量最常用的方法。
用这种方法进行测量时,需使被测天线的增益与增益标准的增益天线进行比较。
1.2.2 确定天线功率增益所采用的技术确定天线功率增益所采用的技术因天线的工作频率而异。
1.2.2.1 1GHz以上的频率在1GHz以上的频率,通常采用自由空间测试场进行功率增益测量。
对这些频率,可采用微波技术,例如可采用电磁喇叭等波导元件。
1.2.2.2 0.1‐‐1GHz之间的频率对于0.1‐‐1GHz之间的频率,通常用地面反射测试场进行测量。
在这一频率范围内工作的天线通常安装在诸如飞机之类的构件上,这些构件会影响天线的性能。
此时可采用比例模型技术。
然而,只要比例模型天线制作的合适,其方向性与原型天线的方向性是相同的,故可以测量比例模型天线的方向性,再用其它方法测出原型天线的效率,从而求得功率增益。
可使装有原型天线的飞机相对于一个适当的地面站按规定的路线飞行,以证实方向性测量结果。
可用原型被测天线测出系统性能,并与比例模型的测量结果进行比较。
9第9章 天线增益的测试

第9章天线增益的测试9.1 两天线法1.用途当有两个相同的小型天线要测增益时,可用此法。
尤其是圆极化天线,因为不容易找到标准增益天线作比较,不得不采用此法。
此法适于测试小的辐射中心明确的天线,如常见的手机天线、笔记本天线、瓷片GPS天线或单组贴片天线等等,不一而足。
2.原理此法的理论根据是,两点源在自由空间的插损IL是可以算出的,因此换成两个天线后,插损减小的dB值即两天线增益dB值的和。
若两天线相同,除2即得单个天线的增益dB值。
如其中有一个已知,也可算出另一个。
3.条件首先想法接近自由空间环境,在暗室中用吸波材料或在普通房间内采用小的测试距离以接近自由空间环境。
因此G≤10,频率高时好办些。
其次是被测天线应有明确的辐射中心,以便量距离。
如贴片天线的辐射中心就在口上,而八木天线的辐射中心就说不清,距离不好确定,严格来讲不适于此法。
4.算法对于天线口面每边D都≤λ的天线,测试距离R= 2D2/λ=2λ。
以GPS瓷片天线为例,λ=0.19 米,R=0.38m, 由(17-1)式知:两天线之间的衰减Pr /Pt= G1A2/4πR2 代入A2=G2λ2/4π=G1G2(λ/4πR)2代入R=2=0.00158G1G2以下用dB值表示,插损IL=G1dB+G2dB-28dB,即G1dB+G2dB=28dB-IL注意:两点源在自由空间的插损是(λ/4πR)2,而不是扩散因子1/(4πR2)。
5.测法·在两个相同的天线的背面直接装上插座,架好并保持口面间距为2λ;·两连接电缆校直通后,分别接到两个天线插座测其间插损IL;如IL=18dB,则G=5dB;注意:此法以点源为准,测出的增益倍数为G,dB数为dBi;此法可与比较法结合起来作,即可先测两个半波振子的G,以作比较。
9.2 三天线法当有三个天线时,可用此法。
条件同两天线法。
原理:用两天线法,可测得两个天线增益dB值之和;若有三个天线,其增益分别为G1,G 2,G3,两两组合测三次得:G1dB+ G2dB= XdBG2dB + G3dB= YdBG3dB+ G1dB = ZdB三式相加除2得 G1dB + G2dB + G3dB =(X+Y+Z)dB/2 = WdB 则:G1dB = WdB – YdB, G2dB = WdB – ZdB, G3dB = WdB - XdB三天线法显然比两天线法繁得多,不是极其考究的情况,不必采用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
The method uses three direct gain measurements under different conditions to create a set of three equations with three unknown gains. The difference between the measurements is that one of the three antennas is either the transmit or receive antenna and each new measurement has a different combination of transmit and receive antennas. An example is shown in Table II. TABLE II. THREE-ANTENNA FAR-FIELD MEASUREMENT CONFIGURATION Meas. # 1 2 3 Tx Ant Ant-1 Ant-1 Ant-3 Rx Ant Ant-2 Ant-3 Ant-2 Transmission Equation M12- 20log10(λ/4πR) = G1 + G2 M13 - 20log10(λ/4πR) = G1 + G3 M32 - 20log10(λ/4πR)= G3 + G2
Pr-Pt is the ratio of power received to power transmitted Gr and Gt are the gains of the receive and transmit antennas 20log10(λ/4πR) is the space loss as energy spreads out over a sphere of radius R
II.
GAIN CALIBRATION REQUIREMENTS
Certain types of gain measurements require a calibration standard. When only a few narrow-band frequencies are required the cost of calibration can be minimal. When a wide bandwidth of frequencies is required, the cost of calibration rises significantly. For these reasons the range operator should understand how gain calibration affects accuracy and how the selection of a particular type of gain measurement affects calibration needs. Cost, schedule and accuracy are interdependent in the case of antenna gain measurements. Table I shows typical cost and schedule impacts on accuracy based on three types of calibration standards. While this table gives only rough estimates, it is clear that accuracy significantly affects cost and schedule. TABLE 1. COST AND SCHEDULE TRADEOFF WITH CALIBRATION ACCURACY Calibration method and accuracy Tradeoff Cost Schedule III. NRL curve (0.3-0.5 dB) 1x Days Self-Cal (0.2-0.3 dB) 3x Weeks Lab-Cal (0.1-0.2 dB) >UCTION
Gain is an important parameter to be measured on most antennas. Since the gain value is of little use if the accuracy is either unknown or poor, it is important to understand how gain errors contribute to gain accuracy and how to assess them. Range operators are often approached by project engineers to achieve high accuracy with little resources of time or money. Many papers have been written on estimating the accuracy of gain and pattern measurements [1] but little is discussed on the subject of accuracy vs. gain method. In this paper, we assume the reader understands how to assess range errors and we devote the study here to understanding how the various gain measurement techniques can affect results. Understanding the tradeoffs of accuracy, cost and schedule becomes a valuable skill to the efficient use of resources. Accuracy requirements change based on antenna type. Often high gain satellite antennas require very accurate gain measurements with accuracies typically < 0.2 dB. Low gain cell phone antennas often require peak gain measurement accuracies no better than 0.7 dB. The expense required to obtain a 0.2 dB gain accuracy is typically 10 to 50 times greater than a 0.7 dB accuracy. Some of the tradeoffs include: 1) Gain standard calibration vs. cost 2) Far-field peak accuracy vs. measurement time 3) Automation vs. set up time
OVERVIEW OF GAIN TECHNIQUES
Some types of gain measurements require pre-calibrated gain standards. These standard gain antennas (SGA) can become the costliest element of the measurement in achieving high gain accuracy. The advantages of SGAs are that once calibrated, the gain measurement can be done in a quick, repeatable and efficient manner. Each gain method uses slightly different techniques. Three of the most common techniques are discussed here: Direct gain, Comparison gain and Three-Antenna gain. The simplest explanation of a gain measurement can be seen by using the log form of a modified Friis transmission equation which relates the gain and separation between two antennas to the signal power transmitted and received: Pr - Pt = Gr + Gt + 20log10(λ/4πR) where:
SELECTION CRITERIA FOR NEAR-FIELD GAIN TECHNIQUES
Gregory Masters, Patrick Pelland
Nearfield Systems Inc. Torrance, CA, USA
Abstract— Several gain measurement techniques exist for nearfield antenna ranges. These include Comparison-gain, Directgain and Three-antenna gain methods. Each technique has its own unique advantages and disadvantages in terms of accuracy, cost and measurement time. Range operators must understand the differences between these techniques in order to properly configure their test system to best suit their requirements. This paper surveys each of the gain techniques and identifies the relative advantages of each. As part of the survey, all three techniques were performed on three types of near-field antenna measurement systems: Planar, Cylindrical and Spherical. The results of this paper provide the reader with a practical understanding of each technique, the formulas required, and real-world examples for the trade-offs needed to outfit a range for fast and accurate gain measurements while balancing cost and schedule. Keywords: Near-field, gain, planar, comparison, direct, three-antenna. cylindrical, spherical,