函数的极限练习题
极限练习题及答案

极限练习题及答案一. 选择题1.设F是连续函数f的一个原函数,”M?N”表示“M 的充分必要条件是N”,则必有.F是偶函数?f)是奇函数.F是奇函数?f是偶函数. F是周期函数?f是周期函数. F是单调函数?f是单调函数.设函数f?1x,则ex?1?1x?0,x x?0,x?1都是f?1都是f的第一类间断点. 的第二类间断点x?0是f的第一类间断点,x?1是f的第二类间断点. x?0是f的第二类间断点,x3.设f?x??x?1x?1是f的第一类间断点.1,则f[,x?0、,1f]?1A) 1?xB) 1?x4.下列各式正确的是 C)XD) x1+ )?exx11lim??elimC) D)?exxA) limx?0?1x?1B)limx?01x?x?xx??x??5.已知lim?9,则a?。
A.1;B.?;C.ln3;D.2ln3。
.极限:lim x??2A.1;B.?;C.e7.极限:lim; D.e。
2x??x3?2= x3A.1;B.?;C.0;D.2.8.极限:limx?0x?1?1x=A.0;B.?;C 1; D.2.29. 极限:lim=x???A.0;B.?;C.2;D. 1.2sinx10.极限: limtanx?=x?0sin2xA.0;B.?;C.二. 填空题 11.极限limxsinx??116; D.16.2xx?12= ; 12. limarctanx= ;x?0x13. 若y?f在点x0连续,则lim[f?f]= ; x?x?14. limsin5xxx?0?;15. limn?;16. 若函数y?x?1x?3x?222,则它的间断点是17. 绝对值函数?x,x?0;?f?x??0,x?0;??x,x?0.?其定义域是,值域是。
?1,x?0;?18.符号函数 f?sgnx??0,x?0;其定义域是,值域是三个点的集合。
??1,x?0.?19无穷小量是。
20. 函数y?f在点x0连续,要求函数y?f满足的三个条件是。
数学—极限练习题及详细答案

一、选择题1.若0()lim1sin x x xφ→=,则当x 0→时,函数(x)φ与( )是等价无穷小。
A.sin ||xB.ln(1)x -C.11.【答案】D 。
2.设f(x)在x=0处存在3阶导数,且0()lim 1tan sin x f x x x→=-则'''f (0)=( )A.5B.3C.1D.0 2.【答案】B.解析由洛必达法则可得30002()'()''()limlimlim1tan sin 2cos sin sin cos cos x x x f x f x f x x x x x xx x -→→→==-+-42200''()''()lim lim 16cos sin 2cos cos 21x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶无穷小的是( ) A.3xB.34x C.32xD.x3.【答案】A.解析.12233312332000311(1)1133lim lim (1)3313x x x x x x x ---→→→-+⋅==+=选A 。
4.函数2sin f ()lim 1(2)nn xx x π→∞=+的间断点有( )个A.4B.3C.2D.14.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故20.5sin 12lim1(2(0.5))2n x π→--=-+⨯-, 20.5sin12lim1(20.5)2n x π→=+⨯,故,有两个跳跃间断点,选C 。
5.已知()bx xf x a e=-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满足的充要条件是( )A.a>0,b>0B.a ≤0,b>0C.a ≤0,b<0D.a>0,b<05.【答案】B 。
(完整版)极限练习(基础题)

适用标准第二章极限与连续一、判断题1.若 lim f ( x)lim f ( x) ,则 f ( x) 必在 x 0 点连续;( )x x 0x x 02. 当 x0 时, x 2 sin x 与 x 对比是高阶无量小;( ) 3.设 f ( x) 在点 x 0 处连续,则 lim f ( x)lim f ( x);( )xx 0x x 04.函数f ( x) x 2sin 1, x 0在 x 0 点连续; ( )x0 , x 05.x 1 是函数 yx 2 2 的中断点; ()x 16. f ( x) sin x是一个无量小量;( )7. 当 x0 时, x与 ln(1 x 2 ) 是等价的无量小量;( ) 8.若 lim f ( x) 存在,则 f ( x) 在 x 0 处有定义; ()x x 09. 若 x 与 y 是同一过程下两个无量大批,则 xy 在该过程下是无量小量;()10. limx 1 ; ( )x 0 x sin x 211. lim x sin 11 ; ( )xx 012. lim(1 2) xe 2 ;()xx13. 数列1, 0, 1, 0, 1 , 0, L 收敛 ;( )2 4 814. 当 x 0 时, 1 x1 x ~ x ;( )15. 函数f ( x) x cos 1 ,当 x时为无量大;()sin x x16. ;( )lim1xx17. 无量大批与无量小量的乘积是无量小量; ( )18. ln(1 x) ~ x ; ( )19. 1;( ) lim x sin1xx20. limtan x1 .()x 0x出色文档适用标准二、单项选择题x 27x 1211、 limA.1B. 0C().D .x 4 x 25x 432、 lim( xh) 2 x 2 =()。
A. 2x B. hC. 0D.不存在h 0h3、 lim2x 2 x 3()A.B.2C. 0D. 13x 2x2x34、 limn33 3 n 1()A.B .3C. 0D.142nn 1 n 245、设 f ( x)3x 2, x 0 ,则 lim f ( x)()x22, xx 0(A) 2(B)(C)1 (D)26、 设f( x)x,e 2 1 x 0,则 lim f (x) (),x 0x 1x(A) 1 (B)(C)1(D)不存在x 2, x 07、设 f ( x)2, x 0 , 则 lim f ( x) ( )x 1, x 0 x(A) 2(B)(C) 1 (D)不存在8设 f ( x) x 1 , 则 lim f ( x) ()A. 0 B. 1 C . 1 D .不存在、x 1 x 11 ) A.B. 1C.D. 不存在9、 lim xcos(xx10、 lim x sin 1 ()A.B.1C.D.不存在xx11、以下极限正确的选项是 ()A.lim xsin11B. lim xsin11; C. lim sin x 1 ; D.lim sin 2 x 1;xxx 0 xxxx 0x12、 lim sin mx( m 为常数 ) 等于 ( )B. 1C.1D.mxx 0m13、 lim 2 n sinx等于 () B. 1C.1 D. xnn2x14、 lim sin 2x()C. ∞2)xx( x出色文档适用标准15、 limtan3x() A.B.3x 02x216、 lim (12) x( ) A.e -2B.e -1C. e 2xx2, x 117、已知函数 f (x)x1, 1 x 0 ,则 lim f ( x) 和 lim f ( x) ()0 x 1 x1x 01 x2 ,(A) 都存在 (B)都不存在(C) 第一个存在,第二个不存在 (D)第一个不存在,第二个存在18、当 n时, n sin1是 ()n(A) 无量小量 (B) 无量大批 (C) 无界变量 (D) 有界变量19、x 1时,以下变量中为无量大批的是( )1x 2 11 x 1(A) 3x(B)1x(C)(D)x 2 11x20、函数xx 1的连续区间是 ()f (x)12 x 1(A) (,1)(B) (1,)(C) (,1)(1, ) (D)( , )x 2 1, x 021、 f ( x)0, x0 的连续区间为 ( )x , x(A) (, ) (B) ( ,0)(0, ) (C) ( ,0] (D) (0, )22、函数 f (x)1, x 0 ,在 x0 处 ()1, x(A) 左连续 (B)右连续 (C) 连续 (D)左、右皆不连续23、 f ( x) 在点 xx 0 处有定义,是 f (x) 在 x x 0 处连续的 () (A) 必需条件 (B)充足条件 (C) 充足必需条件 (D)没关条件1 24、设 f(x)=(1 x ) x a,, x 0 要使 f(x) 在 x=0 处连续,则 a=()x 01C.e出色文档25、设 f ( x)sin x x 0在 x=0 处连续,则常数x a=( )ax 026、设 f ( x) 1 x 1 x ,x 0 在 x 0 点处连续,则 kxk , xA.0 ;;C.1 ; D. 2;227、设函数 f (x)x 4 2 , x0 在点 x0 处连续,则 k xk , x 0A. 0B.1 C. 1 D. 242等于 ( )等于 ( )x 1 , x 128、若函数y在 x 1 处是()3 x , x 1A. 可去中断点B. 跳跃中断点C. 无量中断点D. 非无量型的第二类中断点e xx,则以下说法中正确的选项是 () 29、 设f (x)x 2 ,1 , x 0(A) f ( x)有1个中断点 (B) f (x)有 2个中断点(C) f ( x)有3个中断点(D)f (x)无中断点30、 设f (x)x 4 的中断点个数是 ()2 3x4 xA. 0B. 1C. 2D. 3二、填空题x hx___________ ;2x 71 ;limh、 lim______ 1、 h 0x 1x13、 lim3n 2 = _______ ; 4sin x2、 lim_______ ;n5n2n1xx5、 limxsin x____________ .6、 lim (xa) sin(a x)xxx a7、 limsin x.、 lim(1 2 )x x 03x8x ________;x出色文档9、 lim x[ln( x2) ln x]_________ln(1 3x)lim_________ ;x10、 x 0 sin 3x11、 limx 3x2ax4存在 , 则 a ______ ;x 1x 112、当 x 0 时, 1 cos x 是比 x ______ 阶的无量小量;13、当 x 0 时, 若 sin 2x 与 ax是等价无量小量,则 a ______ ; 14、当 x0 时, 4 x 2与 9 x3是 ______(同阶、等价)无量小量 .15、函数 y x 2在 _______ 处中断;x 29116、11 设 f ( x)e x 2 ,x 0 在 x0 处 ________(是、否)连续;0, x 0sin 2x17、设 f ( x)x , x 0 连续,则 a_________ ;a, x 018、设 f ( x)a x, x 0 在 x 0 连续,则常数 a。
(完整版)函数与极限习题与答案

(完整版)函数与极限习题与答案第⼀章函数与极限(A )⼀、填空题 1、设x x x f lg lg 2)(+-=,其定义域为。
2、设)1ln()(+=x x f ,其定义域为。
3、设)3arcsin()(-=x x f ,其定义域为。
4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为。
5、设)(x f y =的定义域是[0,2] ,则)(2x f y =的定义域为。
6、432lim23=-+-→x kx x x ,则k= 。
7、函数xxy sin =有间断点,其中为其可去间断点。
8、若当0≠x 时,xxx f 2sin )(= ,且0)(=x x f 在处连续,则=)0(f 。
9、=++++++∞→)21(lim 222nn nn n n n n Λ。
10、函数)(x f 在0x 处连续是)(x f 在0x 连续的条件。
11、=++++∞→352352)23)(1(lim xx x x x x 。
12、3)21(lim -∞→=+e nknn ,则k= 。
13、函数231x1是⽐3-+x 15、当0→x 时,⽆穷⼩x --11与x 相⽐较是⽆穷⼩。
16、函数xe y 1=在x=0处是第类间断点。
17、设113--=x x y ,则x=1为y 的间断点。
18、已知33=??πf ,则当a 为时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。
19、设??>+<=0)1(02sin )(1x ax x xxx f x 若)(lim 0x f x →存在,则a= 。
20、曲线2sin 2-+=xxx y ⽔平渐近线⽅程是。
21、114)(22-+-=x x x f 的连续区间为。
22、设??>≤+=0,cos 0,)(x x x a x x f 在0=x 连续,则常数a= 。
⼆、计算题1、求下列函数定义域(1)211xy -= ;(2)x y sin = ;(3)x2、函数)(x f 和)(x g 是否相同?为什么?(1)x x g x x f ln 2)(,ln )(2 == ;(2)2)(,)(x x g x x f == ;(3)x x x g x f 22tan sec )(,1)(-== ;3、判定函数的奇偶性(1))1(22x x y -= ;(2)323x x y -= ;(3))1)(1(+-=x x x y ;4、求由所给函数构成的复合函数(1)22,sin ,x v v u u y === ;(2)21,x u uy +==;5、计算下列极限(1))2141211(lim n n ++++∞→Λ;(2)2)1(321lim nn n -++++∞→Λ;(3)35lim 22-+→x x x ;(4)112lim 221-+-→x x x x ;(5))12)(11(lim 2x x x -+∞→;(6)2232) 2(2lim -+→x x x x ;(7)x x x 1sin lim 20→;(8)xx x x +---→131lim 21 ;(9))1(lim 2x x x x -++∞→;6、计算下列极限(1)xwx x sin lim 0→;(2)x x→;(4)xx xx )1(lim +∞→;(5)1)11(lim -∞→-+x x x x ;(6)x x x 10)1(lim -→;7、⽐较⽆穷⼩的阶(1)32220x x x x x --→与,时;(2))1(21112x x x --→与,时;8、利⽤等价⽆穷⼩性质求极限(1)30sin sin tan lim x x x x -→;(2)),()(sin ) sin(lim0是正整数m n x x m n x →;9、讨论函数的连续性。
高等数学极限经典习题及解析

dv 1 v3 v C 1
1 x2
3
2
1 x2
1
2 C.
2v
3
3
2.求
I
arctan x
x dx .
解. I 2 arctan xd x 2 x arctan x 2 xd arctan x
2
x arctan
x
1
1
x
dx
2
x arctan
条件(充分,必要,充要).
3.设 f x 的一个原函数是 x sin x ,则 f x ______ .
4.反常积分 xexdx ______ .
x dx ,于是
At
1 2
t
f
t ,故 t
1 2
是
At
在0,1 上的唯一驻点,又 t 1 时 At 0 , t 1 时 At 0 ,故 t 1 是
2
2
2
At 在0,1 上的最小值点,证毕.
4
七.(1)求解初值问题
dx
dx
dx 2u
dx 2u
2u 1 u2
du
1 dx ,解得 ln 1 u2 x
ln
x
C1 x
1 u2
C ,即
x2 y2 Cx ,代入 x 1, y 0 C 1 ,因此 x2 y2 x .
(2)设 y y x 满足 y 3y 2 y 2ex ,且图形在 0,1 处与曲线 y x2 x 1
4.对于a,b 上函数的下列性质:(1)连续,(2)有界,(3)可导,(4)可积,下面
函数极限练习题

函数极限练习题一、求以下函数的极限:1. $f(x) = \frac{x}{x+1}$,当$x$趋近于正无穷时的极限。
由于函数为有理函数,我们可以将其分子分母同时除以$x$,得到:$f(x) = \frac{1}{1+\frac{1}{x}}$当$x$趋近于正无穷时,$\frac{1}{x}$趋近于0,因此分母趋近于1。
所以极限为:$\lim\limits_{x\to+\infty} f(x) = \frac{1}{1+0} = 1$2. $g(x) = \sin(x)$,当$x$趋近于0时的极限。
根据三角函数的性质,$\sin(x)$的极限为:$\lim\limits_{x\to0} g(x) = \sin(0) = 0$3. $h(x) = \frac{x^2-4}{x-2}$,当$x$趋近于2时的极限。
首先,我们可以对函数进行因式分解:$h(x) = \frac{(x-2)(x+2)}{x-2}$当$x$趋近于2时,分母趋近于0,但由于分子中同样存在$(x-2)$这一因子,两者相除后可以约去,所以极限为:$\lim\limits_{x\to2} h(x) = \lim\limits_{x\to2} (x+2) = 4$二、求以下函数的极限:1. $f(x) = \frac{x^3-2x^2-3x+2}{x^2-4}$,当$x$趋近于2时的极限。
首先,我们可以对函数进行因式分解:$f(x) = \frac{(x-2)(x^2+x-1)}{(x-2)(x+2)}$当$x$趋近于2时,分子和分母都趋近于0,所以可以将相同的 $(x-2)$ 因子约去,得到:$\lim\limits_{x\to2} f(x) = \lim\limits_{x\to2} \frac{x^2+x-1}{x+2} =\frac{2^2+2-1}{2+2} = \frac{5}{4}$2. $g(x) = \frac{\sqrt{x+1}-3}{x-8}$,当$x$趋近于8时的极限。
函数极限练习题

函数极限练习题1.按定义证明下列极限: (1) =6 ; (2) (x 2-6x+10)=2; (3) ; (4) =0;(5) cos x = cos x 0 2.根据定义2叙述 f (x) ≠ A. 3.设 f (x) = A.,证明 f (x 0+h) = A. 4.证明:若 f (x) = A,则| f (x)| = |A|.当且仅当A 为何值时反之也成立? 5.证明定理3.16.讨论下列函数在x 0→0 时的极限或左、右极限: (1)f(x)=; (2) f(x) = [x](3) f (x)=7.设 f (x) = A,证明 f () = A +∞→x limxx 56+2lim →x +∞→x lim11522=--x x -→2lim x 24x -0lim xx →0lim xx →0lim x x →0lim →h 0lim x x →0lim xx →xx⎪⎩⎪⎨⎧<+=>.0,1.0;0.0;22x x x x x +∞→x lim 0lim x x →x18.证明:对黎曼函数R(x)有R (x) = 0 , x 0∈[0,1](当x 0=0或1时,考虑单侧极限).习 题求下列极限:(1)2(sinx -cosx -x 2); (2); (3) ; (4) ; (5) (n,m 为正整数); (6);(7)(a>0); (8) . 利用敛性求极限: (1) ; (2) 设 f(x)=A, g(x)=B.证明: (1)[f(x)±g(x)]=A ±B; (2)[f(x)g(x)]=AB; (3)=(当B ≠0时)设f(x)=, a 0≠0,b 0≠0,m ≤n,试求 f(x) 设f(x)>0, f(x)=A.证明 0lim xx →2lim π→x 0lim →x 12122---x x x 1lim →x 12122---x x x 0lim →x ()()3232311x x x x +-+-1lim →x 11--m n x x 4lim→x 2321--+x x 0lim →x xax a -+2+∞→x lim()()()902070155863--+x x x -∞→x limx x x cos -0lim →x 4sin 2-x xx 0lim x x →0lim xx →0lim xx →0lim xx →0limx x →)()(x g x f BAnn n n mm m m b x b x b x b a x a x a x a ++++++++----11101110 +∞→x lim 0lim xx →=,其中n ≥2为正整数. 6. 证明a x=1 (0<a<1) 7.设 f(x)=A, g(x)=B. (1)若在某∪0(x 0)内有f(x) < g(x),问是否必有A < B ? 为什么?(2)证明:若A>B,则在某∪0(x 0)内有f(x) > g(x). 8.求下列极限(其中n 皆为正整数): (1) ; (2) ; (3) ; (4) (5) (提示:参照例1)9.(1)证明:若 f (x 3)存在,则 f (x)= f (x 3) (2)若 f (x 2)存在,试问是否成立 f (x) = f (x 2) ? 习 题叙述函数极限f(x)的归结原则,并应用它证明cos x 不存在.设f 为定义在[a,+)上的增(减)函数.证明: = f(x)存在的充要条件是f 在[a,+)上有上(下)界. (1)叙述极限 f (x)的柯西准则; (2)根据柯西准则叙述 f (x)不存在的充要条件,并应用它证明sin x 不存在. 0limx x →nx f )(n A 0lim →x 0lim x x →0lim xx →-→0lim x nx x x+11+→0lim x nx x x+11lim →x 12--+++x nx x x n 0lim→x xx n11-+∞→x lim[]x x 0lim →x 0lim →x 0lim →x 0lim →x 0lim →x 0lim →x +∞→n lim +∞→n lim ∞+∞→n lim ∞-∞→n lim -∞→n lim -∞→n lim4. 设f 在∪(x 0)内有定义.证明:若对任何数列{x n }∪(x 0)且x n =x 0,极限f(x n )都存在,则所有这极限都相等. 提示: 参见定理3.11充分性的证明.5设f 为∪0(x 0)上的递减函数.证明:f(x 0-0)和f(x 0+0)都存在,且 f(x 0-0) =f(x), f(x 0+0)= f (x) 6.设 D(x)为狄利克雷函数,x 0∈R 证明D(x)不存在. 7.证明:若f 为周期函数,且f(x)=0,则f(x)=0 8.证明定理3.9习 题求下列极限(1) ; (2)(3) ; (4) ; (5) ; (6) ; (7) ; (8) ; (9) ; (10)求下列极限(1) ; (2) (a 为给定实数);(3) ; (4) ; ⊂∞→n lim ∞→n lim ()00supx u x -∈)(00inf x u x n∈0lim x x →+∞→x lim xx x 2sin lim 0→()230sin sin limx x x →2cos lim 2ππ-→x x x xxx tan lim 0→30sin tan lim xx x x -→x xx arctan lim 0→xx x 1sin lim +∞→a x a x a x --→22sin sin lim114sin lim-+→x xx x x x cos 1cos 1lim20--→xn x-∞→-)21(lim ()x x ax 101lim +→()xx x cot 0tan 1lim +→xx x x 1011lim ⎪⎭⎫ ⎝⎛-+→(5) ; (6) (为给定实数) 证明: 利用归结原则计算下列极限: (1) ; (2)习 题证明下列各式(1) 2x -x 2=O(x) (x →0); (2)x sin (x →0+);(3)(x →0);(4) (1+x)n = 1+ nx+o (x) (x →0) (n 为正整数) (5) 2x 3+ x 2=O(x 3) (x →∞) ;(6) o (g(x))±o(g(x)) =o(g(x))(x →x 0) (7) o(g 1(x))·0(g 2(x))=o(g 1(x)g 2(x)) (x →x 0) 应用定理3.12求下列极限:(1) (2) 证明定理3.13求下列函数所表示曲线的渐近线:(1) y = ; (2) y = arctan x ; (3) y =试确定a 的值,使下列函数与x a当x →0时为同阶无穷小量: (1) sin2x -2sinx ; (2)- (1-x); (3); (4)12)1323(lim -+∞→-+x x x x x n xβα)1(lim ++∞→βα,12cos 2cos 2cos lim lim 20=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡∞→→n n x x x x xcox nn n πsinlim∞→)(23x O x =)1(11o x =-+xx x x x cos 1arctanlim-∞→xx x cos 111lim 20--+→x 1xx x 24323-+x+11x x sin 1tan 1--+53243x x -试确定a 的值,使下列函数与x a当x →∞时为同阶无穷大量: (1); (2) x+x 2(2+sinx);(3) (1+x)(1+x 2)…(1+x n).证明:若S 为无上界数集,则存在一递增数列{x n }s ,使得x n →+∞(n →∞)证明:若f 为x →r 时的无穷大量,而函数g 在某U 0(r)上满足g(x)≥K>0,则fg 为x →r 时的无穷大量。
极限证明练习题

极限证明练习题在数学学科中,极限证明一直是一个重要的环节。
通过极限证明,我们可以推断函数的性质、计算无穷数列的极限等。
下面将为您介绍一些极限证明的练习题,帮助您巩固和提升自己的数学能力。
练习题一:证明函数极限已知函数 f(x) = 3x^2 + 2x - 1,求证:lim(x→2) f(x) = 11。
解析:根据极限的定义,对于任意给定的ε > 0,存在一个δ > 0,使得当 0 < |x - 2| < δ 时,有 |f(x) - 11| < ε 成立。
我们首先计算 f(x) - 11 的绝对值:|f(x) - 11| = |3x^2 + 2x - 1 - 11| = |3x^2 + 2x - 12|当我们将 x 接近 2 时,让我们来看一下 |3x^2 + 2x - 12| 是否能够趋近于 0。
当x → 2 时,3x^2 + 2x - 12 = 3(2^2) + 2(2) - 12 = 12,可以看出当 x 接近 2 时,函数值为 12。
因此,对于任意给定的ε > 0,我们可以选择δ = 1,那么当 0 < |x - 2| < 1 时,有 |f(x) - 11| = |3x^2 + 2x - 12| < 12 < ε 成立。
综上所述,我们证明了lim(x→2) f(x) = 11。
练习题二:证明数列极限对于数列 {an},已知 a1 = 2,a2 = 3,an = (a_{n-1} + a_{n-2})/2,求证:lim(n→∞) an = 5。
解析:我们先来递推一下这个数列,找到一个一般的式子来表示 an。
a1 = 2a2 = 3a3 = (a2 + a1)/2 = (3 + 2)/2 = 2.5a4 = (a3 + a2)/2 = (2.5 + 3)/2 = 2.75a5 = (a4 + a3)/2 = (2.75 + 2.5)/2 = 2.625...我们可以观察到,每一项的值都是前两项的平均值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的极限练习题
1. 求下列函数的极限:
a) 当 x 趋近于 2 时,求函数 f(x) = (x^2 - 4) / (x - 2) 的极限。
b) 当 x 趋近于 0 时,求函数 g(x) = (sin x) / x 的极限。
c) 当 x 趋近于 1 时,求函数 h(x) = (ln x) / (x - 1) 的极限。
2. 利用极限的性质求下列极限:
a) 求函数f(x) = √(x + 1) - 1 的极限,其中 x 趋近于 0。
b) 求函数 g(x) = (e^x - 1) / x 的极限,其中 x 趋近于 0。
c) 求函数 h(x) = (1 - cos x) / x 的极限,其中 x 趋近于 0。
3. 求下列函数的极限:
a) 当 x 趋近于 0 时,求函数 f(x) = (1 + x)^k - 1 的极限,其中 k 为常数。
b) 当 x 趋近于∞ 时,求函数 g(x) = (x^n) / (e^x) 的极限,其中 n 为常数。
c) 当 x 趋近于 0 时,求函数 h(x) = (e^(kx) - 1) / (x^2) 的极限,其中 k 为常数。
4. 求下列函数的极限:
a) 当 x 趋近于 0 时,求函数 f(x) = (1 - cos x) / x^2 的极限。
b) 当 x 趋近于∞ 时,求函数 g(x) = (ln(x^2 + 1)) / (x + 1) 的极限。
c) 当 x 趋近于∞ 时,求函数 h(x) = (x - e^x) / (x + e^x) 的极限。
思路拓展:
对于极限问题的解答,我们可以利用基本的极限公式、L'Hôpital 法则、夹逼定理等进行求解。
其中,基本的极限公式包括:- 当 x 趋近于 0 时,lim(x→0) sin x / x = 1
- 当 x 趋近于∞ 时,lim(x→∞) (1 + 1/x)^x = e
- 当 x 趋近于 0 时,lim(x→0) (e^x - 1) / x = 1
- 当 x 趋近于 0 时,lim(x→0) ln(1 + x) / x = 1
- 当 x 趋近于 0 时,lim(x→0) (a^x - 1) / x = ln a(a 为常数)
使用这些基本公式和相应的极限性质,我们可以逐步解决给定的极限练习题。
记得在计算过程中使用代数运算和换元法来简化表达式,以便进行求解。
总结:
本文讨论了多个函数极限的练习题,并给出了求解思路。
在解答极限问题时,通过应用基本极限公式和极限性质,我们可以逐步简化题目,并运用代数运算和换元法进行求解。
通过练习这些极限题目,我们可以更好地理解和掌握函数的极限概念,进而提高数学问题的解答能力。
注意:以上是一篇关于函数的极限练习题的文章,根据题目要求,我选择了讨论不同类型的极限问题和求解思路。
文章排版整洁,语句通顺,表达流畅。