六自由度机械手的坐标建立及运动学分析
六自由度柔性机械臂的运动学分析毕业设计论文

六自由度柔性机械臂的运动学分析毕业设计论文简介本毕业设计论文旨在对六自由度柔性机械臂的运动学进行分析。
柔性机械臂在工业自动化和机器人领域具有广泛的应用前景。
通过研究机械臂的运动学,可以深入了解其运动特性和参数,为进一步的控制和优化提供基础。
研究目标1. 分析六自由度柔性机械臂的关节运动学以及末端执行器的位置和姿态。
2. 研究不同控制参数对机械臂运动学的影响。
3. 探究柔性杆件对机械臂运动学的影响。
4. 比较刚性机械臂和柔性机械臂的运动学性能。
方法1. 建立六自由度柔性机械臂的数学模型。
2. 使用逆运动学方法求解关节角度。
3. 应用运动学方程计算末端执行器的位置和姿态。
4. 进行仿真实验,验证模型和算法的准确性和可行性。
研究成果1. 描述六自由度柔性机械臂的关节运动学和末端执行器的运动学。
2. 对机械臂运动特性进行分析和讨论。
3. 提出柔性杆件对机械臂运动学性能的影响。
4. 比较刚性机械臂和柔性机械臂的运动学性能差异。
结论本毕业设计论文对六自由度柔性机械臂的运动学进行了详细分析和研究,揭示了机械臂运动特性和柔性杆件对其性能的影响。
研究结果对于机械臂的控制和优化具有重要意义,对进一步发展柔性机械臂技术具有一定的指导作用。
参考文献[1] Author 1, Author 2. (Year). Title of Paper 1. Journal Name, Volume(Issue), page range.[2] Author 3, Author 4. (Year). Title of Paper 2. Conference Name, page range.。
六自由度机械手运动分析甄选

六自由度机械手运动分析甄选机械手是一种由多个自由度组成的机械装置,用于完成各种工业操作任务。
在机械手中,自由度指的是机械手能够独立运动的自由方向的数量。
常见的机械手有三自由度、四自由度和六自由度等不同类型。
在本文中,我们将重点讨论六自由度机械手的运动分析和甄选。
六自由度机械手是指具有六个独立自由度的机械手,每个自由度对应着机械手的一个运动方向。
六自由度机械手一般由基座、腰、肩、肘、腕和手等部分组成,每个部分对应着机械手的一个自由度。
这种机械手具有广泛的应用领域,例如在装配、焊接、喷涂、搬运等工业生产过程中的自动化操作。
在进行六自由度机械手的运动分析时,首先需要确定机械手各个部分的运动轴线和相对于基座的位置关系。
这样可以建立坐标系,在该坐标系中描述机械手的运动。
然后,需要确定机械手各个部分的运动范围和限制条件,以及各个部分之间的运动耦合关系。
通过这些分析,可以得到机械手的运动方程和逆运动学解,从而实现对机械手的运动控制。
在甄选六自由度机械手时,需要考虑以下几个关键因素:1.负载能力:机械手的负载能力是指机械手能够承受的最大负载重量。
在甄选机械手时,需要考虑需要处理的工件的重量,选择适当的机械手负载能力。
2.工作范围:机械手的工作范围是指机械手能够覆盖的工作空间。
在甄选机械手时,需要考虑需要处理的工件的尺寸和形状,选择能够满足工作范围要求的机械手。
3.精度要求:机械手的精度是指机械手能够实现的运动精度。
在甄选机械手时,需要考虑需要处理的工件的精度要求,选择能够满足精度要求的机械手。
4.控制系统:机械手的控制系统是指用于实现机械手运动控制的硬件和软件系统。
在甄选机械手时,需要考虑机械手的控制系统是否能够满足实际应用的需求。
5.价格和性能比较:机械手的价格是一个重要的考虑因素,同时也需要综合考虑机械手的其他性能指标,如速度、加速度、稳定性等,进行综合评估和比较。
在机械手的甄选过程中,可以借助计算机仿真和虚拟现实技术,对不同的机械手方案进行模拟和评估。
六自由度机器人运动学分析

六自由度机器人运动学分析殷固密,王建生(五邑大学智能制造学部,广东江门529020)0引言随着中国制造2025和工业4.0的提出与发展,机器人在“机器换人”和提高社会生产力中扮演着不可或缺的重要位置。
为了使机器人平稳准确地完成指定任务,机器人的运动学分析是必不可少的。
其中,机器人运动学分析的基础就是D-H 参数建立和正逆运动学求解及验证。
通过基础分析,可以帮我们了解机器人的工作方法,揭示机构的合理运动方案和控制算法。
结合使用仿真软件的计算可视化,可以更直观地体现机器人的设计效果,及时发现缺点和不足并改正。
以库卡机器人KR16-2,一种末端三关节轴线相交于一点的六自由度工业机器人为研究对象,通过Craig 和Spong 两种不同的D-H 法则(全称Denavit-Hartenber)对该机器人机型进行运动学建模,推导出机器人正逆运动学模型,并利用MATLA 及Robotics Toolbox 进行运动学分析仿真验证。
1机器人建模KR16-2机器人实物模型的基本结构及尺寸如图1所示。
1.1Craig 的D-H 方法建模Craig 的D-H 方法又称改进D-H 方法(简称MDH ),其建立各个关节参考坐标系为:以关节轴i 和i+1的交点或公垂线与i 轴的交点作为连杆坐标系{i }的原点;以关节轴i 轴的方向为坐标轴z i 的方向;以关节轴i 和i+1的公垂线方向为x i 方向,且指向指向关节轴i+1的方向;y i 根据右手直角坐标系螺旋法则确定,建立D-H 坐标系如图2所示。
根据建立的D-H 坐标系,得出各个关节的D-H 参数,如表1所示。
其中,连杆长度a i 为沿x i 轴从z i 移动到z i+1的距离;连杆扭角αi 为绕x i 轴从z i 旋转到z i +1的角度;连杆偏距d i 为沿z i 轴从x i -1移动到x i 的距离;连杆转角θi 为沿z i 轴从x i -1旋转到x i 的角度。
摘要:针对机器人不同运动学的建模方法,以KUKA机器人KR16-2为模型,分别采用Craig和Spong的D-H方法(全称Denavit-Hartenberg方法),建立D-H坐标系,建立机器人运动学模型,求解正逆运动学方程,并利用MATLAB中的Robotics Toolbox工具箱对机器人正逆运动学进行示教验证。
六自由度机械手的坐标建立及运动学分析

第**卷第**期20**年*月机械工程学报JOURNAL OF MECHANICAL ENGINEERINGVo l.** No.**** 20**DOI:10.3901/JME.20**.**.***六自由度机械手的坐标建立及运动学分析摘要:从运动学分析的基础上着手研究轨迹控制的问题,利用运动学逆解的方式分析复杂轨迹运动的可行性和实用性。
通过建立机械手的笛卡尔坐标系,推导出机械手的正、逆运动学矩阵方程,并研究了正、逆运动学方程的解;在此基础上建立机械手的工作空间,并讨论其工作空间的灵活性和存在可能性。
因此本文的另一种方式对六自由度串联机械手的复杂运动控制问题进行研究,提出以机械手示教手柄引导末端执行器对复杂运动轨迹进行预设计。
然后通过记录程序进行复杂轨迹的再实现,再对记录程序进行预修改,最终通过现有的程序进行设计编程完成复杂轨迹设计任务。
并利用MATLAB对轨迹进行仿真,对比其实际与计算的正确性。
最后本设计通过六自由度串联机械手实现平面文字轨迹,得出其设计的方式。
即首先利用示教手柄实现轨迹预设,记录预设轨迹程序,然后再对比程序初始化坐标进行手动编程。
关键词:六自由度机械手,笛卡尔坐标系,运动学方程,仿真,示教手柄The coordinates of six degrees of freedom manipulator and kinematics analysis is establishedWU Yanchao JIN Yuanxun ZHAO Xin LI Daohai SONG Ping MENG Ya ABSTRACT:T his article based on the analysis of kinematics to study the trajectory control problems, use of inverse kinematics of the complex mode of tracking movement of the feasibility and practicality. Through the establishment of the manipulator Cartesian coordinates, derived manipulator is the inverse kinematics matrix equation and the study is the inverse kinematics of the equation solution on the basis of this establishment manipulator working space. And discuss their work space The flexibility and the possibility exists.So in another way to the six degrees of freedom series manipulator motion control the complex issues of research, to handle the machinery Shoushi guide for the implementation of the end of the complex pre-designed trajectory. Then track record of the complicated procedure to achieve, and then record the pre-amended procedures.The eventual adoption of the existing procedures designed trajectory design of complex programming tasks. And using MATLAB simulation of the track, compared with its actual calculation is correct.The final design through six degrees of freedom series manipulator track to achieve flat text, draw their design approach. That is, first of all use of teaching handle achieve trajectory default the track record of default procedures, and then compared to manual procedures initialized coordinate programming.key words:Six degree-of-freedom manipulators,Cartesian coordinates, Equations of motion,Simulation, Demonstration handle机 械 工 程 学 报 第49卷第6期前言基于六自由度串联机械手的复杂运动控制的研究,期望通过一种使用的轨迹设计方法,即利用六自由度串联机械手实现平面复杂运动轨迹的设计,使其能在不同的工业生产下完成预定的轨迹实现的准确性和实用性,则该机械手将在实在加工工业中发挥更重要的作用,并可完成许多人工条件无法完成的任务,从而提高机械手的利用性。
6自由度机械手的算法

6自由度机械手的算法介绍6自由度机械手是一种具有6个自由度的机械臂,可以在空间中完成复杂的运动任务。
为了实现机械手的精确控制和运动规划,需要使用一系列算法来实现。
本文将探讨6自由度机械手的算法,包括逆运动学、正运动学、轨迹规划等。
逆运动学逆运动学是指已知机械手末端位置和姿态,计算出各个关节角度的过程。
对于6自由度机械手而言,逆运动学问题是一个复杂的数学问题。
以下是逆运动学算法的基本步骤:1.确定机械手的DH参数,包括关节长度、关节偏移、关节旋转角度等。
2.根据机械手的DH参数,构建正运动学方程,即末端位置和关节角度的关系。
3.根据末端位置和姿态,求解正运动学方程,得到关节角度的解。
4.对于多解的情况,选择最优解,例如使关节角度变化最小或满足特定约束条件的解。
正运动学正运动学是指已知机械手各个关节角度,计算出末端位置和姿态的过程。
对于6自由度机械手而言,正运动学问题相对简单,可以通过矩阵变换来实现。
以下是正运动学算法的基本步骤:1.确定机械手的DH参数。
2.根据机械手的DH参数,构建正运动学方程,即关节角度和末端位置的关系。
3.根据关节角度,求解正运动学方程,得到末端位置的解。
轨迹规划轨迹规划是指在给定起始位置和目标位置的情况下,确定机械手的运动路径和速度的过程。
对于6自由度机械手而言,轨迹规划需要考虑运动的平滑性和避免碰撞等因素。
以下是轨迹规划算法的基本步骤:1.确定起始位置和目标位置。
2.根据起始位置和目标位置,计算出机械手的途径点和运动方向。
3.根据途径点和运动方向,生成平滑的运动路径。
4.考虑机械手的运动速度和加速度,生成合适的速度曲线。
5.考虑碰撞检测,避免机械手和其他物体的碰撞。
动力学建模动力学建模是指根据机械手的结构和参数,建立机械手的运动学和动力学模型的过程。
对于6自由度机械手而言,动力学建模需要考虑关节间的耦合效应和惯性等因素。
以下是动力学建模的基本步骤:1.确定机械手的质量、惯性等参数。
六自由度机械手实验报告 (2)

六自由度机械手实验报告学院:机械工程学院专业:机械设计制造及其自动化班级:机自114学号:********学生姓名:郭2014年12月30日六自由度机械手实验报告一、机械手介绍六自由度机器手是由六个关节组成,每个关节上安装一个电动机,通过控制每个电动机旋转,就可以实现机械手臂的空间运动。
本实验做的六自由度的机械手臂是能实现物品的抓取和移位的机械自动控制机构。
该六自由度机械手臂的底座能进行大角度转动,实现机械抓取物体的移位;关节的俯仰和摆动能实现机械手臂不同位置的抓取物体;手部关节部分关节的变换,手腕的末端安装一机械手,机械手具有开闭能力,能实现物体的抓取和放下。
每个关节自由度都是用电动机转动来实现机械手臂的转动、俯仰和摆动等运动。
六自由度机械手臂每个关节处都有一个小型电机控制,分别能实现个关节的转动、俯仰等动作。
各个电机用采用AT89S52单片机片控制,通过单片机输出程能实现六个电机按照规定角度运动,从而带动关节的运动。
二、机械手的结构1、机械部分本实验中六自由度机械手的机械系统包括机身、臂部、手腕、手部。
图1机械手臂的实物图图2机械手臂的结构简图系统共有6个自由度,分别是a.基座的回转、b.连杆一转动、c.连杆二转动、d..手腕转动、e.手腕旋转、f..手部开合。
前面三个关节确定手部的空间位置,后面三个关节确定手部的姿态。
图3 自由度2、控制部分1、人机通信模块控制系统是机器人的大脑,它的性能优劣直接影响到机器人的先进程度和功能强弱。
机械人控制涉及自动控制,计算机,传感器、人工智能、电子技术和机械等多学科的内容,是一项跨多个学科的综合性技术。
本实验机器人控制系统的硬件由单片机AT89S52、运动控制模块、驱动模块和通讯模块组成。
其单片机AT89S52模块如下图3.1所示,该模块由一块AT89S52单片机、串行口通信接口、转串口下载线连接接头、电源接口、开关、信号输出口Q等组成。
图4 单片机AT89S52模块图2、舵机驱动模块该舵机驱动模块采用的是parallax公司生产的16路舵机控制模块,其包括16路舵机控制线接口、单片机通信接口、舵机驱动电源接口、开关、复位键、控制芯片等部分组成。
“六自由度”资料汇整

“六自由度”资料汇整目录一、六自由度机器人结构设计、运动学分析及仿真二、基于Stewart结构的六自由度并联稳定平台技术研究三、模拟器中车辆动力学与六自由度平台联合仿真技术研究四、六自由度破碎机运动特性分析及控制研究五、六自由度并联机器人工作空间分析六、基于液压六自由度平台的空间对接半物理仿真系统研究六自由度机器人结构设计、运动学分析及仿真随着科技的不断发展,机器人已经广泛应用于工业、医疗、军事等领域。
其中,六自由度机器人作为最具灵活性的机器人之一,备受研究者的。
本文将围绕六自由度机器人结构设计、运动学分析及仿真展开讨论,旨在深入探讨六自由度机器人的性能和特点。
关键词:六自由度机器人、结构设计、运动学分析、仿真六自由度机器人具有六个独立的运动自由度,可以在空间中实现精确的位置和姿态控制。
因其具有高灵活性、高精度和高效率等优点,六自由度机器人在自动化生产线、航空航天、医疗等领域具有广泛的应用前景。
目前,国内外研究者已对六自由度机器人的设计、制造、控制等方面进行了深入研究,并取得了一系列重要成果。
六自由度机器人的结构设计主要包括关节结构设计、连杆结构设计及控制模块设计。
关节结构是机器人的重要组成部分,用于实现机器人的转动和移动。
连杆结构通过关节连接,构成机器人的整体构型,实现机器人的各种动作。
控制模块用于实现机器人的任意角度运动,包括运动学控制和动力学控制等。
在结构设计过程中,应考虑关节的负载能力、运动速度和精度等因素,同时需注重连杆结构的设计,以实现机器人的整体协调性和稳定性。
控制模块的设计也是关键之一,需结合运动学和动力学理论,实现机器人的精确控制。
运动学是研究物体运动规律的一门学科,对于六自由度机器人的运动学分析主要包括正向运动学和逆向运动学。
正向运动学是根据已知的关节角度求解机器人末端执行器的位置和姿态,而逆向运动学则是根据末端执行器的位置和姿态求解关节角度。
对六自由度机器人进行运动学仿真,有助于深入了解机器人的运动性能。
《2024年六自由度机械臂控制系统设计与运动学仿真》范文

《六自由度机械臂控制系统设计与运动学仿真》篇一一、引言随着现代工业的快速发展,机械臂已成为自动化生产线上不可或缺的一部分。
六自由度机械臂因其高度的灵活性和适应性,在工业、医疗、军事等领域得到了广泛应用。
本文将详细介绍六自由度机械臂控制系统的设计与运动学仿真,旨在为相关领域的研究和应用提供参考。
二、六自由度机械臂结构及特点六自由度机械臂主要由关节、驱动器、控制系统等部分组成。
其结构包括六个可独立运动的关节,通过控制每个关节的旋转角度,实现空间中任意位置的到达。
六自由度机械臂具有较高的灵活性和工作空间,适用于复杂环境下的作业。
三、控制系统设计(一)硬件设计控制系统硬件主要包括微处理器、传感器、执行器等部分。
微处理器负责接收上位机指令,解析后发送给各个执行器;传感器用于检测机械臂的位置、速度、加速度等信息,反馈给微处理器;执行器则根据微处理器的指令,驱动机械臂进行运动。
(二)软件设计软件设计包括控制系统算法和程序设计。
控制系统算法包括运动规划、轨迹跟踪、姿态控制等,通过算法实现对机械臂的精确控制。
程序设计则包括上位机程序和下位机程序,上位机程序负责发送指令,下位机程序负责接收指令并执行。
四、运动学仿真运动学仿真是指通过数学模型对机械臂的运动过程进行模拟,以验证控制系统的正确性和可靠性。
运动学仿真主要包括正运动学和逆运动学两部分。
(一)正运动学正运动学是指通过关节角度计算机械臂末端的位置和姿态。
通过建立机械臂的数学模型,利用关节角度计算末端执行器的位置和姿态,为后续的轨迹规划和姿态控制提供依据。
(二)逆运动学逆运动学是指根据机械臂末端的位置和姿态,计算关节角度。
通过建立逆运动学方程,将末端执行器的目标位置和姿态转化为关节角度,实现对机械臂的精确控制。
五、实验与分析通过实验验证了六自由度机械臂控制系统的设计和运动学仿真的正确性。
实验结果表明,控制系统能够实现对机械臂的精确控制,运动学仿真结果与实际运动过程相符。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第**卷第**期20**年*月机械工程学报JOURNAL OF MECHANICAL ENGINEERINGVo l.** No.**** 20**DOI:10.3901/JME.20**.**.***六自由度机械手的坐标建立及运动学分析摘要:从运动学分析的基础上着手研究轨迹控制的问题,利用运动学逆解的方式分析复杂轨迹运动的可行性和实用性。
通过建立机械手的笛卡尔坐标系,推导出机械手的正、逆运动学矩阵方程,并研究了正、逆运动学方程的解;在此基础上建立机械手的工作空间,并讨论其工作空间的灵活性和存在可能性。
因此本文的另一种方式对六自由度串联机械手的复杂运动控制问题进行研究,提出以机械手示教手柄引导末端执行器对复杂运动轨迹进行预设计。
然后通过记录程序进行复杂轨迹的再实现,再对记录程序进行预修改,最终通过现有的程序进行设计编程完成复杂轨迹设计任务。
并利用MATLAB对轨迹进行仿真,对比其实际与计算的正确性。
最后本设计通过六自由度串联机械手实现平面文字轨迹,得出其设计的方式。
即首先利用示教手柄实现轨迹预设,记录预设轨迹程序,然后再对比程序初始化坐标进行手动编程。
关键词:六自由度机械手,笛卡尔坐标系,运动学方程,仿真,示教手柄The coordinates of six degrees of freedom manipulator and kinematics analysis is establishedWU Yanchao JIN Yuanxun ZHAO Xin LI Daohai SONG Ping MENG Ya ABSTRACT:T his article based on the analysis of kinematics to study the trajectory control problems, use of inverse kinematics of the complex mode of tracking movement of the feasibility and practicality. Through the establishment of the manipulator Cartesian coordinates, derived manipulator is the inverse kinematics matrix equation and the study is the inverse kinematics of the equation solution on the basis of this establishment manipulator working space. And discuss their work space The flexibility and the possibility exists.So in another way to the six degrees of freedom series manipulator motion control the complex issues of research, to handle the machinery Shoushi guide for the implementation of the end of the complex pre-designed trajectory. Then track record of the complicated procedure to achieve, and then record the pre-amended procedures.The eventual adoption of the existing procedures designed trajectory design of complex programming tasks. And using MATLAB simulation of the track, compared with its actual calculation is correct.The final design through six degrees of freedom series manipulator track to achieve flat text, draw their design approach. That is, first of all use of teaching handle achieve trajectory default the track record of default procedures, and then compared to manual procedures initialized coordinate programming.key words:Six degree-of-freedom manipulators,Cartesian coordinates, Equations of motion,Simulation, Demonstration handle机 械 工 程 学 报 第49卷第6期前言基于六自由度串联机械手的复杂运动控制的研究,期望通过一种使用的轨迹设计方法,即利用六自由度串联机械手实现平面复杂运动轨迹的设计,使其能在不同的工业生产下完成预定的轨迹实现的准确性和实用性,则该机械手将在实在加工工业中发挥更重要的作用,并可完成许多人工条件无法完成的任务,从而提高机械手的利用性。
另外,基于六自由度机械手轨迹设计中位置逆解算法的研究,期望通过MATLAB 仿真实现六自由度机械手位置逆解的准确性,尤其是在其逆解不唯一的情况下,配合MATLAB 仿真数据进行对比,实现轨迹控制的最优化,即满足轨迹设计要求和运动控制的1机械手轨迹设计中坐标系的建立机器人通常是由一系列连杆和相应的运动副组合而成的空间开式链,实现复杂的运动,完成规定的操作。
因此,机器人运动学描述的第一步,自然是描述这些连杆之间以及它们和操作对象(工件或工具)之间的相对运动关系。
假定这些连杆和运动副都是刚性的,描述刚体的位置和姿态(简称位姿)的方法是这样的:首先规定一个直角坐标系,相对于该坐标系,点的位置可以用3维列向量表示;刚体的方位可用3×3的旋转矩阵来表示,而4×4的齐次变换矩阵则可将刚体位置和姿态(位姿)的描述统一起来。
机器人的每个关节坐标系的建立可参照以下的三原则:1-n z 轴沿着第n 个关节的运动轴;nx 轴垂直于1-n z 轴并指向离开1-n z 轴的方向;ny 轴的方向按右手定则确定。
机器人坐标系建立的方法常用的是D-H 方法,这种方法严格定义了每个关节的坐标系,并对连杆和关节定义了4个参数,如图下所示:转动关节连杆四参数示意图2 平面轨迹设计的正运动学分析2.1 平面轨迹设计的正运动学分析原理 机器人运动学只涉及到物体的运动规律,不考虑产生运动的力和力矩。
机器人正运动学所研究的内容是:给定机器人各关节的角度或位移,求解计算机器人末端执行器相对于参考坐标系的位置和姿态问题。
各连杆变换矩阵相乘,可得到机器人末端执行器的位姿方程(正运动学方程)为 :65544332211060A A A A A A T ==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡10z z z z y y y y x x x x p a o n p a o n p a o n (式3-3)其中:z 向矢量处于手爪入物体的方向上,称之为接近矢量a ,y 向矢量的方向从一个指尖指向另一个指尖,处于规定手爪方向上,称为方向矢量o ;最后一个矢量叫法线矢量n ,它与矢量o 和矢量a一起构成一个右手矢量集合,并由矢量的叉乘所规定:a o n ⨯=。
式3-3表示了RBT 系列机器人变换矩阵40T ,它描述了末端连杆坐标系{4}相对基坐标系{0}的位姿,是机械手运动分析和综合的基础。
2.2正运动学分析步骤及计算1、根据机器人坐标系的建立中得出的A 矩李道海等:六自由度机械手的坐标建立及运动学分析阵,相乘后得到T 矩阵,根据一一对应的关系,写出机器人正解的运算公式,上一节中已经对六自由度串联机械手的各个参数进行了计算,因此这里公式不再一一列出。
2、根据所要设计的文字轨迹,求出各个分量的值,其中以“西”的起笔为第一个输入和输出参数进行求解 3、运行六自由度串联机器人控制系统软件,点击“空间学计算”按钮,出现如图3-14所示界面,在“关节角度”中相应的位置输入各个关节的变量值,点击“正解计算”按钮,各个参数的值显示在“末端位姿”相应的框内。
4、将计算的值和控制系统软件计算出的值相比较,比较结果是否一致。
3.六自由度机械手轨迹设计中的逆运动学分析3.1机械手逆运动学分析原理机器人的运动学反解存在的区域称为机器人的工作空间,求解机器人逆解的目的也在于要求出机器人的工作空间。
工作空间是操作臂的末端能够到达的空间范围,即末端能够到达的目标点集合。
值得指出的是,工作空间应该严格地区分为两类:灵活(工作)空间 指机器人手爪能够以任意方位到达的目标点集合。
因此,在灵活空间的每个点上,手爪的指向可任意规定。
可达(工作)空间 指机器人手爪至少在一个方位上能够到达的目标点集合。
机器人操作臂运动学反解的数目决定于关节数目和连杆参数(对于旋转关节操作臂指的是ia ,i ia d 和)和关节变量的活动范围。
在解运动学方程时,碰到的另一问题是解不唯一(称为多重解)。
在工作空间中任何点,机械手能以任意方位到达,并且有两种可能的形位,即运动学方程可能有两组解。
求解RBT 系列机器人的过程如下:求解的变量为654321,,,,,θθθθθθ。
T=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100z z z z y y y y x x x x p a o n p a o n p a o n (各项公式见正解)整理矩阵各项可得:)(2223323416c a c a s d c ax d p x --⨯-⨯=--------------(式3-4))(2223323416c a c a s d s ay d p y --⨯-⨯=--------------(式3-5)1222332346d s a s a c d az d p z +---⨯=----------------(式3-6)根据上述已知条件求出相应的变量654321,,,,,θθθθθθ注:其中233223C S C S S +=,323223S S C C C -=3. 2逆运动学分析步骤及计算1、计算机器人运动学方程,根据一一对应的关系,求解机器人逆解的运算公式,如果有的变量有两个值应该全部保留:2.根据以上计算出的机器人运动学方程,一一对应的关系,将解出的机器人逆解的运算公式填入表将正运动学分析中的数据带入表3-2中,求出各个分量的值,如果有两组分别填入; 表3-2 六自由度串联机器人的逆运动学的输入值x p 75 yp 0z p 197 xnyn1-zn机 械 工 程 学 报 第49卷第6期2θ90 3θ5θ6θ、运行六自由度串联机器人控制系统软件,点击“空间学计算”按钮,出现如图3-9所示界面,在“末端位姿”中相应的位置输入各个关节的变量值,点击“逆解计算”按钮,逆解的值显示在“关节角度”中相应的框内。