七年级数学相交线1
人教版七年级数学上册《相交线与平行线》知识点归纳(五四制)

人教版七年级数学上册《相交线与平行线》知识点归纳(五四制)第十二章相交线与平行线相交线与平行线一:相交线(1)相交线的定义两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.(2)两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.(3)在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外)相交:如图所示,直线AB与直线CD相交于点O,其中以O为顶点共有4个角: 1,2,3,4对顶角与邻补角(1)对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.(2)邻补角:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.(3)对顶角的性质:对顶角相等.(4)邻补角的性质:邻补角互补,即和为180°.(5)邻补角、对顶角成对出现,在相交直线中,一个角的邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的邻补角:其中1和2有一条公共边,且他们的另一边互为反向延长线。
像1和2这样的角我们称他们互为邻补角;对顶角:1和3有一个公共的顶点O,并且1的两边分别是3两边的反向延长线,具有这种位置关系的两个角,互为对顶角;1和2互补,2和3互补,因为同角的补角相等,所以1=3。
所以对顶角相等二:垂线(1)垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.(2)垂线的性质过一点有且只有一条直线与已知直线垂直.注意:“有且只有”中,“有”指“存在”,“只有”指“唯一”“过一点”的点在直线上或直线外都可以.如图所示,图中ABCD,垂足为O。
垂直的两条直线共形成四个直角,每个直角都是90。
垂线段最短(1)垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.(2)垂线段的性质:垂线段最短.正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.(3)实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.点到直线的距离(1)点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.(2)点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.它只能量出或求出,而不能说画出,画出的是垂线段这个图形.三、平行线在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外).(1)平行线的定义:在同一平面内,不相交的两条直线叫平行线.记作:a∥b;读作:直线a平行于直线b.(2)同一平面内,两条直线的位置关系:平行或相交,对于这一知识的理解过程中要注意:①前提是在同一平面内;②对于线段或射线来说,指的是它们所在的直线.如图,直线a与直线b平行,记作a//b平行线公理及推论(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(2)平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.(3)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(4)平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用.四、平行线的性质同位角、内错角同旁内角同一个平面中的三条直线关系三条直线在一个平面中的位置关系有4中情况:有一个交点,有两个交点,有三个交点,没有交点(1)有一个交点:三条直线相交于同一个点,如图所示,以交点为顶点形成各个角,可以用角的相关知识解决(2)有两个交点:(这种情况必然是两条直线平行,被第三条直线所截。
人教版七年级数学下册5.1.1《相交线》教案

1.分组讨论:学生们将分成若干小组,每组讨论一个与相交线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相交线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相交线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
其次,注重培养学生的空间想象力。在解决实际问题时,我发现部分学生难以将题目中的信息与几何图形联系起来。为了改善这一点,我计划在今后的教学中,多设计一些空间想象力训练的环节,如让学生自己动手画图、制作模型等。
再次,加强小组合作学习的引导。在小组讨论和实验操作过程中,我发现有些学生参与度不高,依赖性强。针对这个问题,我将在今后的教学中加强对小组合作学习的引导,鼓励每个学生积极参与,培养他们的团队协作能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相交线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相交线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
1.理论介绍:首先,我们要了解相交线的基本概念。相交线是两条在平面内不平行且在某一点相遇的直线。它在几何学中有着重要的作用,可以帮助我们分析图形的性质和解决实际问题。
2015浙教版七年级数学上册6.9相交线(1)课件(共15张PPT)

2. 课本第187页作业题1----4题
乐于合作: 如图方格中,点D, E, F在同一条直线上吗? 请在点A, B, C, E, F, H, K中, 找出所有在同一条直线上的三点。
D B C H E A
K
F
喜于收获: 1、相交线的概念。 2、对顶角的定义。 3、对顶角的性质:
Zx.xk
直线AB、CD相交于点O
A 3 2 C
O
D 1
4
B
∠1 ,∠ 2, ∠ 3,∠4是AB与CD相交所成的四个角
我们把其中相对的任何一对角叫做-----------。 1与 2; 3与 4都是-------------。 如:
2
O
1
Zx.xk
对顶角的特点: 1、-----------------2、------------------
3
教学流程设计:
善于自学----乐于合作1-------乐于合作2— 勤于巩固1----------勤于巩固2-乐于合作-----喜于收获
教学板书设计:
Z.x.x. K
定义:1两条直线相交 2对顶角的定义 特点1 、 2、 性质
例题
4
A
O C
D
B
善于自学
如果两条直线有一个公共点,就说这--------------------,-----------叫做这两条直线的--------。
一.教学目标:
1.了解相交线和对顶角的概念 2 理解对顶角相等 3 会利用余角,补角和对顶角的性质进行有关角的计算 二.教学重点:对顶角的性质
三.教学难点:例2需利用有关余角,对顶角的性质,并且包含较 多的说理过程,是本节的难点
2
四.教材分析: 1、学生通过自学能掌握相交线,对顶角 的定义,理解对顶角的性质2、学生对比较复杂的图形 不能完整的找出所以的对待角,需要讲解方法。3对于 解答题需要强调解题格式。
人教版数学七年级下册5-1-1 相交线 教案

5.1.1相交线教学设计课题 5.1.1 相交线单元第五单元学科初中数学年级七下学习目标1.了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.2.理解对顶角性质的推导过程,能使用该性质进行简单的计算.3.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力.4.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.重点了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.难点理解对顶角性质的推导过程,能使用该性质进行简单的计算.教学过程教学环节教师活动学生活动设计意图导入新课【观察思考】握紧剪刀的把手时,随着把手之间的角逐渐变小,剪刀刃之间的角是怎么变化的?分析:随着把手之间的角逐渐变小,剪刀刃之间的角也逐渐变小.【观察思考】如果把剪刀的构造抽象成一个几何图形,会是什么样的图形?请你在纸上画出来.分析:剪刀的构造可看作两条相交的直线,剪刀刃之间的角就是相交直线所成的角.【复习回顾】相交线的概念:如果两条直线只有一个公共点,那么我们就说这两条直线相交,它们的公共点叫做交点.观察并思考.挖掘和利用现实生活背景,让学生将理论知识与现实生活相联系.分析:如上图,AB、CD为两条直线,点O是直线AB与直线CD的交点,我们就可以说直线AB与直线CD相交.【教学建议】引导学生观察剪刀把手夹角与刀刃夹角之间的大小关系,为后续学习邻补角、对顶角做铺垫.讲授新课【合作探究】任意画两条相交的直线,形成几个角?这些角有什么位置关系?分析:任意两条相交的直线,形成4个角;这4个角有公共顶点.【观察思考】在两条相交的直线所形成的4个角中,∠1与∠2有怎样的位置关系?分析:∠1与∠2:①有一条公共边OC;②另一边互为反向延长线;③具有这种关系的两个角,互为邻补角.问题:你还能找出其它的邻补角吗?分析:∠2与∠3;∠3与∠4;∠4与∠1问题:∠1与∠2的度数有什么关系?分析:∠1+∠2=180o【观察思考】在两条相交的直线所形成的4个角中,∠1与∠3思考并回答小组交流合作,观察思考积极回答问题.让学生了解平面内两直线相交所成的4个角之间有怎样的特征.让学生经历合作探究的过程,通过观察、发现、归纳、概括得出邻补角和对顶角的概念;培养学生发现问题,解决问题和抽象概括能力.有怎样的位置关系?分析:∠1与∠3:①有一个公共顶点O;②∠1的两边分别是∠3的两边的反向延长线;③具有这种关系的两个角,互为对顶角.问题:你还能找出其它的对顶角吗?分析:∠2与∠4【合作探究】∠1与∠3的度数有什么关系?分析:∠1+∠2=180o∠2+∠3=180o∠1+∠2=∠2+∠3∠1=∠3总结:对顶角的性质:对顶角相等.【教学建议】引导学生小组合作,自主实践,教师巡回指导,随时观察学生完成情况并进行相应指导.熟悉并掌握对顶角相等.通过分析已知求证,利用平角的定义和等式的性质进行推导,培养学生逻辑推理力.【典型例题】如图,直线a、b相交,若∠1 = 40°,求∠2、∠3、∠4的度数.解:由邻补角的定义,∠1 = 40°可得∠2 = 180°-∠1= 180°-40°= 140°由对顶角相等,可得∠3 = ∠1 = 40°∠4 = ∠2 = 140°【教学建议】教师适当引导,学生自主完成.思考并积极回答.通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.【随堂练习】1.如图,直线AB、CD、EF 两两相交,图中共有___对对顶角,___对邻补角.答案:6;12.2.下列各组角中,∠1与∠2是对顶角的为( )答案:D3. 如图,直线AB、CD相交于点O,OE是射线. 则:∠BOC的对顶角是________________,∠AOC的对顶角是________________,∠AOC的邻补角是________________,∠BOE的邻补角是________________.答案:∠AOD;∠BOD;∠BOC、∠AOD;∠AOE.4. 如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,求∠BOD,∠BOC的度数.解:因为OA平分∠EOC,∠EOC = 70°所以∠AOC = 35°由对顶角相等,得∠BOD =∠AOC = 35°自主完成练习进一步巩固本节课的内容. 了解学习效果,让学生经历运用知识解决问题的过程,给学生获得成功体验的空间.通过课堂练习巩固新知,加深对顶角、余角、补角的概念和性质的理解,并学会运用它们解决一些问题.由邻补角的定义,得∠BOC = 180°-∠AOC= 180°-35°= 145°【教学建议】教师给出练习,随时观察学生完成情况并相应指导,根据学生完成情况适当分析讲解.课堂小结以思维导图的形式呈现本节课所讲解的内容. 回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书1.邻补角:有一条公共边,另一边互为反向延长线的两个角,互为邻补角.邻补角互补.2.对顶角:(1)概念:有公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,这样的两个角,互为对顶角.(2)对顶角相等.。
七年级数学人教版相交线 第一课时

相交线第一课时祁家湾中学:童学凡教学目标:1、让学生通过学习认识相交线,理解其定义。
2、认识对顶角邻补角。
并会区分补角与邻补角。
3、关于对顶角邻补角的计算解答简单实际问题。
教学重点;相交线的定义,对顶角的大小关系,邻补角与补角区别教学难点;多条直线相交一点对顶角的对数,及角度的计算一、复习准备观察:1、两条直线相交组成几个角?2、将这些角两两相配能得到几对角?讨论:1、每对角中两个角的位置有怎样的关系?2、试根据它们的位置关系将这几对角进行分类两直线相交:分类:∠1和∠2、∠2和∠3、∠3和∠4、∠4和∠1位置关系:1、有公共顶点;2、有一条公共边;3、另一边互为反向延长线。
名称:邻补角二新课探究分类:∠1和∠3、∠2和∠4、位置关系:1、有公共顶点;2、没有公共边;3、两边互为反向延长线。
名称:对顶角有关概念:邻补角:如果两个角有一条公共边,它们的另一边互为反向延长线,那么这两个角互为邻补角。
对顶角:有一个公共顶点一个角的两边是另一个角的两边的反向延长线,那么这两个角互为对顶角。
练习:下面∠1、∠2是对顶角的是:A.(1)B.(2)C.(3)D.(4)练习:下列图中,∠1与∠2是对顶角吗?为什么?(1) (2) (3) (4)否是否否做一做:分别用尺量一量4个交角的度数,各类角的度数有什么关系?答:因为∠1与∠2互补,∠2与∠3互补(邻补角定义),所以∠1=∠3(同角的补角相等),同理∠2=∠4。
两直线相交:分类:1、∠1和∠2、∠2和∠3、∠3和∠4、∠4和∠1位置关系:1、有公共顶;2、有一条公共边;3、另一边互为反向延长线。
名称:邻补角大小关系:邻补角互补分类:∠1和∠3、∠2和∠4、位置关系:1、有公共顶点;2、没有公共边;3、两边互为反向延长线。
名称:对顶角大小关系:对顶角相等课堂练习:1、若∠1与∠2是对顶角,∠1=160,则∠2=______0;若∠3与∠4是邻补角,则∠3+∠4 =______02、若∠1与∠2为对顶角,∠1与∠3互补,则∠2+∠3=180°3、图中是对顶角量角器,你能说出用它测量角的原理吗?答:对顶角相等例1:如图,直线a、b相交。
冀教版七年级下册数学《相交线》PPT(第1课时)

或者MN⊥EF于O
或者AB⊥OE于O
M
F
E
E
A
O
B
N
垂线的画法 你能借助三角尺或量角器经过直线AB外的一点P画出AB 的垂线吗?.
P
Q
A
B
AQ
B
P
∴ PQ为所求
∴ PQ为所求
方法归纳 画垂线的方法可归纳为“一落、二过、三画” 1.一落:把三角尺的一条直角边落在已知直线上; 2.二过:让三角尺的另一条直角边经过已知的点; 3.三画:沿着直角边经过已知点画直线.
①在直线c的两侧 ②在直线a,b的之间
内错角
c
1 2
a
34
65
b
78
3 5
典例精析 例1 如图,直线DE截直线AB ,AC,构成8个角,指出所有的
同位角,内错角,同旁内角.
解:两条直线是AB,AC,截线是DE,
所以8个角中, 同位角:∠2与∠5,∠4与∠7,∠1
D
21 34
B
A
58
67 E C
与∠8, ∠6和∠3;
解析:过一点有且只有一条直线与已知直线垂直;过直 线外一点并过直线上一点不一定有一条直线与已知直线 垂直.故D错.故选D.
三 点到直线的距离
合作探究 问题 在灌溉时,要把河中的水引到农田P处,如何挖掘能使渠 道最短?
m
P.
P
C
B
A
E
Fm
知识要点 直线外的一点与直线上各点的连接的所有线段中,垂线 段最短.
情境引入
问题引入 在奥运会的跳远比赛中,裁判员在测量运动员的跳远
成绩时,拉紧的皮尺与起跳线有什么关系?这样做的依据 是什么?
人教版七年级数学下册 5.1.1相交线 课件(共18张PPT)

变式2:若∠2是∠1的3倍,求∠3的度数? 解:设∠1=x°,则∠2=3x°
根据邻补角的定义,得 x+3x=180 所以 x=45 则∠1=45°
根据对顶角相等,可得 ∠3=∠1=45°
今天我们学了什么?
邻补角、对顶角概念 邻补角、对顶角性质
今天我们学了什么?
两直线相交
C
2
B
1
3
4
A
D
位置 特征
1、两直线相交,形成小于平角的角有哪几个?
2、以∠1和∠2为例分析这两个角存在怎样的
位置关系和大小关系?像这样的角还有哪些?
3、以∠1和∠3为例分析这两个角存在怎样的
位置关系?像这样的角还有哪些?
C
2
B
1 o3
4
A
D
动手画出两条相交直线
1、两条直线相交,形成的小于平角的角
有哪几个?
C
2
B
1
o3
4
A
1 2
(1)不是
1 2
(2) 是
1 2
(3) 不是
1
2
(4) 不是
2 1
(5)是
7、你能得到对顶角∠1和∠3的大小关系吗?
C
2
B
动动手:(1)、用量角器测
1
o3
量对顶角∠1和∠3,比较他们
4
的大小
A
D
(2)将对顶角∠1和∠3
进行翻折,比较它们的大小?
4、你能得到对顶角∠1和∠3的大小关系吗?
猜猜看:若直线CD绕点O转 C
例、如图,直线a、b相交,∠1=40°,求
∠2、∠3、∠4的度数。
b
解:由邻补角的定义可知 ∠2=180°-∠1
人教版七年级数学下册教案 5-1-1 相交线

5.1.1相交线一、教学目标【知识与技能】1.借助两直线相交所形成的角初步理解邻补角、对顶角的概念.2.会根据邻补角、对顶角的性质去求一个角的度数.3.掌握邻补角与对顶角的性质,并能运用它们解决简单实际问题.【过程与方法】1.通过动手操作、推断、交流等活动,进一步发展空间观念,培养识图能力、推理能力和表达能力.2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题.【情感态度与价值观】引导学生对图形进行观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,树立学习的信心.二、课型新授课三、课时1课时四、教学重难点【教学重点】对顶角的性质【教学难点】理解对顶角相等的性质的探索.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2-5)同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行钢索,桥的侧面有许多相交钢索组成的图案;围棋棋盘的纵线相互平行,横线相互平行,纵线和横线相交.这些都给我们以相交线、平行线的形象.在我们生活中,蕴涵着大量的相交线和平行线.那么两条直线相交形成哪些角?这些角又有什么特征?(二)探索新知1.出示课件7-12,探究邻补角与对顶角的定义教师问:如图,把两根木条用钉子钉在一起,转动其中一根木条,观察两根木条所形成的角的位置及大小关系.你能动手画出两条相交直线吗?学生答:能,作图如下:教师问:两条直线相交,形成的小于平角的角有几个,是哪几个?学生答:两条直线相交,形成的小于平角的角有四个 .分别是∠1,∠2,∠3,∠4.教师问:将这些角两两相配能得到几对角?教师依次展示学生答案:学生1答:∠1 和∠2.学生2答:∠2 和∠3.学生3答:∠3 和∠4.学生4答:∠4 和∠1.教师问:为何如此分类呢?学生答:有一条边在一条直线上,角的顶点相同.教师问:还有其他分类吗?学生答:分类如下:∠1 和∠3,∠2 和∠4.教师问:这样分的标准是什么?学生答:两边分别在一条直线上,有共同的顶点.总结点拨:(出示课件9)教师问:观察∠1和∠2的顶点和两边,有怎样的位置关系?师生一起解答:如图,∠1与∠2有一条公共边OC,它们的另一边互为反向延长线(∠1与∠2 互补),具有这种位置关系的两个角,互为邻补角.教师问:类比∠1和∠2,看∠1和∠3有怎样的位置关系?学生答:这两个角的两边都在同一条直线上,有相同的顶点.教师总结:如图,∠1与∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.总结点拨:(出示课件12)考点1:对顶角的判断下列各图中,∠1与∠2是对顶角的是()(出示课件13)师生共同讨论解答如下:解析:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.答案:D.出示课件14,学生自主练习后口答,教师订正.答案:D.2.出示课件15-17,探究对顶角、邻补角的性质教师问:在上学期我们已经知道互为补角的两个角的和为180°,因而互为邻补角的两个角的和为180°.如图所示,∠1 与∠3在数量上又有什么关系呢?学生答:猜想:∠1 =∠3.教师问:你能利用学过的有关知识来验证∠1与∠3的数量关系吗?学生答:∵∠1+∠2=180°,∠3+∠2=180°,∴∠1=∠3.教师问:∠1与∠3互为什么角?学生答:互为对顶角.教师问:由此你能猜想对顶角有什么性质?学生答:猜想:对顶角相等.教师问:你能证明你的猜想吗?学生先独立思考,师生共同讨论后解答如下:师生一起解答:已知:直线AB与CD相交于O点(如图),求证:∠1=∠3,∠2=∠4.证明:∵直线AB与CD相交于O点,∴∠1+∠2=180°∠2+∠3=180°,∴∠1=∠3.同理可得∠2=∠4.教师问:您能利用几何语言描述一下对顶角的性质吗?学生答:符号语言:∵直线AB与CD相交于O点,∴∠1=∠3,∠2=∠4.教师总结点拨:(出示课件18)两直线相交分类位置关系名称数量关系∠1 和∠2,∠2 和∠3,∠3 和∠4,∠4 和∠11.有公共顶点2.有一条公共边3.另一边互为反向延长线邻补角邻补角互补∠1 和∠3,∠2 和∠4.1.有公共顶点2.没有公共边对顶角对顶角相等3.两边互为反向延长线考点1:利用对顶角、邻补角的性质求角的度数如图,直线a、b相交,∠1=40°,求∠2、∠3、∠4的度数.(出示课件19)学生独立思考后,师生共同解答.学生1解:由邻补角的定义可知∠2=180°-∠1=180°-40°=140°;学生2解:由对顶角相等可得∠3=∠1=40°,∠4=∠2=140°.教师总结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中央电教馆资源中心
第七节相交线
第四章图形的初步认识
请辨别:
内错角、同位角、同旁 内角之间的区别和联系.
中央电教馆ห้องสมุดไป่ตู้源中心
第七节相交线
第四章图形的初步认识
将左右手的大拇指和食指各组 成一个角,两食指相对成一条直线, 两个大拇指反向的时候,组成内错 角;
第七节相交线
第四章图形的初步认识
相交线
中央电教馆资源中心
中央电教馆资源中心
第七节相交线
第四章图形的初步认识
像上图中的∠1与∠2这样位置 的一对角我们称它们为同位角. 你认为同位角在位置上有什么 特点?
中央电教馆资源中心
第七节相交线
第四章图形的初步认识
像下图中的∠8与∠2这样位置 的一对角我们称它们为内错角.
中央电教馆资源中心
两食指相对成一条直线,两个 大拇指同向的时候,组成同旁内角;
两手的拇指和食指如何组合得 到同位角?
中央电教馆资源中心
第七节相交线
第四章图形的初步认识
四条直线两两相交可 以得到多少个角?在这些 角中分别有多少对同位 角、内错角和同旁内角?
中央电教馆资源中心
第七节相交线 ; / 君必强 第四章图形的初步认识 ath41cwb
的穷孩子忽得个千金 的玩艺儿,未必实用,也觉新鲜。第十二章故纵倾颜成一怒(4)于韩玉笙亲笔画的一堆卷轴中,宝音忽见幅画儿,相当特 别,力气是实在弱,笔触都乱了,画面不怎么美观,好歹画的是什么,倒也清清楚楚:一口井,井里映着一钩冷月,地上疏疏落落一些纹路,似 石纹、又似霜迹,天上几抹云痕,无星,竟连月亮也没有,不知井中月影是从何处映来。画技不论,构图实在带着飞寒鬼气。宝音看这井,极其 眼熟,莫非便是宝音居所到老太太屋里路边经过的那口井?外头所谓宝音“落了水”,便是落到那口井里,编排得倒是很顺!但、但韩玉笙怎会 知道!宝音手攥着画轴,发一会怔,强笑着问洛月道:“我是什么时候画的它?怎么画成这样,大约病得狠了罢!我现在想过去都有些恍恍惚惚 的。”“是上月底画的。” 洛月怯生生道,“姑娘是病着,画了这幅,病越发凶了,笔都持不得,到今日,幸是安好了,且再将养两日?养得再 好些再改罢!”所以它是韩玉笙生前画的最后一幅了,上月底,金钟魁像根本没送来,韩玉笙便画了井,想必是巧合罢!宝音又问了洛月几句, 问不出什么来,乌云已压得低了,一道小小的闪电,似灵蛇,撕破天际。宝音等候的时机来了。为天色不好,嘉颜早早先下山回府准备,补理了 大批雨具命人送上山,又叫各院预备各色祛寒祛潮之物,等主子们回府来用,原来准备的夜宵,也要改了,正极忙的时候,又听说大少爷等得不 耐烦,自己下山,跑了,却又没回府。众人全都叫苦:“这是怎么说的?”又嘀咕:“问问宝音姑娘,或许还猜得出来……”“可宝音姑娘出府 养病了,这……”嘉颜眼皮剧跳了一下。宝音已经死了。老太太亲自吩咐,宝音是落井。这孩子心好,想着给老太太汲些温温的井水来洗面,从 前也经常汲的,谁知那夜绳上钩子锈坏了,汲水瓶掉下去。宝音大约是一急,伸手想去捉,失去平衡,这才掉进了井里去。可怜是可怜,但重阳 佳节呢!不方便办丧事。于是说起来,只道宝音失足落井,虽经救起,身体还是不好,暂时出府休养,也算祸事,但总比死人的好。等到明儿后 儿,再宣布:嘉颜姑娘本来好些的,结果水寒入肺,失救了。老太太作主,准给她办个对丫头来说挺体面的丧事。避过重阳正日子,也就不忌讳 了。宝音的尸身,还是嘉颜亲自装成病人,送出府去。唏嘘么?或许有一点。丫头连死都要挑个好时候,否则为主子不喜,物伤其类,怎不悲凉? 但话又说回来了,谁死不该挑个好时候呢?桃花潭水深千尺,各饮各的那一盏,除此之外,都属逾份。自己不照顾好自己,反要别人担待身后事? 再没这个道理的!老太太还算仁德,单叫错过这节日,之后丧仪给她做足,亲眷也多赏些银两,全由老太太体己开支。宝音