遥感图像的阴影检测技术
使用遥感图像分类进行土地覆盖变化检测的技巧与方法

使用遥感图像分类进行土地覆盖变化检测的技巧与方法遥感图像分类是一种常用的技术,可以帮助我们监测土地覆盖变化。
通过使用远程感知设备,例如卫星或无人机,我们可以获取高分辨率的图像数据,然后利用遥感图像分类技术对这些数据进行分析和解译,从而获得土地覆盖的信息。
在进行土地覆盖变化检测之前,首先需要掌握遥感图像分类的技巧与方法。
遥感图像分类的主要步骤包括数据预处理、特征提取和分类器训练与分类。
首先是数据预处理。
由于遥感图像数据可能受到大气、云层、阴影等因素的干扰,因此需要对图像进行预处理,以提高分类的准确性。
常用的预处理方法包括大气校正、辐射校正和几何校正等。
通过这些预处理步骤,我们可以使图像具备更好的质量和一致性。
接下来是特征提取。
在遥感图像分类中,特征提取是一个非常重要的步骤。
特征提取的目的是从图像中提取出与土地覆盖类型相关的特征,以便后续的分类器可以根据这些特征进行分类。
特征提取可以基于像素级别或对象级别。
常用的像素级别特征包括颜色、纹理和形状等,我们可以通过计算图像的像素值统计信息、纹理特征和形状指标等来提取这些特征。
而对象级别的特征提取则更关注于分割出的地物对象的特征,例如面积、形状、光谱特性等。
最后是分类器的训练与分类。
分类器是遥感图像分类的核心部分,它能够将图像中的每个像素分配到特定的土地覆盖类别中。
常用的分类器包括最大似然分类器、支持向量机和随机森林等。
在进行分类器的训练之前,我们需要为每个土地覆盖类型进行样本标注,以获得有代表性的训练数据集。
一旦训练完毕,我们就可以将分类器应用于整个图像数据,完成土地覆盖的分类。
同时,为了提高分类的准确性,我们还可以采用多种分类器组合的方法,例如投票、融合和层次分类等。
除了上述的基本技巧和方法之外,还有一些进阶的技巧和方法可以进一步提升土地覆盖变化检测的准确性和效率。
首先是多时相数据的利用。
随着多时相遥感数据的获取,我们可以利用这些数据来进行土地覆盖变化检测。
如何进行遥感图像的变化检测和监测

如何进行遥感图像的变化检测和监测遥感图像的变化检测和监测技术在生态环境、城市规划、资源管理等领域具有重要的应用价值。
本文将介绍如何进行遥感图像的变化检测和监测,包括数据采集、图像处理和结果分析等方面。
一、数据采集遥感图像的变化检测和监测首先需要获取高质量的遥感数据。
常见的遥感数据包括航空摄影图像、卫星图像以及无人机图像等。
选择合适的遥感数据源对于精确的变化检测至关重要。
在数据采集过程中,需要考虑波段的选择、图像分辨率以及时相间隔等因素。
二、图像处理在获取到遥感图像数据后,进行图像处理是进行变化检测和监测的关键环节。
首先,需要进行预处理,包括辐射定标、几何校正和大气校正等步骤,以消除光照、尺度和大气等因素的影响。
其次,对预处理后的图像进行特征提取,常用的特征包括颜色、纹理、形状等。
特征提取可以采用传统的数学方法,如主成分分析和小波变换,也可以应用深度学习等先进技术。
最后,基于提取到的特征,进行图像分类和变化检测。
常见的方法有阈值法、像元差异法和聚类分析法等。
三、结果分析在进行图像处理后,得到的结果需要进一步进行分析和解读。
首先,对变化区域进行验证和修正,以减少误差和遗漏。
方法包括比对不同时期的地面实测数据,如GPS测量和实地调查,进一步确认图像中的变化区域。
其次,对变化区域进行分类和数量统计。
可以分析变化的类型,如建筑物的增加、绿地的减少等,并计算出变化的面积和比例。
最后,对变化区域进行空间分布和趋势分析。
可以借助地理信息系统(GIS)、空间统计等方法,探索变化的空间模式和规律。
四、应用展望遥感图像的变化检测和监测技术在生态环境、城市规划、资源管理等领域具有广泛的应用前景。
通过定期的遥感图像监测,可以及时发现和评估生态系统的变化,为生态环境保护和恢复提供科学依据。
同时,遥感图像的变化检测可以帮助城市规划部门进行城市扩张和土地利用规划,提供数据支持和决策依据。
此外,遥感图像的变化监测还可以用于资源管理,如农田监测和森林资源调查等,提高资源利用效率和保护资源的可持续性。
遥感影像的变化检测与分析方法

遥感影像的变化检测与分析方法在当今科技飞速发展的时代,遥感技术凭借其能够获取大范围、多光谱、多时相的地表信息的强大能力,成为了众多领域中不可或缺的工具。
而遥感影像的变化检测与分析方法,更是在资源监测、环境评估、城市规划等方面发挥着关键作用。
遥感影像变化检测,简单来说,就是通过对比不同时期的遥感影像,找出其中发生变化的区域和特征。
这一过程就像是在玩“找不同”的游戏,但要复杂和精确得多。
为了实现准确的变化检测,首先得有高质量的遥感影像数据。
这些影像通常来自卫星、飞机等平台,包含了丰富的地物信息。
然而,在获取影像的过程中,可能会受到天气、传感器精度等因素的影响,导致影像存在噪声、几何变形等问题。
所以,在进行变化检测之前,需要对影像进行预处理,包括辐射校正、几何校正等操作,以提高影像的质量和一致性。
常用的变化检测方法可以大致分为基于像元的方法和基于对象的方法。
基于像元的方法直接对影像中的每个像素进行分析和比较。
其中,差值法是一种常见的思路,就是将两个时期的影像对应像素的灰度值相减,得到差值影像。
如果差值超过了一定的阈值,就认为该像素发生了变化。
这种方法简单直观,但容易受到噪声的干扰,而且对于光谱相似但实际发生变化的区域可能检测不出来。
相比之下,基于对象的方法则先将影像分割成不同的对象,然后再对这些对象进行变化检测。
这种方法考虑了地物的空间特征和上下文信息,能够更好地处理复杂的场景。
例如,面向对象的分类后比较法,先对不同时期的影像分别进行分类,然后比较分类结果,从而确定变化的区域。
除了上述方法,还有一些基于特征的变化检测技术。
这些特征可以是地物的形状、纹理、光谱特征等。
通过提取和比较这些特征,来判断是否发生了变化。
在进行变化检测之后,接下来就是对检测结果的分析。
这包括对变化区域的类型识别、面积计算、变化趋势预测等。
例如,在城市发展研究中,通过分析变化区域,可以了解城市扩张的方向和速度,为城市规划提供依据。
遥感中的阴影及应用

遥感中的阴影及其应用前言高分辨率遥感影像同时具有地图的几何精度和影像视觉特征,具有广泛的应用。
然而由于算法以及客观条件的限制,影像中存在着大量的阴影,它直接影响到地物边缘的提取、目标识别、分类等。
特别是近年来随着影像分辨率的提高,阴影现象更加突出,因此对其进行检测与补偿显得极其重要。
1. 研究的背景及意义高分辨率遥感影像已被应用在林业、旅游、水文水资源、名胜古迹的维修等领域。
这些应用的首要问题是对影像中的关键地物进行识别、提取。
理论上,高分辨率卫星遥感影像在经过像片倾斜引起的像点位移、图形变形以及地形起伏引起的投影差的纠正,并在消除大气折射,相机系统带来的误差后,应该准确反映地物特征。
然而,由于建筑物的影响以及太阳光的照射,出现阴影和影像遮蔽以及摄影死角。
随着遥感传感器灵敏度不断提高,影像分辨率从几十米到现在的厘米级。
原本在较低几何分辨率影像中不明显的阴影已经在影像中格外突出。
比如在农村地籍调查中,由于航片的分辨率很高,有很多高大建筑物或者树木阴影,给界址点解译造成很大的困难。
并且图解存在一定的误差。
机载多角度成像数据的空间分辨率能够达到5厘米,影像上的阴影非常突出。
阴影使得影像上阴影区域所反映的被摄目标的信息有所损失或受到干扰。
这在计算机影像处理中将直接影响到相应区域地物的边缘提取、目标识别和地表覆盖分类以及影像匹配算法的成功率等。
它不仅破坏了影像的视觉解译能力和审美效果,还影响了遥感影像作为地图产品的基本功能发挥。
如何消除遥感影像的阴影,具有越来越重要的现实意义。
总的来说,卫星遥感影像能够快速提供地球表面的信息,高分辨率卫星遥感开创了许多新的应用领域,但影像中的阴影是一个必须解决的问题。
它给像影像分类这样的一些应用带来了很大的麻烦。
比如在卫星遥感影像分类中,大多数的地形或地物阴影与水体的光谱特征相混淆,很难准确地它们进行分类。
阴影区地物表现在遥感影像上信息量相对较少,难以判读,在影像处理和工程应用中,影响操作进程,甚至产生错误结果。
卫星遥感图像变化检测算法研究

卫星遥感图像变化检测算法研究近年来,随着遥感技术的迅猛发展,卫星遥感图像在环境监测、农业管理、城市规划等领域得到了广泛应用。
然而,由于图像数据的海量和复杂性,如何快速准确地检测图像的变化成为研究的热点之一。
本文将对卫星遥感图像变化检测算法进行研究,并探讨这些算法在实际应用中的挑战和前景。
一、基于像素的变化检测算法基于像素的变化检测算法是最常用的一种方法。
它利用图像中每个像素点的灰度值或颜色信息进行分析,从而确定图像的变化区域。
常见的算法包括差异图法、阈值法、比率图法等。
差异图法是一种直观简单的算法,它通过计算两幅图像对应像素点的像素值差异得到变化图像。
然而,该方法对光照、云雾等因素非常敏感,容易产生误报。
因此,研究者提出了基于阈值的方法,根据像素差异值与设定阈值的关系来确定变化区域。
该方法可以一定程度上减少误报,但在阈值的选择上还存在一定的主观性。
为了解决基于像素的变化检测方法的局限性,研究者提出了基于像素上下文的方法。
这类算法考虑了像素与其周围像素的关系,利用纹理、结构等特征来判断是否为变化区域。
其中,基于纹理的变化检测方法非常流行,它通过计算图像的纹理特征,如纹理熵、对比度等,来确定变化区域。
然而,这些方法对图像的噪声和分辨率要求较高,需要较大的计算量和存储空间。
二、基于对象的变化检测算法基于对象的变化检测算法是一种更高级的方法,它不仅考虑像素的变化,还考虑了物体在图像中的空间关系。
这类算法首先进行目标提取,然后通过比较两幅图像中目标的位置、形状、大小等特征来检测变化。
目标提取是基于对象方法的关键步骤。
常见的目标提取算法有阈值分割、边缘检测、区域生长等。
根据目标提取的方法不同,可以得到不同的目标表达方式,如形状、纹理、颜色等。
然后,通过对提取出来的目标进行特征匹配,来确定图像的变化区域。
基于对象的变化检测方法可以减少噪声影响,提高变化检测的准确性。
然而,该方法对目标提取的算法要求较高,需要克服光照不均、遮挡等问题,难度较大。
遥感图像的阴影检测技术(最全版)PTT文档

总结:
1) 由于各个为了更大地减小阴影检测误差,我们应该通 过大量的研究,希望能找到基于某种彩色空间的检测误差更 小的遥感图像的阴影检测技术。
2) 由于光源和场景的三维结构不易得到,基于模型的阴影检测 方法局限性很大,但其检测效果是最好的。所以,以后的研 究重点要放在基于模型的阴影检测技术上 。
遥感图像的阴影检测技术
随着航空卫星技术不断发展的步伐,高空间 分辨率遥感的广泛应用,如何消除遥感影像的阴 影,具有越来越重要的现实意义,但是这个问题 一直是遥感影像处理领域的一个难题。在这种情 况下,人们开始了遥感图像阴影检测技术的研究。 阴影既是使图像退化的噪声源,又是提供一些有 用信息的信息源。有了阴影检测技术,我们就能 获取更多关于我们所研究的对象的一些有效信息。
下面是一幅遥感图像:
自
投
阴
射
影
阴
影
针对遥感图像的阴影检测本文主要阐述了三种实现遥感图像的 阴影检测的算法:
1) 基于RGB彩色空间的归一化处理的阴影检测算法; 2) 基于RGB彩色空间的直接差分算子的阴影检测算法; 3) 基于纹理分析的阴影检测算法。
我们的重点研究的算法是基于RGB彩色空间的归一化处理的阴 影检测算法。
由于光源和场景的三维结构不易得到,基于模型的阴影检测方法局限性很大,但其检测效果是最好的。 我们的重点研究的算法是基于RGB彩色空间的归一化处理的阴影检测算法。
1)由于光线被遮挡2,)阴阴影影区域区具有域更具低的有灰度更值高的色调值
整个的阴影检测流程如下图所示: 但原始影像中的偏蓝色地物在B’分量中也具有很高的像素值,需要将这些区域从阴影区域中去除。
3)向具有更好的定位性,更好的边缘性,精度较高的阴影检测技术 方向发展。
图像的阴影检测与去除算法分析

图像的阴影检测与去除算法分析摘要:针对图像阴影的问题,文章讨论了现有的几项检测技术,即“光照无关”“连续阈值图”与“区域生长”技术。
进一步分析了阴影去除算法,包括泊松方程、梯度域以及成对区域三种算法。
关键词:图像阴影;检测技术;去除算法引言:采集图像中,往往会受到各种各样因素的影响,导致图像质量下降。
而阴影就是一种常见的降质表现,主要是由成像条件造成的。
阴影会令图像承载的信息量不完整,或是被干扰,影响目标解译的精度。
而阴影既会限制视觉判断,又不利于图像分析和后期处理,所以检测与去除阴影是有必要的。
一、图像的阴影检测技术(一)光照无关阴影检测技术光照无关技术运行机理在于,从RGB颜色空间,转换成仅和图像采集设备感光函数与拍摄目标表面反射特征相关,但和物体接受的光线方向、色彩及亮度都没有联系的一种灰度图像。
借助灰度图像本身的光照无关的特性,检测目标物体的轮廓位置,最终结合从原图中获取的目标物及阴影边缘,以此测出阴影边缘。
此种阴影检测技术,即便拥有面对较为杂乱纹理信息的图像,也能保持较佳的鲁棒性[1]。
但对于比较复杂的阴影区域,精准测出阴影边界的难度较大,这主要和图像采集设备摄影函数及表面反射率有关。
由此可推断出,该项检测技术的适用范围有:普朗克成像光源;朗伯成像表面;采集设备光谱响应函数是窄带函数。
但现在现实中,很少会有图像可以同时符合以上三项条件,因此该方法存在较大的使用限制。
(二)连续阈值图阴影检测技术从肉眼观察层面来讲,HSI颜色模型属于相对接近的色彩描述,包含角度与饱和度、强度等。
如果根据角度与强度比值,绘制比率图,用于测出彩色遥感图像上的阴影区域,基本操作流程是:通过比率图,完成HSI建模。
根据此模型的色彩表现,阴影部分和非阴影处相较,强度偏低、角度较高。
倘若在该种方法的基础上,借助双边滤波器,对目标图像实施滤波处理,这样起到去噪的作用。
而后利用全局阈值,将像素划分成非阴影与候选阴影两个类型,初步生成阴影图。
遥感影像变化检测

遥感影像变化检测报告学院:专业:指导老师:小组成员:2013年5月1、遥感影像变化检测的概念遥感影像变化检测指利用多时相获取的覆盖同一地表区域的遥感影像及其它辅助数据来确定和分析地表变化。
它利用计算机图像处理系统,对不同时段目标或现象状态的变化进行识别、分析;它能确定一定时间间隔内地物或现象的变化,并提供地物的空间分布及其变化的定性与定量信息。
由此可知,遥感影像变化检测是从不同时期的遥感图像中,定量地分析和确定地物变化的特征和过程。
它涉及到变化的类型、分布状况及变化信息的描述,即需要确定变化前后的地物类型、界限和分析变化的属性。
变化检测的研究对象为地物,包括自然地物和人造地物,其中人造地物在军事上常被称为目标。
描述地物的特性包括:空间分布特性、波谱反射与辐射特性、时相变化特性。
遥感影像的变化检测在土地覆盖变化监测、环境变迁动态监测、自然灾害监测、违章建筑物查处、军事目标打击效果分析以及国土资源调查等方面拥有广泛的应用价值和商业价值。
变化检测通常包括以下4个方面的内容:(1)判断是否发生了变化,即确定研究区域内地物是否发生了变化;(2)标定变化发生的区域,即确定在何处发生了变化,将变化像元与未变化像元区分开来;(3)鉴别变化的性质,给出在每个变化像元上所发生变化的类型,即确定变化前后该像元处的地物类型;(4)评估变化的时间和空间分布模式。
其中,前两个方面是变化检测所要解决的基本问题,而后两个方面则根据应用要求决定是否需要做。
2、遥感影像变化检测的三个层次遥感图像分析过程中通常包括数据层处理、特征层处理和目标层处理三个过程。
依据这三个层次划分,可将变化检测分为:像元级变化检测、特征级变化检测和目标级变化检测。
(1)像元级变化检测是指直接在采集的原始图像上进行变化检测。
尽管基于像元的变化检测有它一定的局限性,但由于它是基于最原始的图像数据,能更多地保留图像原有的真实感,提供其它变化检测层次所不能提供的细微信息,因而目前绝大多数的变化检测方法都是像元级变化检测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
处理后的图像:
总结:
1) 由于各个彩色空间的误测率不一样从而导致其在阴影检测误 差上的不一致。为了更大地减小阴影检测误差,我们应该通 过大量的研究,希望能找到基于某种彩色空间的检测误差更 小的遥感图像的阴影检测技术。 2) 由于光源和场景的三维结构不易得到,基于模型的阴影检测 方法局限性很大,但其检测效果是最好的。所以,以后的研 究重点要放在基于模型的阴影检测技术上 。 3)向具有更好的定位性,更好的边缘性,精度较高的阴影检测技术 方向发展。
随着航空卫星技术不断发展的步伐,高空间 分辨率遥感的广泛应用,如何消除遥感影像的阴 影,具有越来越重要的现实意义,但是这个问题 一直是遥感影像处理领域的一个难题。在这种情 况下,人们开始了遥感图像阴影检测技术的研究。 阴影既是使图像退化的噪声源,又是提供一些有 用信息的信息源。有了阴影检测技术,我们就能 获取更多关于我们所研究的对象的一些有效信息。
R ' R R G B
G'
B RG B
B R G B
B '
其中: R、G、B分别为原始的RGB分量, R‘、G’、B‘分别为 归一化后的RGB分量。通过前面的分析可知,在阴影区B通道灰度 下降得最少 。 整个的阴影检测流程如下图所示:
通过对B’分量图采用otsu阂值分割的方法,设置 一个较高的阈值就可以得到大致的阴影区域。但原始 影像中的偏蓝色地物在B’分量中也具有很高的像素值, 需要将这些区域从阴影区域中去除。基于此,我们在 原始的B分量图中引入了一个阈值来保证阴影检测的精 度。只有在B’分量中高于某个阈值,并在B分量中低 于某个阈值区域,才被检测成为阴影区域。
下面是一幅遥感图像:
自 阴 影
投 射 阴 影
针对遥感图像的阴影检测本文主要阐述了三种实现遥感图像的 阴影检测的算法:
1) 基于RGB彩色空间的归一化处理的阴影检测算法; 2) 基于RGB彩色空间的直接差分算子的阴影检测算法; 3) 基于纹理分析的阴影检测算法。
我们的重点研究的算法是基于RGB彩色空间的归一化处理的阴 影检测算法。
首先
阴影区域的特性: 1)由于光线被遮挡,阴影区域具有更低的灰度值 2)阴影区域具有更高的色调值
3)由于大气瑞利散射的影响,阴影区域具有更高的饱和度
4)阴影不改变原有地表的纹理特征
5ቤተ መጻሕፍቲ ባይዱ阴影与产生阴影的目标具有相似的轮廓
很多检测算法都基于阴影的属性,还有一种是基于模型的阴影检测。
根据阴影的属性(阴影区域具有更低的灰度值),通过分析 Phong光照模型,发现在阴影区域的三个通道中,R通道下降得最 多,G通道次之,B通道下降得最少,这相当于增加了阴影区域的 蓝色分量。充分利用了阴影区域的这一属性,通过对彩色RGB影 像进行如下的归一化处理: