数学人教版讲义:第二章 第1节 第2课时 系统抽样 Word版含解析
人教版高中数学 A版 必修三 第二章 《2.1.2系统抽样》教学课件

A.容量较小
B.容量较大
C.个体数较多但不均衡
D.任何总体
12345
答案
12345
2.某商场想通过检查发票及销售记录的2%来快速估计每月的销售金额,
采用如下方法:从某本发票的存根中随机抽一张如15号,然后按顺序往
后将65号,115号,165号,……发票上的销售金额组成一个调查样本.
这种抽取样本的方法是C( )
剔除几个个体,再
重新编号,然后分段;
(3)在第1段用简单随机抽样 确定第一个个体编号l(l≤k);
(4)按照一定的规则抽取样本.通常是将l加上间隔k 得到第2个个体编号 (l+k),
再加 k 得到第3个个体编号 l+2k ,依次进行下去,直到获取重点难点 个个击破
类型一 系统抽样的概念 例1 下列抽样中不是系统抽样的是( )
解析答案
12345
5.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进
行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选
取5枚导弹的编号可能是B( )
A.5,10,15,20,25
B.3,13,23,33,43
C.1,2,3,4,5
D.2,4,6,16,32
解析 用系统抽样的方法抽取到的导弹编号应该为k,k+d,k+2d,k+
解析答案
类型二 系统抽样的实施 例2 某校高中三年级的295名学生已经编号为1,2,…,295,为了了解 学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进 行抽取,并写出过程. 解 按照1∶5的比例,应该抽取的样本容量为295÷5=59,我们把295 名同学分成59组,每组5人,第一组是编号为1~5的5名学生,第2组是 编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名 学生.采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不
高中数学 2.1.2 系统抽样课件 新人教A必修3

【探究】:除了用简单随机抽样获取样本外,你 能否设计其他抽取样本的方法?
我们按照下面的步骤进行抽样:
第一步:将这800名学生从1开始进行编号;
第二步:确定分段间隔k,对编号进行分段.由于 k=800/40=20,这个间隔可以定为20;
第三步:从号码为1~20的第一个间隔中用简单随机抽样 的方法确定第一个个体编号,假如为6号;
〖说明〗(1)分段间隔的确定:
当 N 是整数时,取k= N ;
n
n
当 N 不是整数时,可以先从总体中随机地 n
剔除几个个体,使得总体中剩余的个体数能被样
本容量整除.通常取k=
N n
(2)从系统抽样的步骤可以看出,系统抽样
是把一个问题划分成若干部分分块解决,从而
把复杂问题简单化,体现了数学转化思想。
中搅拌均匀; (3)每次抽取一个号签,不放回地连续取n次; (3)将取出的n个号签上的号码所对应的n个个体作为
样本.
5、什么叫随机数表法?
利用随机数表、随机数骰子或 计算机产生的随机数进行抽样,叫 随机数法;课本P56页给出的方法 叫随机数表法。
练习:我校有800名学生参加英语单词竞赛, 为了解考试成绩,现打算从中抽取一个 容量为40的样本,如何抽取? 抽签法就是把总体中的N个个体编号,把号码写
在号签上,将号签放在一个容器中,搅拌均匀后,每次 从中抽取一个号签,连续抽取n次,就得到一个容量为n 的样本.
4、抽签法的一般步骤是怎样的? (1)将总体的所有N个个体从0到(N-1)编号; (2)准备N个号签分别标上这些编号,将号签放在容器
2.1.2 系统抽样
复习回顾
1、简单随机抽样的定义:
一般地,设一个总体含有N个个体,从中逐个不 放回地抽取n个个体作为样本,如果每次抽取时总体 内的各个个体被抽到的机会都相等,就把这种抽样 方法叫做简单随机抽样.
高中数学第二章统计2.1-2.1.2系统抽样课件新人教版必修3

来快速估计每月的销量总额.采取如下方法:从某本发
票的存根中随机抽一张,如 15 号,然后按顺序往后将 65
号,115 号,165 号,…抽出,发票上的销售额组成一个
调查样本.这种抽取样本的方法是( )
A.抽签法
B.随机数法
C.系统抽样法
D.其他的抽样方法
1.系统抽样的特点. (1)适用于总体容量较大的情况,是从总体中逐个进 行抽取的. (2)剔除多余个体及第一段抽样都用简单随机抽样, 因而与简单随机抽样有密切联系. (3)系统抽样是等可能抽样,每个个体被抽到的可能 性都是Nn ;从总体中剔除多余个体不影响抽样的公平性. (4)系统抽样是不放回抽样.
第二章 统 计
[知识提炼·梳理]
1.系统抽样的概念 一般地,要从容量为 N 的总体中抽取容量为 n 的样 本,可将总体分成均衡的若干部分,然后按照预先制定的 ቤተ መጻሕፍቲ ባይዱ则,从每一部分抽取一个个体,得到所需要的样本,这 种抽样的方法就是系统抽样.
类型 1 系统抽样的概念
[典例 1] 某市场想通过检查发票及销售记录的 2%
数学人教A版必修3课件:2.1.2 系统抽样2

知识点二、系统抽样的步骤
[化解疑难] (1)系统抽样的几个特征 ①系统抽样适用于总体容量较大,且分布均衡(即个体间无明显的差异)的情 况; ②系统抽样的本质是“等距抽样”,要取多少个样本就把总体分成多少组,每 组中取一个;
③若总体个数不能被样本个数整除,则先从总体中剔除若干个个体达到整除 状态,重新编号,并根据样本个数进行分组;
变式训练 2.从某厂生产的 802 辆轿车中抽取 80 辆测试某项性能.请合理选择抽样 方法进行抽样,并写出抽样过程. 解:由于总体及样本中的个体数较多,且无明显差异,因此采用系统抽样的方法, 步骤如下:第一步,先从 802 辆轿车中剔除 2 辆轿车(剔除方法可用随机数法); 第二步,将余下的 800 辆轿车编号为 1,2,…,800,并均匀分成 80 段,每段 含 k=88000=10 个个体;第三步,从第 1 段即 1,2,…,10 这 10 个编号中, 用简单随机抽样的方法抽取一个号(如 5)作为起始号;
变式训练 3.某集团有员工 1 019 人,其中获得过国家级表彰的有 29 人,其他人 员 990 人.该集团拟组织一次出国学习,参加人员确定为:获得过国家级表彰的 人员 5 人,其他人员 30 人,如何确定人选?
解:获得过国家级表彰的人员选 5 人,适宜使用抽签法;其他人员选 30 人, 适宜使用系统抽样法.
当堂检测
1.系统抽样适用的总体应是( )
A.容量较少的总体
B.容量较多的总体
C.个体数较多但均衡的总体
D.任何总体
【解析】由系统抽样的特点可得. 【答案】C
2.高考结束后,某市教育局为了了解该市 20 000 名考生的有关情况,决定从
这 20 000 名考生中抽取 200 名考生的成绩进行分析,根据从 1 到 20 000 的编号,
高中数学人教B版必修3教学案第二章 2.1 2.1.2 系统抽样 Word版含解析

.系统抽样预习课本,思考并完成以下问题()系统抽样的概念是什么?()系统抽样适用范围是什么?.系统抽样的概念均衡将总体分成预先制定的若干部分,然后按照的规则,从每一部分抽取一个个体,得到所需要的样本的抽样方法..系统抽样的适用范围适用于样本容量较大,且个体之间无明显差异的情况..某报告厅有排座位,每排有个座位(编号~),一次报告会坐满了观众,会后留下座号为的所有观众进行座谈.这是运用了( ).随机数表法.抽签法.有放回抽样.系统抽样答案:.为了解名学生对学校教改实验的意见,学校打算从中抽取一个容量为的样本,考虑采用系统抽样,则分段的间隔为( )....答案:.乡镇卫生院要从某村名年龄在岁以上的老人中,用系统抽样的方法抽取人,了解心脏功能情况,医生把老人们编号为~号,现在医生已经确定抽取了号,那么其余被抽到的编号为.解析:由系统抽样知,每段中有人,已知在第一段中选的号,则下面的各段中依次选的号码应为+=+=+=+=+=+=+=+=.答案:错误!系统抽样的概念[]某商场欲通过检查部分发票及销售记录来快速估计每月的销售金额,采用如下方法:从某本发票的存根中随机抽一张,如号,然后按顺序将号,号,号,…,发票上的销售金额组成一个调查样本.这种抽取样本的方法是( ).抽签法 .随机数法 .系统抽样法.以上都不对[解析] 上述抽样方法是将发票平均分成若干组,每组张,从第一组抽出了号,以后各组抽+(∈*)号,符合系统抽样的特点.[答案]系统抽样的判断方法()首先看是否在抽样前知道总体是由什么组成,多少个个体.()再看是否将总体分成几个均衡的部分,并在每一个部分中进行简单随机抽样.()最后看是否等距抽样.[活学活用]一个总体中有个个体,随机编号为,…,.依编号顺序平均分成个小组,组号依次为,…,.现用系统抽样方法抽取一个容量为的样本,规定如果在第组中随机抽取的号码为,那么在第组中抽取的号码的个位数字与+的个位数字相同.若=,则在第组中抽取的号码是.解析:由题意知,若=,则在第组中抽取的号码的个位数字与的个位数字相同,而第组中编号依次为,…,,故在第组中抽取的号码是.答案:系统抽样的设计[]()某初级中学领导采用系统抽样方法,从该校预备年级全体名学生中抽名学生做牙齿健康检查.现将名学生从到进行编号,求得间隔数==,即每人抽取一人.在~中随机抽取一个数,如果抽到的是,则从~这个数中应取的数是.()某装订厂平均每小时大约装订图书册,要求检验员每小时抽取册图书,检验其质量状况,请你设计一个抽样方案.[解析]()因为采用系统抽样方法,每人抽取一人,~中随机抽取一个数抽到的是,所以。
数学人教B版必修3示范教案:2.1.2 系统抽样 Word版含解析

示范教案整体设计教学分析教材通过实例介绍了系统抽样.值得注意的是关于系统抽样,在教学中可强调如下几点:系统抽样适合于总体中的个体数较多的情况,因为这时采用简单随机抽样抽取样本很不方便;系统抽样在总体中的每一段进行抽样时,采用的是简单随机抽样;与简单随机抽样一样,系统抽样也属于等可能抽样.三维目标1.通过对实例的分析,了解系统抽样方法.2.使学生经历较为系统的数据处理过程,体会统计思维过程.3.了解数学应用的广泛性,激发学生的学习兴趣.重点难点教学重点:实施系统抽样的步骤.教学难点:确定分段间隔时,当N n不是整数时采取的措施. 课时安排1课时教学过程导入新课思路1.上一节我们学习了简单随机抽样,简单随机抽样是最简单和最基本的抽样方法,当总体中的个体较少时,常采用简单随机抽样.但是如果总体中的个体较多时,怎样抽取样本呢?教师点出课题:系统抽样.思路2.某中学有5 000名学生,打算抽取20名学生,调查他们对奥运会的看法,采用简单随机抽样时,无论是抽签法还是随机数表法,实施过程都很复杂,需要大量的人力和物力,那么有没有更为方便可行的抽样方法呢?这就是今天我们要学习的内容:系统抽样. 推进新课新知探究提出问题1.某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?2.请归纳系统抽样的定义和步骤.3.系统抽样有什么特点?讨论结果:1.可以将这500名学生随机编号1~500,分成50组,每组10人,第1组是1~10,第二组11~20,依次分下去,然后用简单随机抽样在第1组抽取1人,比如号码是2,然后每隔10个号抽取一个,得到2,12,22, (492)这样就得到一个容量为50的样本.这种抽样方法称为系统抽样.2.将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.其步骤是:(1)采用随机抽样的方法将总体中的N 个个体编号;(2)将整体按编号进行分段,确定分段间隔k(k ∈N ,l ≤k);(3)在第1段用简单随机抽样确定起始个体的编号l(l ∈N ,l ≤k);(4)按照一定的规则抽取样本,通常是将起始编号l 加上间隔k 得到第2个个体编号(l +k),再加上k 得到第3个个体编号(l +2k),这样继续下去,直到获取整个样本.说明:从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想.3.系统抽样的特点是:(1)当总体容量N 较大时,采用系统抽样.(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔相等,因此,系统抽样又称等距抽样,这时间隔一般为k =[N n]. (3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.应用示例思路1例1某工厂平均每天生产某种机器零件大约10 000件,要求产品检验员每天抽取50件零件,检查其质量状况.假设一天的生产时间中生产机器零件的件数是均匀的,请你设计一个调查方案.解:我们可以采用系统抽样,按照下面的步骤设计方案.(1)按生产时间将一天分为50个时间段,也就是说,每个时间段大约生产10 00050=200件产品.这时,抽样距就是200.(2)将一天中生产出的机器零件按生产时间进行顺序编号.比如,第一个生产出的零件就是0号,第二个生产出的零件就是1号等.(3)从第一个时间段中按照简单随机抽样的方法,抽取一件产品,比如是k 号零件.(4)顺序地抽取编号分别为下面数字的零件:k +200,k +400,k +600,…,k +9 800.这样总共就抽取了50个样本.点评:系统抽样与简单随机抽样一样,每个个体被抽到的可能性相等,从而说明系统抽样是等可能抽样,它是公平的.系统抽样是建立在简单随机抽样的基础之上的,将总体均分后对每一部分进行抽样时,采用的是简单随机抽样.例2某装订厂平均每小时大约装订图书362册,检验员每小时从中随机抽取40册图书,检查其质量状况.请你设计一个调查方案.解:我们可以采用系统抽样,按照下面的步骤设计方案.(1)把这些图书分成40个小组,由于36240的商是9,余数是2,所以每个组有9册书,还剩2册书.这时,抽样距就是9.(2)先用简单随机抽样的方法从这些书中抽取2册书,不进行检验.(3)将剩下的书进行编号,编号分别为0,1, (359)(4)从第一组(编号分别为0,1,…,8)的书中按照简单随机抽样的方法,抽取1册书,比如说,其编号为k.(5)顺序地抽取编号分别为下面数字的书:k +9,k +18,k +27,…,k +39×9.这样总共抽取了40个样本.点评:如果遇到N n不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.思路2例从已编号为1~50的50枚最新研制的某种型号导弹中随机抽取5枚来进行发射试验,若采用系统抽样方法,则所选取5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,6,16,32解析:用系统抽样的方法抽取到的导弹编号应该为k,k+d,k+2d,k+3d,k+4d,=10,k是1到10中用简单随机抽样方法得到的数,因此只有选项B满足要求.其中d=505答案:B点评:利用系统抽样抽取的样本的个体编号按从小到大的顺序排起来,从第2个号码开始,每一个号码与前一个号码的差都等于同一个常数,这个常数就是分段间隔.1.从学号为1~50的高一某班50名学生中随机选取5名同学参加数学竞赛,采用系统抽样的方法,则所选5名学生的学号不可能是( )A .1,2,3,4,5B .5,15,25,35,45C .2,12,22,32,42D .9,19,29,39,49解析:A 中5个号码在同一组中,这不可能.答案:A 2.采用系统抽样从个体数为83的总体中抽取一个样本容量为10的样本,那么每个个体入样的可能性为( )A.1083B.183C.110D.180解析:每个个体入样的可能性都相等,为1083. 答案:A3.某单位的在岗工人为624人,为了调查上班时从家到单位的路上平均所用的时间,决定抽取10%的工人调查这一情况,采用系统抽样先应随机剔除几人?答案:先随机剔除4人,再按系统抽样抽取样本.4.某学校有学生3 000人,现在要抽取100人组成夏令营,怎样抽取样本?分析:由于总体人数较多,且无差异,所以按系统抽样的步骤来进行抽样.解:按系统抽样抽取样本,其步骤是:(1)将3 000名学生随机编号1,2,…,3 000;(2)确定分段间隔k =3 000100=30,将整体按编号进行分100组,第1组1~30,第2组31~60,依次分下去,第100组2 971~3 000;(3)在第1段用简单随机抽样确定起始个体的编号l(l ∈N,1≤l ≤30);(4)按照一定的规则抽取样本,通常是将起始编号l 加上间隔30得到第2个个体编号l +30,再加上30,得到第3个个体编号l +60,这样继续下去,直到获取整个样本.比如l =15,则抽取的编号为:15,45,75,…,2 985.这些号码对应的学生组成样本.拓展提升下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1 200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:1 20030=40; 确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委采用了何种抽样方法?(2)抽样过程中存在哪些问题?并修改.(3)何处是用简单随机抽样?解:(1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为:30030=10,其他步骤相应改为确定随机数字:取一张人民币,编码的后两位数为12,确定第一样本户;编号为12的户为第一样本户;确定第二样本户:12+10=22,22号为第二样本户.……(3)确定随机数字用的是简单随机抽样.取一张人民币,编码的后两位数为12.课堂小结通过本节的学习,明确了什么是系统抽样,系统抽样的适用范围,如何用系统抽样获取样本.作业本节练习B 1、2.备课资料系统抽样中如何对总体中的每个个体进行合理分段?分析:难点是不会对总体中的每个个体进行合理分段,其突破方法是结合实例操作体会.系统抽样操作的要领是先将个体数较多的总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分中抽取1个个体,得到所需样本.由于抽样的间隔相等,因此系统抽样又称为等距抽样(或叫机械抽样),所以系统抽样中必须对总体中的每个个体进行合理分段.若从容量为N 的总体中抽取容量为n 的样本,用系统抽样时,应先将总体中的各个个体编号,再确定分段间隔k ,以便对总体编号进行分段.当N n 是整数时,取k =N n 为分段间隔即可,如N =100,n =20,则分段间隔k =10020=5,也就是将100个个体平均分为5段(组);当N n不是整数时,应先从总体中随机剔除一些个体,使剩余个体数N ′能被n 整除,这时分段间隔k =N ′n,如N =101,n =20,则应先用简单随机抽样从总体中剔除1个个体,使剩余的总体容量(即100)能被20整除,从而得出分段间隔k =10020=5,也就是说,只需将100个个体平均分为5段(组).一般的,用简单随机抽样的方法从总体中剔除部分个体,其个数为总体中的个体数除以样本容量所得的余数.分段间隔=总体容量样本容量,所以分段间隔×样本容量=总体容量,每段仅抽一个个体.上述过程中,总体中的每个个体被取出(或被剔除)的可能性相等,也就是每个个体不被选取(或不被剔除)的可能性也相等,所以在整个抽样过程中每个个体被抽取的机会仍然都相等,这说明使用系统抽样法抽取样本的过程是公平的.。
数学人教B版必修3课件:2.1.2 系统抽样2

4.从含有 100 个个体的总体中抽取 10 个入样.请用系统抽样法给出 抽样过程. 解 第一步:将 100 个个体用随机方式编号,编号为 001,002,…,100;
第二步:将编号按顺序每 10 个一段,分成 10 段; 第三步:在第一段 001,002,…,010 这十个编号中用简单随机抽样, 随机抽取一个号码为起始号,比如编号为 t0;
能被样本容易整除.
变式训练 某校高中一年级的 295 名学生已经编号为 1,2…,295,为了了解
学生的学习情况,要按 1∶5 的比例抽取一个样本,用系统抽样的方 法进行抽取,并写出过程.
解 1∶5 的比例抽取样本,则样本容量为15×295=59. 步骤是: (1)编号:按现有的号码;
(2)确定分段间隔 k=5,把 295 名同学分成 59 组,每组 5 人, 第 1 组是编号为 1~5 的 5 名学生,第 2 组是编号为 6~10 的 5 名学 生,依次下去,第 59 组是编号为 291~295 的 5 名学生;
等距 抽样.
2.系统抽样的步骤 一般地,假设要从容量为 N 的总体中抽取容量为 n 的样本,可以
按下列步骤进行系统抽样:
类型1 系统抽样的概念 例 1 下列抽的电视机中,任选 4 个作样本,按从小到大 的号数排序,随机选起点 K,以后按 K+4、K+8…(超过 16 则从 1 再 数起)抽样
规律方法 在应用系统抽样时,要解决两个关键的问题: (1)分组的方法应依据抽取比例而定,即根据定义每组抽取一个样 本. (2)起始编号的确定应用简单随机抽样的方法,起始编号确定, 其他编号便随之确定了.
变式训练 为了了解某地区今年高一学生期末考试数学学科的答卷情况,
分析教学质量,拟从参加考试的 15 000 名学生的数学试卷中抽取容量 为 150 的样本.请用系统抽样写出抽取过程.
《系统抽样》人教版高中数学必修三PPT课件(第2.1.2课时)

课堂练习
例2 一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10组,组 号依次为1,2,3,…,10,现用系统抽样抽取一个容量为10的样本,并规定:如果在第一组随 机抽取的号码为m,那么在第k(k=2,3,…,10)组中抽取的号码的个位数字与m+k的个位数 字相同.若m=6,求该样本的全部号码.
的样本,用系统抽样法如何抽样?
解: 第一步,随机剔除2名学生,把余下的320名学生编号为1,2,3,…320. 第二步,把总体分成40个部分,每个部分有8个个体.具体分组如下: 1~8,9~16,17~24,…,313~320. 第三步,在第1部分用抽签法确定起始编号(如3号). 第四步,从该号码起,每间隔8个号码抽取1个号码,得到3,11,19,…315.于是就得到一 个容量为40的样本.
课堂练习
思考7:系统抽样适合在哪种情况下使用?系统抽样公平吗? [注意]:①系统抽样适合于总体的个体数较多的情形.
②系统抽样也是等概率抽样,即每个个体被抽到的概率是相等的,其概率仍为P=n/N,从而 保证了抽样的公平性.
课堂练习
例1 某中学有高一学生322名,为了了解学生的身体状况,要抽取一个容量为40
新知探究
用系统抽样抽取样本时,每段各取一个号码,其中第1段的个体编号怎样抽取?以后各段的个体 编号怎样抽取?
用简单随机抽样抽取第1段的个体编号.在抽取第1段的号码之前,自定义规则确定以后各段的个 体编号,通常是将第1段抽取的号码依次累加间隔k.
新知探究
思考3:上述抽样方法称为系统抽样,一般地,怎样理解系统抽样的含义?
(4)按照一定的规则抽取样本。通常是将m加上间隔k得到第二个个体编号(m+k),再加k得到 第3个个体编号,依次进行下去,直到获得整个样本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 系统抽样[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 58~P 59,回答下列问题.(1)在教材P 58的“探究”中,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?提示:可以用系统抽样的方法获取样本.(2)系统抽样与简单随机抽样有什么差别?提示:①系统抽样比简单随机抽样更容易实施,可以节约成本;②系统抽样比简单随机抽样的应用范围更广泛.2.归纳总结,核心必记(1)系统抽样先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔逐个抽取即得到所需样本.(2)系统抽样的步骤及规则①系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(ⅰ)编号:先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;(ⅱ)分段:确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n; (ⅲ)确定初始编号:在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(ⅳ)抽取样本:按照一定的规则抽取样本.②抽取样本的规则通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.[问题思考](1)系统抽样如何提高样本的代表性?提示:系统抽样所得样本的代表性和具体的分段有关,因此在系统抽样中就要提高分段的质量.例如,不要让分段呈现周期性.(2)从1 003名学生成绩中,按系统抽样抽取50名学生的成绩时,需先剔除3个个体,这样每个个体被抽取的可能性就不相等了,你认为正确吗?提示:不正确.因为总体个体数不能被50整除,需剔除3个个体,按照简单随机抽样的方法,在总体中的每个个体被剔除的概率是相等的,都是31 003,每个个体不被剔除的概率也是相等的,都是1 0001 003;在剩余的1 000个个体中,采用系统抽样时每个个体被抽取的概率都是501 000;所以在整个抽样过程中每个个体被抽取的概率仍相等,都是1 0001 003×501 000=501 003.所以系统抽样是公平的、均等的.[课前反思]通过以上预习,必须掌握的几个知识点:(1)什么是系统抽样?;(2)系统抽样的步骤:.为了解高一1 500名学生对食堂饭菜的满意情况,打算从中抽取一个容量为50的样本.[思考1]上述抽样方法能否用系统抽样?提示:因为总体容量较大,因此可以用系统抽样方法抽取样本.[思考2]系统抽样有什么特征?与简单随机抽样有什么区别?名师指津:(1)系统抽样的主要特征有三个:①总体已知且数量较大;②抽样必须等距;③每个个体入样的机会均等.不满足任何一条就不是系统抽样.(2)系统抽样有别于简单随机抽样的一个显著特点是总体中的个体的数量,一般来说,简单随机抽样,总体中个体较少;系统抽样,总体中个体较多.讲一讲1.(1)下列问题中,最适合用系统抽样法抽样的是()A.从某厂生产的30个零件中随机抽取6个入样B.一个城市有210家超市,其中大型超市20家,中型超市40家,小型超市150家.为了掌握各超市的营业情况,要从中抽取一个容量为21的样本C.从参加竞赛的1 500名初中生中随机抽取100人分析试题作答情况D.从参加期末考试的2 400名高中生中随机抽取10人了解某些情况(2)分段为000 001~100 000的体育彩票,凡彩票号码最后三位数为345的中一等奖,这种抽奖过程是系统抽样吗?为什么?[尝试解答](1)A总体容量较小,样本容量也较小,可采用抽签法;B总体中的个体有明显的层次,不适宜用系统抽样法;C总体容量较大,样本容量也较大,可用系统抽样法;D总体容量较大,样本容量较小,可用随机数表法.故选C.=100段,在第(2)中奖号码的获得方法可以看做分段间隔为1 000,把总体分为100 0001 0001段中抽取000 345,在第2段中抽取001 345,…,在第100段中抽取099 345,组成样本.显然该抽样方法符合系统抽样的特点,因此采用的是系统抽样.答案:(1)C系统抽样的适用条件及判断方法适用条件:系统抽样适用于个体数较多的总体.判断方法:判断一种抽样是否为系统抽样,首先看在抽样前是否知道总体是由什么构成的.抽样的方法能否保证将总体分成几个均衡的部分,并保证每个个体等可能入样.练一练1.下列抽样方法不是系统抽样的是()A.从标有1~15号的15个球中,任选三个作样本,按从小号到大号的顺序,随机选起点i0,以后选i0+5,i0+10(超过15则从1再数起)号入选B.工厂生产的产品用传送带将产品送入包装车间前,在一天时间内检验人员从传送带上每隔五分钟抽一件产品进行检验C.做某项市场调查,规定在商场门口随机抽一个人进行询问调查,直到达到事先规定的调查人数为止D .电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈解析:选C A 分段间隔相同,B 时间间隔相同.D 相邻两排座位号的间隔相同,均满足系统抽样的特征.只有C 项无明显的系统抽样的特征.讲一讲2.某单位在职职工共624人,为了调查职工用于上班途中的时间,决定抽取10%的职工进行调查,试采用系统抽样方法抽取所需的样本.[思路点拨] 624×10%=62.4.需从总体中剔除4人,再重新分段用系统抽样抽取62人.[尝试解答] (1)将624名职工分段,从001至624.(2)从总体中用随机数法剔除4人,将剩下的620名职工重新分段,从000至619.(3)分段,取间隔k =62062=10,将总体均分为62组,每组含10名职工. (4)在第一段000到009这十个分段中用简单随机抽样确定起始号码l .(5)将为l ,l +10,l +20,…,l +610的个体抽出,组成样本.系统抽样设计中的注意点(1)当总体容量不能被样本容量整除时,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.(2)被剔除的部分个体可采用简单随机抽样法抽取.(3)剔除部分个体后应重新分段.(4)每个个体被抽到的机会均等,被剔除的机会也均等.练一练2.某校高中三年级的295名学生已经分段为1,2,…,295,为了了解学生的学习情况,要按1∶5的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出过程.解:按照1∶5的比例抽取样本,则样本容量为15×295=59. 抽样步骤是:(1)分段:按现有的号码.(2)确定分段间隔k=5,把295名同学分成59组,每组5人;第1段是分段为1~5的5名学生,第2段是分段为6~10的5名学生,依次下去,第59段是分段为291~295的5名学生.(3)采用简单随机抽样的方法,从第一段5名学生中抽出一名学生,不妨设分段为l(1≤l≤5).(4)那么抽取的学生分段为l+5k(k=0,1,2,…,58),得到59个个体作为样本,如当l =3时的样本分段为3,8,13,…,288,293.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是记住系统抽样的方法和步骤,难点是会用系统抽样从总体中抽取样本.2.本节课要理解并记住系统抽样的三个特征:①总体已知且数量较大;②抽样必须等距;③每个个体入样的机会均等.见讲1.3.本节课要掌握设计系统抽样的四个步骤:分段→分段→确定初始分段→抽取样本,见讲2.4.本节课的易错点有:(1)概念理解错误致错,如讲1;(2)忽视每个个体被抽到的机会相等而致误,如讲2.课下能力提升(十)[学业水平达标练]题组1系统抽样的概念1.为了了解某地参加计算机水平测试的5 008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为() A.24 B.25 C.26 D.28解析:选B 5 008除以200的整数商为25,∴选B.2.下列抽样试验中,最适宜用系统抽样法的是( )A .某市的4个区共有2 000名学生,4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B .从某厂生产的2 000个电子元件中随机抽取5个入样C .从某厂生产的2 000个电子元件中随机抽取200个入样D .从某厂生产的20个电子元件中随机抽取5个入样解析:选C A 项中总体有明显层次,不适宜用系统抽样法;B 项中样本容量很小,适宜用随机数法;D 项中总体容量很小,适宜用抽签法.故选C.3.某商场想通过检查发票及销售记录的2%来快速估计每月的销售金额,采用如下方法:从某本发票的存根中随机抽一张如15号,然后按顺序往后将65号,115号,165号,……发票上的销售金额组成一个调查样本.这种抽取样本的方法是( )A .抽签法B .随机数表法C .系统抽样法D .其他的抽样法解析:选C 上述抽样方法是将发票平均分成若干组,每组50张,从第一组中抽出了15号,即各组抽15+50n (n 为自然数)号,符合系统抽样的特点.4.为了了解参加某次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为( )A .2B .3C .4D .5解析:选A 因为1 252=50×25+2,所以应随机剔除2个个体.5.(2014·广东高考)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .50B .40C .25D .20解析:选C 由1 00040=25,可得分段的间隔为25.故选C. 题组2 系统抽样设计6.“五一”国际劳动节期间,某超市举办了一次有奖购物促销活动.期间准备了一些有机会中奖的号码(分段为001~999),在公证部门的监督下按照随机抽样方法进行抽取,确定后两位为88的号码为本次的中奖号码.则这些中奖号码为:________.解析:根据该问题提供的数据信息,可以发现本次活动的中奖号码是每隔一定的距离出现的,根据系统抽样的有关概念,可知该问题中是运用系统抽样法确定中奖号码的,其间隔数为100.所以,中奖号码依次为088,188,288,388,488,588,688,788,888,988.答案:088,188,288,388,488,588,688,788,888,9887.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生从1~160分段,按分段顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为126,求第一组中用抽签方法确定的号码.解:S +15×8=126,得S =6.8.为了了解某地区今年高一学生期末考试数学学科的成绩,拟从参加考试的15 000名学生的数学成绩中抽取容量为150的样本.请用系统抽样写出抽取过程.解:(1)对全体学生的数学成绩进行分段:1,2,3,…,15 000.(2)分段:由于样本容量与总体容量的比是1∶100,所以我们将总体平均分为150个部分,其中每一部分包含100个个体.(3)在第一部分即1号到100号用简单随机抽样,抽取一个号码,比如是56.(4)以56作为起始数,然后顺次抽取156,256,356,…,14 956,这样就得到一个容量为150的样本.9.某校有2 008名学生,从中抽取20人参加体检,试用系统抽样进行具体实施. 解:(1)将每个人随机编一个号由 0 001 至 2 008;(2)利用随机数表法找到8个号将这8名学生剔除;(3)将剩余的2 000名学生重新随机分段 0 001 至 2 000;(4)分段,取间隔k =2 00020=100,将总体平均分为20段,每段含100个学生; (5)从第一段即0 001号到0 100号中随机抽取一个号l ;(6)按分段将l,100+l,200+l ,…,1 900+l 共20个号码选出,这20个号码所对应的学生组成样本.[能力提升综合练]1.某牛奶生产线上每隔30分钟抽取一袋进行检验,该抽样方法记为①;从某中学的30名数学爱好者中抽取3人了解学业负担情况,该抽样方法记为②.那么( )A .①是系统抽样,②是简单随机抽样B .①是简单随机抽样,②是简单随机抽样C .①是简单随机抽样,②是系统抽样D .①是系统抽样,②是系统抽样解析:选A 对于①,因为每隔30分钟抽取一袋,是等间距抽样,故①为系统抽样;对于②,总体容量小,样本容量也小,故②为简单随机抽样.2.(2016·衡阳高一检测)将参加夏令营的600名学生分段为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( )A .26,16,8B .25,17,8C .25,16,9D .24,17,9解析:选B 由题意知间隔为60050=12,故抽到的号码为12k +3(k =0,1,…,49),列出不等式可解得:第Ⅰ营区抽25人,第Ⅱ营区抽17人,第Ⅲ营区抽8人.3.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机分段,则抽取的42人中,分段落入区间[481,720]的人数为( )A .11B .12C .13D .14解析:选B 由系统抽样定义可知,所分组距为84042=20,每组抽取一个,因为包含整数个组,所以抽取个体在区间[481,720]的数目为(720-480)÷20=12.4.某学校从高三全体500名学生中抽50名学生做学习状况问卷调查,现将500名学生从1到500进行分段,求得间隔数k =50050=10,即每10人抽取一个人,在1~10中随机抽取一个数,如果抽到的是6,则从125~140中应取的数是( )A .126B .136C .126或136D .126和136解析:选D 根据系统抽样的定义和方法,所抽取的样本的分段都是“等距”的,由于在1~10中随机抽取的数是6,故从125~140中应取的数是126和136,应选D.5.人们打桥牌时,将洗好的扑克牌(52张)随机确定一张为起始牌,这时,开始按次序搬牌,对每一家来说,都是从52张总体中抽取一个13张的样本.则这种抽样方法是________.解析:简单随机抽样的实质是逐个地从总体中随机抽取.而这里只是随机确定了起始张,这时其他各张虽然是逐张起牌的,其实各张在谁手里已被确定.所以不是简单随机抽样,据其等距起牌的特点应将其定位为系统抽样.答案:系统抽样6.一个总体中有100个个体,随机分段为00,01,02,…,99,依分段顺序平均分成10个小组,组号分别为1,2,3,…,10.现抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是________.解析:由题意知第7组中的数为“60~69”10个数.由题意知m =6,k =7,故m +k =13,其个位数字为3,即第7组中抽取的号码的个位数是3,综上知第7组中抽取的号码为63.答案:637.下面给出某村委会调查本村各户收入情况作的抽样,阅读并回答问题.本村人口: 1 200,户数300,每户平均人口数4人;应抽户数:30;抽样间隔:1 200/30=40;确定随机数字:取一张人民币,其分段后两位数为12;确定第一样本户:分段12的住户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户.……(1)该村委会采用了何种抽样方法?(2)抽样过程存在哪些问题,试修改;(3)何处用了简单随机抽样?解:(1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样.抽样间隔应为300/30=10,其他步骤相应改为确定随机数字:取一张人民币,其分段末位数为2.(假设)确定第一样本户:分段02的住户为第一样本户;确定第二样本户:2+10=12,12号为第二样本户……(3)确定随机数字:取一张人民币,取其末位数2.8.某工厂有工人1 021人,其中高级工程师20人,现抽取普通工人40人,高级工程师4人组成代表队去参加某项活动,应怎样抽样?解:(1)将1 001名普通工人用随机方式分段.(2)从总体中剔除1人(剔除方法可用随机数法),将剩下的1 000名职工重新分段(分别为0 001,0 002,…,1 000),并平均分成40段,其中每一段包含1 00040=25个个体.(3)在第一段0 001,0 002,…,0 025 这25个分段中用简单随机抽样法抽出一个(如0 003)作为起始号码.(4)将分段为0 003,0 028,0 053,…,0 978 的个体抽出.(5)将20名高级工程师用随机方式分段为1,2, (20)(6)将这20个号码分别写在大小、形状相同的小纸条上,揉成小球,制成号签.(7)将得到的号签放入一个不透明的容器中,充分搅拌均匀.(8)从容器中逐个抽取4个号签,并记录上面的分段.(9)从总体中将与所抽号签的分段相一致的个体取出.以上得到的个体便是代表队成员.。