直接展开法求解非线性运动微分方程

合集下载

《自动控制原理》考点精讲(第8讲 非线性控制系统分析)

《自动控制原理》考点精讲(第8讲  非线性控制系统分析)
(2)稳定性分析很复杂 线性系统的稳定性只取决于系统的结构与参数,而与外部作用 和初始条件无关。 非线性系统的稳定性:与系统的参数与结构、运动的初始状 态、输入信号有直接关系。 非线性系统的某些平衡状态(如果不止有一个平衡状态的话) 可能是稳定的,而另外一些平衡状态却可能是不稳定的。
自动控制原理(自动控制理论)考点精讲
量外,还含有关于ω的高次谐波分量。使输出波形发生非线
性畸变。 正弦响应的复杂性:①跳跃谐振及多值响应;②倍频振荡与 分频振荡;③组合振荡(混沌);④频率捕捉。 混沌:
自动控制原理(自动控制理论)考点精讲
网学天地( )
e
x
x(t)
x(t)
x(t)
x(t)
ωt ωt
ωt ωt
自动控制原理(自动控制理论)考点精讲
自动控制原理(自动控制理论)考点精讲
网学天地( )
例:欠阻尼二阶系统的相平面描述——相轨迹
相轨迹在某些特定情况 下,也可以通过积分法, 直接由微分方程获得x和x 导数的解析关系式:
x dx = f (x, x) ⇒ g(x)dx = h(x)dx dx
自动控制原理(自动控制理论)考点精讲
α
=
dx dx
=
f (x, x) x
则与该曲线相交的任何相轨迹在交点处的切线斜率均为α,
该曲线称为等倾线。 注1:线性系统的等倾线为直线; 注2:非线性系统的等倾线为曲线或折线。
自动控制原理(自动控制理论)考点精讲
网学天地( )
由等倾线的概念知,当相轨迹经过该等倾线上任一点时,其 切线的斜率都相等,均为α。取α为若干不同的常数,即可 在相平面上绘制出若干条等倾线,在等倾线上各点处作斜率 为α的短直线,并以箭头表示切线方向,则构成相轨迹的切 线方向场。

自动控制原理第七章非线性控制系统的分析

自动控制原理第七章非线性控制系统的分析
X X
这里,M=3,h=1
负倒描述函数为
N 1 X
X
12 1 1 2
X
X 1
X 1, N 1 X , N 1
必有极值
d N 1X 令
0 dX
得 X 2
N 1 2
2
0.523
12
1
1 2
2
6
X: 1 2
-N-1(X): 0.523
2.自振的稳定性分析
在A点,振幅XA,频率A。
扰动:
X : A点 C点 C点被G(j)轨迹包围,不稳定,
振幅 ,工作点由C点向B点运动;
A点一个不稳 定的极限环。
X : A点 D点 D点不被G(j)轨迹包围,稳定,
振幅 ,工作点由D点左移。
在B点,振幅XB,频率B 。 扰动:
X : B点 E点 E点不被G(j) 轨迹包围,稳定,
振幅 ,工作点由E点到B点;
X : B点 F点 F点被G(j)轨迹包围,不稳定,
振幅 ,工作点由F回到B点。
B点呈现稳定的自激振荡:振幅XB ,频率B。
3.闭环系统稳定性判别步骤
1)绘制非线性部分的负倒描述函数曲线和线 性部分的频率特性曲线。
2)若G(j)曲线不包围“-N-1(X)”曲线,则系统稳定。 若G(j)曲线包围“-N-1(X) ”曲线,系统不稳定。 若G(j)曲线与“-N-1(X)”曲线相交,系统出现自振。
3)若G(j )曲线与“-N-1(X)”曲线有交点,做以 下性能分析:
(1)不稳定的极限环
(2)稳定的极限环 计算自振频率和幅值。
例1:非线性系统如图所示,其中非线性特性为 具有死区的继电器,分析系统的稳定性。
0e

非线性振动系统的动力学模拟和分析

非线性振动系统的动力学模拟和分析

非线性振动系统的动力学模拟和分析一、引言非线性振动系统是实际工程中经常遇到的一种振动模式,其动力学行为与线性振动系统有很大不同。

为了解决实际问题,需要对非线性振动系统进行深入研究,进一步分析其动力学行为。

本文将着重介绍非线性振动系统的动力学模拟和分析方法,并结合具体实例进行讲解。

二、基本概念1. 非线性振动系统非线性振动系统是指其运动方程中含有非线性项的振动系统。

其动力学行为与线性振动系统有很大不同,例如出现分岔、混沌等现象。

2. 动力学模拟动力学模拟是通过计算机模拟的方法研究动力学系统的行为。

它可以帮助我们深入理解非线性系统的物理现象,预测系统的行为以及设计系统的参数。

三、非线性振动系统动力学模拟方法1. 常微分方程方法其基本思路是通过建立非线性振动系统的运动方程,并运用数值分析方法进行求解。

假设非线性振动系统的运动方程为:$$\frac{d^2x}{dt^2}+f(x)=0$$其中,$x$为系统的位移,$f(x)$为非线性运动方程,可以将其展开为泰勒级数的形式,如下:$$f(x)=a_1x+a_2x^2+a_3x^3+...$$将运动方程离散化后,可以利用数值分析方法,如欧拉法、隐式欧拉法等,进行求解。

2. 辛普森法辛普森法是一种常用的非线性振动系统动力学模拟方法。

其基本思路是利用曲面的形状来逼近曲线,进而求解非线性振动系统的运动方程。

假设非线性振动系统的运动方程为:$$\frac{d^2x}{dt^2}+f(x)=0$$其中,$x$为系统的位移,$f(x)$为非线性运动方程。

将运动方程离散化后,可以利用辛普森法进行求解。

3. 傅里叶级数方法其基本思路是将一个非线性振动系统的运动方程分解为一系列线性微分方程的和,进而用傅里叶变换的方法求解。

假设非线性振动系统的运动方程为:$$\frac{d^2x}{dt^2}+f(x)=0$$其中,$x$为系统的位移,$f(x)$为非线性运动方程。

将运动方程展开为傅里叶级数的形式后,可以用傅里叶变换求解。

非线性偏微分方程

非线性偏微分方程

非线性偏微分方程及其几种解法综述姓名:柏宝红学号:BY1004120目录1、绪论 (3)1.1背景 (3)1.2 现状 (7)2、非线性偏微分方程的几种解法 (10)2.1逆算符法 (10)2.2 齐次平衡法 (11)2.3 Jacobi椭圆函数方法 (12)2.4 辅助方程方法 (14)2.5 F-展开法 (15)2.6 双曲正切函数展开法 (17)1、绪论以应用为目的,或以物理、力学等其他学科问题为背景的微分方程的研究,不仅是传统应用数学中一个最主要的内容,也是当代数学的一个重要组成部分.它是数学理论与实际应用之间的一座重要桥梁,研究工作一直十分活跃,研究领域日益扩大。

目前微分方程研究的主体是非线性微分方程,特别是非线性偏微分方程(NLPDE).很多意义重大的自然科学和工程技术问题都可归结为非线性偏微分方程的研究.现实生活的许多领域内数学模型都可以用NLPDE来描述,很多重要的物理、力学等学科的基本方程本身就是NLPDE,另外,随着研究的深入,有些原先可用线性微分方程近似处理的问题,也必须考虑非线性的影响,所以对NLPDE的研究,特别是NLPDE求解精确解的研究工作就显示出了很重要的理论和应用价值,但是数学研究的结果,在目前还未能提供一种普遍有效的求精确解的方法.20世纪50年代以来,人们对非线性现象的研究中提出了“孤子”的概念,进而使得对NLPDE求解的研究成为非线性科学中的热点。

下面介绍一下孤立子理论的研究背景、研究现状。

1.1背景孤立子理论己经成为应用数学和数学物理的一个重要组成部分,在流体力学,等离子物理,经典场论,量子论等领域有着广泛的应用。

随着近代物理学和数学的发展,早在1834年由英国科学家Russell发现的孤立波现象近二十多年来引起了人们的极大关注,对这一现象的兴趣与日俱增.这是因为一方面孤立子具有粒子和波的许多性能,在自然界中有一定的普遍性,利用孤立子理论也成功地解释了许多物理上长期用经典理论未能解答的现象;另一方面,随着孤立子物理问题的深入研究,孤立子的数学理论也应运而生,并已初步形成比较完善的理论体系。

微分方程的经典解法

微分方程的经典解法
非线性变量代换法的关键在于选择适当的函数 (g(x, y)) 和 (f(u))。
01
02
03
非线性变量代换法
变量代换法的应用
变量代换法在解决各种实际问题中有着广泛的应用,如物理、工程、经济等领域。
通过选择适当的代换变量,可以简化复杂的微分方程,从而更方便地求解。
变量代换法是解决微分方程的一种重要技巧,尤其在处理非标准形式的微分方程时非常有效。
01
高阶非线性微分方程的解法通常包括迭代法、摄动法和数值方法等。
02
迭代法是通过不断迭代方程的解来逼近真实解,常用的方法有牛顿迭代法和欧拉迭代法等。
03
摄动法是将非线性微分方程转化为摄动方程,然后通过小参数展开求解。
04
数值方法是通过离散化微分方程,然后使用计算机求解离散化后的方程组。
高阶微分方程在物理、工程、经济等领域有广泛应用,如振动分析、控制系统、信号处理等。
04
积分因子法
积分因子法是一种求解微分方程的方法,通过引入一个积分因子来消除方程中的导数项,从而将微分方程转化为代数方程进行求解。
积分因子法适用于可分离变量、线性、部分线性以及某些非线性微分方程。
积分因子法的关键是找到一个函数,使得该函数与微分方程的每一项相乘后,能够消去方程中的导数项。
方法概述
高阶线性微分方程的一般形式为$y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + cdots + a_0(x)y(x) = 0$。
变量分离法是将方程转化为多个一阶微分方程,然后分别求解。
幂级数法是通过将解表示为幂级数的形式,然后代入初始条件求解系数。
高阶非线性微分方程的解法
02
通过引入新变量 (u = ax + by),可以将原方程转化为 (y^{prime} = frac{1}{a} f(u))。

非线性偏微分方程 偏微分方程数值方法

非线性偏微分方程 偏微分方程数值方法

非线性偏微分方程偏微分方程数值方法非线性偏微分方程偏微分方程数值方法非线性偏微分方程定义:各阶微分项有次数高于一的,该微分方程即为非线性微分方程(一)主要研究内容非线性偏微分方程是现代数学的一个重要分支,无论在理论中还是在实际应用中,非线性偏微分方程均被用来描述力学、控制过程、生态与经济系统、化工循环系统及流行病学等领域的问题。

利用非线性偏微分方程描述上述问题充分考虑到空间、时间、时滞的影响,因而更能准确的反映实际。

本方向主要研究非线性偏微分方程、H-半变分不等式、最优控制系统的微分方程理论及其在电力系统的应用。

1.非线性偏微分方程的研究:我们主要研究偏微分方程解的存在唯一性(和多解性)及稳定性;偏微分方程的初值问题、初边值问题的整体解(包括周期解和概周期解)的存在性及渐近性;平衡解的存在性,尤其是当问题依赖于某些参数时平衡解的分叉结构,以及平衡解的稳定性问题;非线性方程的数值解。

2.H-半变分不等式的研究:建立具有极大单调算子扰动的多值(S)型和伪单调型映象的广义度理论,广义不动点指标理论和具有非凸、不可微泛函的非线性发展型H-半变分不等式理论,由此来研究含间断项的非线性偏微分方程。

3.最优控制系统的微分方程理论及其在电力系统的应用:主要研究与电力生产有关的控制系统的理论和应用。

首先提出了对Banach空间中抽象非线性发展方程所描述的最优控制系统的研究。

引进非光滑分析,研究最优控制系统的微分方程,利用变分不等式理论研究多值问题、数值计算等,所获理论成果应用于电力系统的许多最优控制问题(如:电力系统励磁调节器传递函数的辨识、牛顿最优潮流的数学模型等)。

(二)研究方向的特色1.变分不等式理论与能量泛函的凸性密切相关,由于现代科学技术的需要,特别是研究自由边界和固体力学问题的需要,传统的方法往往都无法解决这类问题,人们对H-半变分不等式进行研究,研究涉及现代分析及应用、偏微分方程以及科学计算等众多领域中亟待解决和发展的重要课题。

微分方程式的建立与求解

微分方程式的建立与求解
自由落体运动
通过建立微分方程式描述物体在重力作用下的运动规律,如速度、加速度与时 间的关系。
02
微分方程的求解方法
分离变量法
总结词
通过将微分方程转化为代数方程,简 化求解过程。
详细描述
分离变量法适用于具有两个变量的微 分方程,通过分离变量,将微分方程 转化为代数方程,然后求解代数方程 得到微分方程的解。
05
微分方程的稳定性分析
线性微分方程的稳定性分析
线性微分方程的稳定性分析主要基于其 特征值和特征向量。如果所有特征值都 位于复平面的左半部分,则系统是稳定 的;否则,系统是不稳定的。
线性微分方程的解可以通过求解其特征值和 特征向量得到,也可以通过积分得到。
线性微分方程的解具有叠加性,即 如果两个解都是稳定的,那么它们 的线性组合也是稳定的。
振动分析
在研究物体的振动时,通过建立位移、速度和加 速度的微分方程来分析振动的规律和特性。
3
热传导方程
在研究热量在物体中的传递时,通过建立温度关 于时间和空间的微分方程来模拟热传导过程。
在经济中的应用
供需关系
01
在分析商品市场的供需关系时,通过建立需求和供给函数的微
分方程来预测价格变动。
经济增长模型
非线性微分方程的稳定性分析
非线性微分方程的稳定性分析比线性微分方程更为复杂,需要考虑更多的因素,如非线性项的性质、 初始条件等。
非线性微分方程的解可以通过数值方法(如欧拉法、龙格-库塔法等)得到,也可以通过解析方法(如 分离变量法、幂级数展开等)得到。
非线性微分方程的解具有不可叠加性,即如果两个解都是稳定的,那么它们的线性组合不一定是稳定的。
微分方程式的建立与 求解
目 录

应用数学方向,动力系统第三章非线性微分方程动力系统的简化

应用数学方向,动力系统第三章非线性微分方程动力系统的简化

第三章 非线性微分方程动力系统的简化在非线性微分方程动力系统研究中,很自然地期望有一些有效的方法使原系统降阶或简化,井能保持原系统的动态特性。

目前,现有的知识主要有中心流形、范式、奇异摄动与精确线性化等。

本章将简要地叙述相关方面的基本内容3.1中心流形3.1.1中心流形的基本定理本节考虑以下形式非线性微分方程系统(,)(,)x Ax f x y y By g x y '=+⎧⎨'=+⎩Equation Section 3(3.1) 其中,m n x R y R ∈∈,假定A 和B 是具有相应维数的常数矩阵,并且A 的所有特征值具有零实部,B 的所有特征值具有负实部。

函数f 和g 关于其变元皆二阶连续可微,且(0,0)0,(0,0)0f g ==;(0,0)0,(0,0)0f g ''==(注: f '和g '是它们各自的雅可比矩阵)。

定义3.1 一个集合(流形)m n S R R ⊂⨯被称为系统(3.1)的局部不变流形(Local invariant manifold)是指,对任何的00(,)x y S ∈系统(3.1)的初值为00((0),(0))(,)x y x y =的解()x t 始终在集合S 内,其中||t T <,T 为某正数。

进而,如果,T =∞,那么S 就称为不变流形(invariant manifold)。

定义3.2 如果()y h x =是系统(3.1)的一个不变流形,并且()h x 为光滑函数,(0)0h =,(0)0h '=,那么它被称为中心流形(centre manifold )。

对于系统(3.1),我们有,定理3.1 对系统(3.1)而言,若A ,B ,和g 满足假设条件,那么存在一个中心流形()y h x =,其中||x δ< (δ为某一个正数),且2h C ∈。

证今:[0,1]n R ψ→为C ∞函数,取值为1,||1,0,|| 2.x x ψ≤⎧=⎨≥⎩又设(,)((),),(,)((),)x xF x y f x yG x y g x y εεψψ==其中0ε>。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(7)
方程(7)的解由以下两个方程的解组合而成:
(8)
(9)
设方程(8)的解为:
将其代入(8)得:
从而
方程(8)的解为:
设方程(9)的解为 代入(9)得:
方程(4)的通解为:
代入初始条件:
所以
将(4)的解代入(5)中得:
(10)
方程(10)的解由 Βιβλιοθήκη 成(11)(12)
(13)
(14)
(15)
由(9)的求解过程得方程(11),(13)的解为:
由(8)的求解过程得方程(12)的解为:
所以方程的通解为:
2.用直接展开法求解2-9
2.1问题描述:设数学摆作小而有限振幅的振动,其运动微分方程为
2.2用直接展开法求解方程
设: 并考虑小参数,原方程化为:
(1)
设 (2)
将(2)代入(1)得:
整理得:
列出关于ε阶次的方程:
(3)
(4)
(5)
求解(1)得:
由初始条件: , 得: ,
(6)
将(6)代入(4)得:
相关文档
最新文档