离散数学第7章 图论 习题23页PPT

合集下载

《离散数学图论》课件

《离散数学图论》课件
最短路径问题
实现方法:使用 队列数据结构, 将起始节点入队, 然后依次处理队 列中的每个节点, 直到找到目标节
点或队列为空
Dijkstra算法和Prim算法
Dijkstra算法:用于 求解单源最短路径问 题,通过不断更新最 短路径来寻找最短路 径。
Prim算法:用于求解 最小生成树问题,通过 不断寻找最小权重的边 来构建最小生成树。
图的矩阵表示
邻接矩阵的定义和性质
定义:邻接矩阵是一个n*n的矩阵,其 中n是图的顶点数,矩阵中的元素表示 图中顶点之间的连接关系。
性质:邻接矩阵中的元素只有0和1, 其中0表示两个顶点之间没有边相连, 1表示两个顶点之间有一条边相连。
应用:邻接矩阵可以用于表示图的连通 性、路径长度等信息,是图论中常用的 表示方法之一。
图像处理:优化图像分割, 提高图像质量
物流配送:优化配送路径, 降低配送成本
社交网络:优化社交网络 结构,提高用户活跃度
感谢您的观看
汇报人:PPT
数学:用于图论、组合数 学、代数拓扑等领域
物理学:用于量子力学、 统计力学等领域
生物学:用于蛋白质结构、 基因调控等领域
社会科学:用于社会网络 分析、经济模型等领域
图的基本概念
图的定义和表示方法
图的定义:由节点和边组成的数学结构,节点表示对象,边表示对象之间的关系
节点表示方法:用点或圆圈表示 边表示方法:用线或弧线表示 图的表示方法:可以用邻接矩阵、邻接表、关联矩阵等方式表示
顶点和边的基本概念
顶点:图中的基本元素,表示一个对象或事件 边:连接两个顶点的线,表示两个对象或事件之间的关系 度:一个顶点的度是指与其相连的边的数量 路径:从一个顶点到另一个顶点的边的序列 连通图:图中任意两个顶点之间都存在路径 强连通图:图中任意两个顶点之间都存在双向路径

离散数学-图论基础

离散数学-图论基础

结点的次数
2020/1/17
问题1:是否存在这种情况:25个人中,由于意见不同,每 个人恰好与其他5个人意见一致?
在建立一个图模型时,一个基本问题是决定这个图是什么 —— 什么是结点?什么是边? 在这个问题里,我们用结点表示对象——人; 边通常表示两个结点间的关系——表示2个人意见一致。 也就是说,意见一致的2个人(结点)间存在一条边。
第七章 图论基础
Graphs
第一节 图的基本概念
2020/1/17
一个图G定义为一个三元组:G=<V, E, Φ>
V —— 非空有限集合,V中的元素称为结点 (node)或 顶点(vertex)
E —— 有限集合(可以为空),E中的元素称为边(edge)
Φ —— 从E到V的有序对或无序对的关联映射
以v为起始结点的弧的条数,称为出度(out-degree) (引出次数),记为d+(v)
以v为终结点的弧的条数,称为入度(in-degree)
(引入次数),记为d-(v)
v3
v的出度和入度的和,称为v的度数(degree)
(次数),记为d(v) = d+(v) + d-(v)
v1 (a) v2
结点的次数
(associative mapping)
v3
v3
v3
v1 (a) v2
v1
v2
(b)
v1
v2
(c)
图的基本概念
2020/1/17
图G=<V, E, Φ>中的每条边都与图中的无序对或有序对联系
若边e E 与无序对结点[va, vb]相联系,即Φ(e)= [va, vb] (va, vb V)则称e是无向边(或边、棱)

离散数学第七章图论习题课ppt课件

离散数学第七章图论习题课ppt课件
有环和平行边,u至多与其余n-1个结点中每一个 有一条边相连接,即deg(u)≤n-1,因此,⊿ (G) =maxdeg(u)≤n-1。
24
设G是一个n阶无向简单图,n是大于等于3的 奇数。证明图G与它的补图中度数为奇数的结 点个数相等。
证明: 因为G是n阶无向简单图,且n是大于等于3的奇数,
故无向图的结点数为奇数,则所对应的n阶完全图 中每个结点的度数为n-1即为偶数, 利用奇数+奇数=偶数,偶数+偶数=偶数,所以, 在G中结点度数为奇数的结点,在其补图中的度 数也应为奇数,故G和其补图的奇数结点个数也 是相同的。
25
P286 1、在无向图G中,从结点u到结点v有一条长度为 偶数的通路,从结点u到结点v又有一条长度为奇 数的通路,则在G中必有一条长度为奇数的回路。
(4) D中长度为4的回路有多少条? 答: 长度为4的回路为11条。
(5) D中长度4的通路有多少条?其中有几条是回路? 答:长度4的通路88条,其中22条为回路。
(6) 写出D的可达矩阵。 44的全1矩阵。
17
简单无向图 G 必有2结点同度数。
证: 令 G={v1,…,vn},
(2) n阶非连通的简单图的边数最多可为n-1阶连通图 加上一个孤立点,所以边数为(n-1)(n-2)/2,最少为0。
20
一个图如果同构于它的补图,则该图称为自补图。
1)一个图是自补图,其对应的完全图的边数必为偶数; 2)证明:若n阶无向简单图是自补图,则n=4k或n=4k+1
(k为正整数)。 解:
平面图的对偶图
无向树及其性质 根树及其应用
地图着色与平 面图着色
3
4
一、无向图与有向图

离散数学图论

离散数学图论

例:把下面的m叉树改写为二叉树。
14
第七章 图论
信 息 科 学 与 工 程 学 院
练习:把下面的有序树改写为二叉树。
。 。 。。 。 。。 。 。 。 知识点提示:
。 。。
。 。 。

课下自学
此方法可推广至有序森林到二叉树的转换。 此方法具有可逆性。
15
第七章 图论
信 息 科 学 与 工 程 学 院
给定一棵2叉树T,设它有t片树叶。设v为T的一个分枝点, 则v至少有一个儿子,最多有两个儿子。若v有两个儿 子,在由v引出的两条边上,左边的标上0,右边的标 上1;若v有一个儿子,在由v引出的边上可标上0,也
可标上1。设vi为T的任一片树叶,从树根到vi的通路
上各边的标号组成的0,1串组成的符号串放在vi处,t 片树叶处的t个符号串组成的集合为一个二元前缀码。
定义7-8.5
在根树中, 科 一个结点的通路长度为从树根到此结点的通路中的边 学 数。 与 分枝点的通路长度称为内部通路长度。 树叶的通路长度称为外部通路长度。
工 程 学 院
。 。 。 。。 A 。 。 。。
18
第七章 图论
信 息 科
定理7-8.2
若完全二叉树有n个分枝点,且内部通路长度总和为L,外 部通路长度总和为E,则 E=L+2n。 证明:
学 与 工 程 学 院
对分枝点数目n进行归纳证明。

当n=1时,如右图所示,
L=0, E=2,


显然, E=L+2n成立。
19
第七章 图论
信 息 科 学
定理7-8.2 若完全二叉树有n个分枝点,且内部通路长度总 和为L,外部通路长度总和为E,则 E=L+2n。 证明:

离散数学7-1图论

离散数学7-1图论

图7-1.9 不同构的图
作业
P279 (1) (4)
如图7-1.6中的(a)和(b)互为补图。
[定义] 子图(subgraph) 设图G=<V,E>,如果有图G’= <V’,E’>,若有 V’ V ,E’ E,则称图G’是图G的子图。 [定义] 生成子图(spanning subgraph) 如果图G的子图G’包含G的所有结点,则称该图 G’为G的生成子图。如图7-1.8中G'和G"都是 G的生成子图。
[定义] 相对于图G的补图 设图G'=〈V',E'〉是图G=〈V,E〉的子图,若 给定另外一个图G"=〈V",E"〉使得E"=EE', 且 V" 中仅包含 E"的边所关联的结点。则 称G"是子图G'的相对于图G的补图。
图7-1.7 (c )为(b)相对于(a)的补图
如图 7-1.7 中的图 (c) 是图 (b) 相对于图 (a) 的补 图。而图 (b) 不是图 (c) 相对于图 (a) 的补图 , 因为图(b)中有结点c。在上面的一些基本概 念中,一个图由一个图形表示,由于图形的结 点的位置和连线长度都可任意选择 , 故一个 图的图形表示并不是唯一的。下面我们讨 论图的同构的概念。
表7-1.1
结 点 出 度 入 度
a 2 0
b 1 1
c 0 2
d 1 1
结 点 出 度
入 度
v1 1 1
v2 0 2
v3 2 0
v4 1 1
分析本例还可以知道 , 此两图结点的度数也 分别对应相等,如表7-1.1所示。
两图同构的一些必要条件: 1.结点数目相等; 3.边数相等; 3.度数相等的结点数目相等。 需要指出的是这几个条件不是两个图同构的 充分条件,例如图7-1.9中的(a)和(b)满足上 述的三个条件,但此两个图并不同构。

离散数学第七章图的基本概念

离散数学第七章图的基本概念

4.无向图的连通性
若无向图G中任何两顶点都连通,则称G是连通图.
对于任意的无向图G.设V1,V2,…,Vk是顶点之间连通关系的 等价类,则称他们的导出子图为G的连通分支.用p(G)表示G 的连通分支数.
V1 e1
e2 e3
V3
e4 V2
V4
a
de
h
i
b
c
f
g
5.有向图的连通性
若略去有向图D中各边的键头,所得无向图是无向连通图,则 称D是弱连通图(或称D是连通图).
(2) mij d (vi )(i 1,2,..., n)
j 1
mn
nm
n
(3) mij mij d(vi ) 2m
j1 i1
i1 j1
i 1
m
(4) mij 0 vi是孤立点 j 1
(5)若第j列与第k列相同, 则说明e j与ek为平行边.
2.有向图的关联矩阵
设有向图D=<V,E>,V={v1,v2,…,vn},E={e1,e2,…,em} 1, vi为ej的始点
e1,e2,e3},{e1,e2,
e2
e4},{e9}等边割集 ,e9是桥.
e3 V4
e5 e6
V5 e4
V6
e9
V7
7.3 图的矩阵表示
1.无向图的关联矩阵
设无向图G=<V,E>,V={v1,v2,…,vn},E={e1,e2,…,em}
令mij为顶点vi与ej的关联次数, 则称(mij)n×m为G的关联矩阵.记为M(G)
若Γ 满足:vi-1,vi为ei的端点(若G为有向图,vi-1是ei的始 点,vi是ei的终点)i=1,2,…,k,则称Γ 为G中通路,v0,vk分 别称为通路的始点和终点,Γ 中边的数目k称为通路长度.

离散数学的ppt课件

离散数学的ppt课件

科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。

连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。

离散数学第7章PPT课件

离散数学第7章PPT课件
3 v1e1v2e5v5e6v4e4v2e5v5e7v6
…………
初级通路 简单通路 复杂通路
第38页/共94页
例1、(2)
图(2)中过v2的回路 (从 v2 到 v2 )有:
1 v2e4v4e3v3e2v2
长度3
2 v2e5v5e6v4e3v3e2v2
长度4
3 v2e4v4e3v3e2v2e5v5e6v4e3v3e2v2 长度7
第34页/共94页
一、通路,回路。 2、简单通路,简单回路。 简单通路 (迹) 简单回路 (闭迹) 复杂通路 (回路)
第35页/共94页
一、通路,回路。 3、初级通路,初级回路。 初级通路 (路径) 初级回路 (圈)
初级通路 (回路) 简单通路 (回路),
但反之不真。
4、通路,回路的长度—— 中边的数目。
补图的概念, 5、图的同构的定义。
第4页/共94页
一、图的概念。 1、定义。
无序积 A & B (a,b) a A b B
无向图 G V , E
E V &V , E 中元素为无向边,简称边。
有向图 D V, E
E V V , E 中元素为有向边,简称边。
第5页/共94页
一、图的概念。 1、定义。
2、握手定理。
定理1: 设图 G V , E 为无向图或有向图,
V v1,v1,

,vn,E m ( m为边数),
n
d (vi ) 2m
i 1
第20页/共94页
n
2、握手定理 d (vi ) 2m i 1
推论:任何图中,度为奇数的顶点个数为偶数。
定理2: 设D V, E 为有向图,
第36页/共94页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档