2020高考数学 25个必考点 专题16 线性规划检测

合集下载

2020届高考数学考前预测线性规划与函数(原卷版)

2020届高考数学考前预测线性规划与函数(原卷版)

线性规划与函数78-88(解析版)15、线性规划小题★★★★十年考情:全国卷线性规划题考的比较基础,一般不与其它知识结合,不象部分省区的高考向量题侧重于与其它知识交汇,如和平面向量、基本不等式、解析几何等交汇.这种组合式交汇意义不大,不利于考查基本功.由于线性规划的运算量相对较大,难度不宜太大,不过为了避免很多同学解出交点代入的情况估计会加大“形’的考察力度,有可能通过目标函数的最值作为条件反求可行域内的参数问题(但近几年全国卷未出现此类题型,感觉今年出现的可能性也不大),或者利用一些含有几何意义的目标函数(斜率、距离等),如2015 年新课标1卷15 题。

三大常见考法:截距型(热点)、斜率型(2015年1卷出现过1次)、距离型(新课标全国卷没出现过);斜率型注意范围是取中间还是取两边;距离型最小值注意是点点距离最小还是点线距离最小。

2020高考预测:78.若,x y满足约束条件10,20,220,x yx yx y-+⎧⎪-⎨⎪+-⎩≥≤≤,则z x y=+的最大值为__.79.设满足约束条件,则的最大值为___.80.若,x y满足约束条件,2,220,y xx yx y≥⎧⎪+≥⎨⎪-+≥⎩,则2z x y=+的最小值为__.,x y13,10xx y≤≤⎧⎨-≤-≤⎩2z x y=-81.若,x y 满足约束条件10040x x y x y -⎧⎪-⎨⎪+-⎩≥≤≤,则y x 的最大值为 . 82.若,x y 满足约束条件240220330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则22x y +的取值范围是 .16、函数小题★★★★★十年考情:这是必考内容。

主要考查:定义域、最值、单调性、奇偶性、周期性、对称性、平移、导数、切线、定积分、零点等,分段函数是重要载体!绝对值函数也是重要载体!函数已经不是值得学生“恐惧”的了吧?零点问题数形结合是必须的。

牢记周期性和对称性的结论;注意单调性和奇偶性的关系;学会用特殊点巧解;隐藏性质:奇函数在原点处有定义时,;常见奇偶函数的特殊形式(总结过的);比较大小单调性和中间变量相结合。

高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析1.,满足约束条件,若取得最大值的最优解不唯一,则实数的值为()A.或B.或C.或D.或【答案】D.【解析】如图,画出线性约束条件所表示的可行域,坐出直线,因此要使线性目标函数取得最大值的最优解不唯一,直线的斜率,要与直线或的斜率相等,∴或.【考点】线性规划.2.已知最小值是5,则z的最大值是()A.10B.12C.14D.15【答案】A【解析】首先作出不等式组所表示的平面区域,如图中黄色区域,则直线-2x+y+c=0必过点B(2,-1),从而c=5,进而就可作出不等式组所表示的平面区域,如图部的蓝色区域:故知只有当直线经过点C(3,1)时,z取最大值为:,故选A.【考点】线性规划.3.执行如图1所示的程序框图,如果输入的,则输出的的最大值为()A.B.C.D.【答案】C【解析】该程序执行以下运算:已知,求的最大值.作出表示的区域如图所示,由图可知,当时,最大,最大值为.选C.【考点】程序框图与线性规划.4.执行如图1所示的程序框图,如果输入的,则输出的的最大值为()A.B.C.D.【答案】C【解析】该程序执行以下运算:已知,求的最大值.作出表示的区域如图所示,由图可知,当时,最大,最大值为.选C.【考点】程序框图与线性规划.5.设变量满足约束条件则目标函数的最小值为()A.2B.3C.4D.5【答案】B【解析】作出可行域:oyxA(1,1)由图可知,当直线过点时,目标函数取最小值为3,选B.【考点】线性规划6.已知x,y满足条件,则目标函数的最大值为 .【答案】【解析】画出可行域,如下图所示,将目标函数变形为,当取到最大值时,直线的纵截距最大,故将直线向上平移到过点C时,目标函数取到最大值,,得,故.【考点】线性规划.7.若变量满足约束条件,则的最大值为_________.【答案】【解析】作出不等式组表示的区域如下,则根据线性规划的知识可得目标函数在点处取得最大值,故填.【考点】线性规划8.设x,y满足约束条件,则z=(x+1)2+y2的最大值为()A.80B.4C.25D.【答案】A【解析】作出不等式组表示的平面区域,如图中阴影部分所示.(x+1)2+y2可看作点(x,y)到点P(-1,0)的距离的平方,由图可知可行域内的点A到点P(-1,0)的距离最大.解方程=(3+1)2+82=80.组,得A点的坐标为(3,8),代入z=(x+1)2+y2,得zmax9.已知实数满足,则目标函数的取值范围是.【答案】【解析】可行域表示一个三角形ABC,其中当直线过点A时取最大值4,过点B时取最小值2,因此的取值范围是.【考点】线性规划求取值范围10.设变量满足,则的最大值和最小值分别为()A.1,-1B.2,-2C.1,-2D.2,-1【答案】B【解析】由约束条件,作出可行域如图,设,则,平移直线,当经过点时,取得最大值,当经过点时,取得最小值,故选.【考点】线性规划.11.(2011•浙江)设实数x、y满足不等式组,若x、y为整数,则3x+4y的最小值是()A.14B.16C.17D.19【答案】B【解析】依题意作出可行性区域如图,目标函数z=3x+4y在点(4,1)处取到最小值z=16.故选B.12.若点(x,y)位于曲线y = |x|与y = 2所围成的封闭区域, 则2x-y的最小值为A.-6B.-2C.0D.2【答案】A【解析】的图像围成一个三角形区域,3个顶点的坐标分别是 (0,0),(-2,2),(2,2). 且当取点(-2,2)时,2x – y =" -" 6取最小值。

冲刺2020年高考满分数学16 线性规划(学生版)理科

冲刺2020年高考满分数学16 线性规划(学生版)理科

专题16 线性规划(解析版)线性规划问题的基本内容是可行解、可行域、最优解、最优整数解等.易错点1:混淆动直线的截距与所求最值间的对应关系这一错解告诉我们先将目标函数改写为动直线的斜截式方程再从中|确定目标函数值与动直线截距间的对应关系,是准确求解线性规划问题的第一步.易错点2:无视动直线与可行域边界直线间的相对倾斜程度当线性约束条件表示的可行域为一多边形时,,明确动直线与可行域边界直线的相对倾斜情况,是正确求解线性规划问题的第二步.-般地,可先观察直线斜率的正负然后再根据斜率绝对值的大小来确定动直线与边界直线的相对倾斜情况.易错点3:忽视变量实际意义“想当然”推断最优解求最优整数解是线性规划的难点.本题的剖析其实给同学们展示了一种求最优整数解的简便方法:第一步求出不考虑整数条件时的最优解A及此时的目标函数值z(A).若A恰好为整数解,则问题解决;若A不是整数解则进入第二步在该“最优解”附近求得某一整数解B及此时的目标函数值z(B) ;第三步推断介于z(A)与z( B)之间的可能的目标函数值,并求出该目标函数值对应的所有整数解;第四步验证这些整数解是否在可行域内.易错点4:分析、转化问题不全面求解二元一次式的绝对值这个问题似乎并没有直接指向线性规划,但我们通过转化使其具有了线性意义.设z=2r+y,找出这一目标函数的最值,等于"变相"地去掉了"绝对值"符号.但如果分析不全面,仍然可能导致错解.可见线性转化、全面分|析乃是线性规划应用的原则.题组一1.(2015新课标Ⅱ)若,x y满足约束条件10,20,220,x yx yx y-+⎧⎪-⎨⎪+-⎩≥≤≤,则z x y=+的最大值为__.2.(2016全国III)若x,y满足约束条件1020220x yx yx y-+⎧⎪-⎨⎪+-⎩≥≤≤,则z x y=+的最大值为3.(2017新课标Ⅱ)设x,y满足约束条件2330233030x yx yy+-⎧⎪-+⎨⎪+⎩≤≥≥,则2z x y=+的最小值是A.-15B.−9C.1D.94.(2018全国卷Ⅰ)若x,y满足约束条件22010--⎧⎪-+⎨⎪⎩≤≥≤x yx yy,则32z x y=+的最大值为__.5.(2018全国卷Ⅱ)若,x y满足约束条件25023050+-⎧⎪-+⎨⎪-⎩≥,≥,≤,x yx yx则=+z x y的最大值为___.题组二6.(2013新课标Ⅱ)设满足约束条件,则的最小值是A.B.C.D.7.(2017新课标Ⅰ)设x,y满足约束条件2121x yx yx y+⎧⎪+-⎨⎪-⎩≤≥≤,则32z x y=-的最小值为.8.(2017新课标Ⅲ)若x,y满足约束条件20x yx yy-⎧⎪+-⎨⎪⎩≥≤≥,则34z x y=-的最小值为__.9.(2012新课标)设x,y满足约束条件13x yx yxy--⎧⎪+⎪⎨⎪⎪⎩…„……,则yxz2-=得取值范围,x y10,10,3,x yx yx-+≥⎧⎪+-≥⎨⎪≤⎩23z x y=-7-6-5-3-为.题组三 10.(2011新课标)若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值 是_________.11.(2013新课标Ⅰ)设满足约束条件,则的最大值为___. 题组四12.(2015新课标Ⅰ)若,x y 满足约束条件10040x x y x y -⎧⎪-⎨⎪+-⎩≥≤≤,则y x 的最大值为 . 题组五13.(2014新课标Ⅰ)不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题: 1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3p :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3pB .1p ,4pC .1p ,2pD .1p ,3p14.(2010新课标)已知ABCD Y 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在ABCDY 的内部,则z =2x -5y 的取值范围是A .(-14,16)B .(-14,20)C .(-12,18)D .(-12,20)题组六,x y 13,10x x y ≤≤⎧⎨-≤-≤⎩2z x y =-15.(2016年全国I)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B 的利润之和的最大值为元.。

高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析1.已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点在△ABC内部,则的取值范围是( )A.(1-,2)B.(0,2)C.(-1,2)D.(0,1+)【答案】A【解析】作出可行域如图中阴影部分所示,由题知C(,2),作出直线:,平移直线,由图知,直线过C时,=1-,过B(0,2)时,=3-1=2,故z的取值范围为(1-,2),故选C.【考点】简单线性规划解法,数形结合思想2.若变量、满足约束条件,且的最大值和最小值分别为和,则()A.B.C.D.【答案】C【解析】作出不等式组所表示的可行域如下图中的阴影部分所表示,直线交直线于点,交直线于点,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,直线在轴上的截距最大,此时取最大值,即;当直线经过可行域上的点时,此时直线在轴上的截距最小,此时取最小值,即.因此,,故选C.【考点】本题考查线性规划中线性目标函数的最值,属于中等题.3.已知 (x+y+4)< (3x+y-2),若x-y<λ恒成立,则λ的取值范围是()A.(-∞,10]B.(-∞,10)C.[10,+∞)D.(10,+∞)【答案】C【解析】已知不等式等价于不等式x+y+4>3x+y-2>0,即,其表示的平面区域如图中的阴影部分(不含区域边界)所示.设z=x-y,根据其几何意义,显然在图中的点A处,z取最大值,由得,A(3,-7),故z<3-(-7)=10,所以λ≥10.4.若满足条件的整点恰有9个(其中整点是指横,纵坐标均为整数的点),则整数的值为()A.B.C.D.0【答案】C【解析】不等式组表示的平面区域如图,要使整点恰有9个,即为,,,,,,,,,故整数的值为.故选C.【考点】简单的线性规划,整点的含义.5.已知,则满足且的概率为 .【答案】【解析】因为满足且的平面区域是一个矩形,面积为,而圆的半径为2,面积为,根据古典概型公式得所求的概率为.【考点】古典概型,简单的线性规划,圆的面积公式.6.(3分)(2011•重庆)设m,k为整数,方程mx2﹣kx+2=0在区间(0,1)内有两个不同的根,则m+k的最小值为()A.﹣8B.8C.12D.13【答案】D【解析】将一元二次方程的根的分布转化为确定相应的二次函数的图象来处理,根据图象可得到关于m和k的不等式组,此时不妨考虑利用不等式所表示的平面区域来解决,但须注意这不是线性规划问题,同时注意取整点.解:设f(x)=mx2﹣kx+2,由f(0)=2,易知f(x)的图象恒过定点(0,2),因此要使已知方程在区间(0,1)内两个不同的根,即f(x)的图象在区间(0,1)内与x轴有两个不同的交点即由题意可以得到:必有,即,在直角坐标系mok中作出满足不等式平面区域,如图所示,设z=m+k,则直线m+k﹣z=0经过图中的阴影中的整点(6,7)时,z=m+k取得最小值,即z=13.min故选D.点评:此题考查了二次函数与二次方程之间的联系,解答要注意几个关键点:(1)将一元二次方程根的分布转化一元二次函数的图象与x轴的交点来处理;(2)将根据不等式组求两个变量的最值问题处理为规划问题;(3)作出不等式表示的平面区域时注意各个不等式表示的公共区域;(4)不可忽视求得最优解是整点.7.已知实数x,y满足约束条件,则的最小值是().A.5B.-6C.10D.-l0【答案】B【解析】当目标函数过点时,目标函数取得最小值,,代入,.【考点】线性规划8.已知实数x,y满足约束条件,则的最小值是().A.5B.-6C.10D.-l0【答案】B【解析】当目标函数过点时,目标函数取得最小值,,代入,.【考点】线性规划9.若,则目标函数的取值范围是()A.B.C.D.【答案】A【解析】作出不等式组所表示的可行域如下图所示,,令,则,为原点与点之间连线的斜率,直线与直线交于点,直线与直线交于点,显然,直线的倾斜角最大,且为锐角,此时取最大值,即,直线的倾斜角最小,且为锐角,此时,取最小值,即,因此,所以,即目标函数的取值范围是,故选A.【考点】1.线性规划;2.斜率10.在平面直角坐标系中,不等式组所表示的平面区域是,不等式组所表示的平面区域是. 从区域中随机取一点,则P为区域内的点的概率是_____.【答案】【解析】在同一坐标作出不等式组所表示的平面区域,与不等式组所表示的平面区域,由图可知,的面积为,与重叠的面积为,故从区域中随机取一点,则P为区域内的点的概率为.【考点】几何概率.11.(2011•湖北)已知向量=(x+z,3),=(2,y﹣z),且⊥,若x,y满足不等式|x|+|y|≤1,则z的取值范围为()A.[﹣2,2]B.[﹣2,3]C.[﹣3,2]D.[﹣3,3]【答案】D【解析】∵=(x+z,3),=(2,y﹣z),又∵⊥∴(x+z)×2+3×(y﹣z)=2x+3y﹣z=0,即z=2x+3y∵满足不等式|x|+|y|≤1的平面区域如下图所示:由图可知当x=0,y=1时,z取最大值3,当x=0,y=﹣1时,z取最小值﹣3,故z的取值范围为[﹣3,3]故选D12.已知变量满足约束条件若取整数,则目标函数的最大值是 .【答案】5【解析】由变量满足约束条件如图可得可行域的范围.目标函数取到最大值则目标函数过点A(2,1)即.【考点】1.线性规划问题.2.列举对比数学思想.13.若,满足约束条件,则的最大值是( )A.B.C.D.【答案】(C)【解析】,满足约束条件如图所示. 目标函数化为.所以z的最大值即为目标函数的直线在y轴的截距最小.所以过点A最小为1.故选(C).【考点】1.线性规划的知识.2.数学结合的数学思想.14.原点和点(2,﹣1)在直线x+y﹣a=0的两侧,则实数a的取值范围是()A.0≤a≤1B.0<a<1C.a=0或a=1D.a<0或a>1【答案】B【解析】∵原点和点(2,﹣1)在直线x+y﹣a=0两侧,∴(0+0﹣a)(2﹣1﹣a)<0,即a(a﹣1)<0,解得0<a<1,故选:B.15.已知变量x,y满足约束条件则的最大值为.【答案】【解析】画出可行域及直线(如图所示).平移直线,当其经过点时,【考点】简单线性规划16.已知为坐标原点,两点的坐标均满足不等式组设与的夹角为,则的最大值为()A.B.C.D.【答案】C【解析】画出可行域,如图所示,当点A,B分别与点重合时,向量与的夹角最大,且是锐角,,则,又,故当时,取到最大值为.【考点】1、二元一次不等式表示的平面区域;2、向量的夹角;3、同角三角函数基本关系式. 17.某旅行社租用A、B两种型号的客车安排900名客人旅行,A、B两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆.则租金最少为是()A. 31200元B. 36000元C. 36800元D. 38400元【答案】C【解析】设租A型车x辆,B型车y辆时租金为z元则z=1600x+2400yx、y满足画出可行域观察可知,直线过点A(5,12)时纵截距最小,∴z=5×1 600+2 400×12=36800,min故租金最少为36800元.选C.18.若实数满足,则的值域是()A.B.C.D.【答案】B【解析】令,则,做出可行域,平移直线,由图象知当直线经过点是,最小,当经过点时,最大,所以,所以,即的值域是,选B.19.设关于x,y的不等式组表示的平面区域内存在点,满足.求得m的取值范围是()A.(-∞,)B.(-∞,)C.(-∞,)D.(-∞,)【答案】C【解析】作出不等式组表示的平面区域(如图)若存在满足条件的点在平面区域内,则只需点A(-m,m)在直线x-2y-2=0的下方,即-m-2m-2>020.设x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则的最小值为()A.B.C.1D.2【答案】A【解析】作出满足条件的可行域(如图)∵a>0,b>0,∴直线ax+by=0的图象过二、四象限,∴平移直线ax+by=0知,目标函数z=ax+by在点M(4,6)处取得最大值12,∴4a+6b=12,即2a+3b=6设m=,把2a+3b=6代入m=并整理得,b2-2b+2-2m=0∵方程有正数解,∴Δ=4-4(2-2m)≥0m≥∴的最小值为21.若不等式组表示的平面区域是一个四边形,则实数的取值范围是_______.【答案】.【解析】作出不等式组所表示的平面区域如下图中的阴影部分所表示,直线交轴于点,交直线于点,当直线与直线在线段(不包括线段端点)时,此时不等式组所表示的区域是一个四边形,将点的坐标代入直线的方程得,即,将点的坐标代入直线的方程得,因此实数的取值范围是.【考点】线性规划22.设不等式组表示的区域为,不等式表示的平面区域为.(1)若与有且只有一个公共点,则=;(2)记为与公共部分的面积,则函数的取值范围是.【答案】,【解析】当直线与圆相切时,与有且只有一个公共点,此时解得.当或时,与有公共部分,为弓形.其面积为扇形面积减去三角形面积.当直线过圆心时,扇形面积最大,三角形面积最小,即弓形面积最大,但直线不过所以函数的取值范围是.【考点】直线与圆位置关系23.设变量满足约束条件,则目标函数的最大值为 .【答案】10【解析】作出可行域如图,令,则,作出目标直线,经过平移,当经过点时,取得最大值,联立得,代入得,∴【考点】线性规划。

2020高考数学 试题汇编 第二节 简单的线性规划 理(含解析)

2020高考数学 试题汇编 第二节 简单的线性规划 理(含解析)

第二节简单的线性规划求目标函数的最值考向聚焦线性规划的基本问题,即求线性目标函数在线性约束条件下的最值,一直是新课标高考命题的重点,多以选择、填空题的形式出现,难度中低档,所占分值为4~5分备考指津解决此类问题的关键是(1)准确作出可行域注意边界的实虚.(2)准确理解目标函数的几何意义.(3)充分利用数形结合思想解题1.(2012年辽宁卷,理8,5分)设变量x,y满足则2x+3y的最大值为( )(A)20 (B)35(C)45 (D)55解析:令z=2x+3y,l0:y=-x,l:y=-x+z,如图,将l0平移至l处,过点(5,15)时,z有最大值,z max=2×5+3×15=55.故选D.答案:D.2.(2012年广东卷,理5,5分)已知变量x,y满足约束条件,则z=3x+y的最大值为( )(A)12 (B)11 (C)3 (D)-1解析:画出可行域:l0:y=-3xl:y=-3x+z将直线l0平移至l处,过点(3,2)时,z有最大值.z max=3×3+2=11.答案:B.3.(2011年广东卷,理5)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为(,1),则z=·的最大值为( )(A)4(B)3(C)4 (D)3解析:区域D如图阴影部分所示.目标函数z=·=||||cos<,>=||||cos<,>∵||cos<,>为在上的投影,由图知当点M为直线x=与y=2交点时在方向的投影最大,则目标函数z最大,M(,2)即为所求的最值点,此时,z=·=(,2)·(,1)=×+2×1=4.故选C.答案:C.4.(2011年安徽卷,理4)设变量x,y满足|x|+|y|≤1,则x+2y的最大值和最小值分别为( )(A)1,-1 (B)2,-2(C)1,-2 (D)2,-1解析:|x|+|y|≤1对应的可行域如图所示,设z=x+2y,则y=-x+,当直线经过可行域的点B(0,-1)时,z min=-2,经过点D(0,1)时,z max=2.故选B.答案:B.5.(2011年浙江卷,理5)设实数x,y满足不等式组若x,y为整数,则3x+4y的最小值是( )(A)14 (B)16 (C)17 (D)19解析:设3x+4y=z,则y=-x+,由得点A为(3,1),平行移动直线y=-x,又x,y为整数,则当过点(4,1)时,z=3x+4y取最小值为16.故选B.答案:B.6.(2011年湖北卷,理8)已知向量a=(x+z,3),b=(2,y-z),且a⊥b.若x,y满足不等式|x|+|y|≤1,则z的取值范围为( )(A)[-2,2] (B)[-2,3](C)[-3,2] (D)[-3,3]解析:由已知a⊥b得a·b=0,∴2x+2z+3y-3z=0,∴z=2x+3y,又∵|x|+|y|≤1表示的区域为如图所示的正方形内部包括边界.∴在点B(0,1)处,z=2x+3y取最大值3.在点D(0,-1)处,z=2x+3y取最小值-3.∴z∈[-3,3].故选D.答案:D.7.(2011年福建卷,理8)已知O是坐标原点,点A(-1,1).若点M(x,y)为平面区域上的一个动点,则·的取值范围是( )(A)[-1,0] (B)[0,1](C)[0,2] (D)[-1,2]解析:由·=(-1,1)·(x,y)=-x+y.令z=-x+y即y=x+z.画出可行域和直线y=x如图.平移y=x,可知当直线经过C(1,1)时,z min=0,当直线经过B(0,2)时,z max=2,故选C.答案:C.8.(2010年山东卷,理10)设变量x,y满足约束条件则目标函数z=3x-4y的最大值和最小值分别为( )(A)3,-11 (B)-3,-11(C)11,-3 (D)11,3解析:画出平面区域如图所示:当直线3x-4y=0平移到(5,3)点时,目标函数z=3x-4y取得最大值3;当直线3x-4y=0平移到(3,5)点时,目标函数z=3x-4y取得最小值-11,故选A.答案:A.9.(2012年全国大纲卷,理13,5分)若x,y满足约束条件则z=3x-y的最小值为.解析:可行域如图,目标函数z=3x-y最小时,平行直线系z=3x-y横截距最小,故直线过点A(0,1)时z最小,最小值为-1.答案:-110.(2012年新课标全国卷,理14,5分)设x,y满足约束条件则z=x-2y的取值范围为.解析:本题主要考查线性规划问题,难度不大.画出可行域为如图所示阴影部分四边形OABC.作与直线x-2y=0平行的直线x-2y=z.当直线x-2y=z过A、B点时,z分别取到最大值与最小值,又A(3,0),B(1,2),∴-3≤z≤3.答案:[-3,3]11.(2012年安徽卷,理11,5分)若x,y满足约束条件则x-y的取值范围是.解析:本题考查求线性目标函数在线性约束条件下的最大值最小值问题.作出不等式组表示的平面区域如图中阴影部分区域:三个交点坐标分别为A(0,1.5),B(0,3),C(1,1),代入x-y分别得到的值为-1.5,-3,0,所以x-y的范围是[-3,0].答案:[-3,0]求解线性规划问题关键的是作出可行域,然后作出初始直线,把初始直线向可行域平移,根据目标函数中y的系数,系数为正,向上平移目标函数增大,向下平移目标函数减小,系数为负,向上平移目标函数减小,向下平移目标函数增大.若可行域为三角形或四边形等封闭区域,可以求出各个顶点,把顶点坐标代入目标函数,其中最大值为目标函数的最大值,最小值为目标函数的最小值.12.(2012年陕西卷,理14,5分)设函数f(x)=D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域,则z=x-2y在D上的最大值为.解析:f(x)=ln x,f'(x)=,f'(1)=1,在点(1,0)处的切线为y=x-1.如图:l0:y=x,l:y=x-z将l0平移至l处,过点(0,-1)时,z有最大值,z max=0-2×(-1)=2.答案:213.(2011年全国新课标卷,理13)若变量x,y满足约束条件则z=x+2y的最小值为.解析:画出表示的平面区域,平移l0:x+2y=0.当直线过A时,z取最小值.解得,∴z=4+2×(-5)=-6.答案:-614.(2010年辽宁卷,理14)已知-1<x+y<4且2<x-y<3,则z=2x-3y的取值范围是.(答案用区间表示)解析:题设条件表示的可行域如图所示,由z=2x-3y,得y=x-,当直线y=x-经过A点时,-最大,z取最小值;当直线经过B点时,-最小,z取最大值, 由,得A(3,1),由,得B(1,-2),∴2×3-3×1<z<2×1-3×(-2),即3<z<8.故z=2x-3y的取值范围为(3,8).答案:(3,8)线性规划的实际应用考向聚焦纵观近几年新课标高考试题,线性规划问题的实际应用有所侧重.主要解决实际生活、生产中的最优化问题,如用料最省、用时最少、效益最好、获利最大等,难度中低档,分值为5分左右备考指津解决线性规划实际应用问题的关键是准确理解题意列出两个变量满足的约束条件及线性目标函数,作图时要力求准确规范,注意最优解的确定方法15.(2012年江西卷,理8,5分)某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金年产量/亩年种植成本/亩每吨售价黄瓜4吨 1.2万元0.55万元韭菜6吨0.9万元0.3万元为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )(A)50,0 (B)30,20(C)20,30 (D)0,50解析:本题考查线性规划知识在实际问题中的应用,同时考查了数学建模的思想方法以及实践能力.设黄瓜和韭菜的种植面积分别为x,y亩,总利润为z万元,则目标函数为z=(0.55×4x-1.2x)+(0.3×6y-0.9y)=x+0.9y.线性约束条件为即画出可行域,易求得A(0,50),B(30,20), C(0,45).作出直线l0:x+0.9y=0,向上平移至点B(30,20),即x=30,y=20时,z取得最大值,故选B.答案:B.16.(2012年四川卷,理9,5分)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克、B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )(A)1800元(B)2400元(C)2800元(D)3100元解析:设每天生产甲种产品x桶,乙种产品y桶,则根据题意得x,y的约束条件为设获利z元,则z=300x+400y.画出可行域如图.画直线l:300x+400y=0,即3x+4y=0.平移直线l,从图中可知,当直线l过点M时,目标函数取得最大值.由,解得,即M的坐标为(4,4),∴z max=300×4+400×4=2800(元).故选C.答案:C.本题考查利用线性规划求实际应用问题,考查分析问题、解决问题的能力,考查数形结合思想.属中档题.17.(2011年四川卷,理9)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需送往A地至少72吨的货物,派用的每辆车需满载且只运送一次.派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z等于( )(A)4650元(B)4700元(C)4900元(D)5000元解析:设该公司派甲型卡车x辆,乙型卡车y辆,由题意得利润z=450x+350y,可行域如图所示.解得A(7,5).当直线350y+450x=z过A(7,5)时z取最大值,∴z max=450×7+350×5=4900(元).故选C.答案:C.18.(2010年广东卷,理19)某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?解:设为该儿童预订x个单位的午餐,y个单位的晚餐,则x,y满足(x,y∈N*)即(x,y∈N*).目标函数z=2.5x+4y.下面画出可行域,如图,其中A(2,5),B(4,3),当目标函数过B点时z最小,此时x=4,y=3.即为该儿童预订4个单位的午餐,3个单位的晚餐时,满足营养要求,且花费最少.涉及线性规划的实际应用题,首先确定影响整个问题的两个主要变化因素,用x,y表示出来,然后根据题目的要求把一些限制条件用x,y的不等式表示出来,并写出目标函数,运用数形结合的思想进行求解.线性规划的综合应用考向聚焦高考难点内容主要涉及(1)已知目标函数最值求参数值或参数范围;(2)线性规划与其他知识的综合应用,难度较大,多为选择、填空题,分值为5分左右备考指津解决此类问题的关键在于准确理解目标函数的几何意义及利用数形结合思想解题19.(2012年福建卷,理9,5分)若函数y=2x图象上存在点(x,y)满足约束条件则实数m的最大值为( )(A)(B)1 (C)(D)2解析:本小题主要考查线性规划的应用,由约束条件画出可行域,如图所示,设曲线y=2x与直线x+y-3=0相交于点P,则直线x=m过点P时m取得最大值,∴P(m,3-m),又点P在曲线y=2x 上,∴2m=3-m,m=1.故选B.答案:B.20.(2012年重庆卷,理10,5分)设平面点集A={(x,y)|(y-x)(y-)≥0},B={(x,y)|(x-1)2+(y-1)2≤1},则A∩B所表示的平面图形的面积为( )(A)π(B)π(C)π(D)解析:∵(y-x)(y-)≥0,∴或又(x-1)2+(y-1)2≤1,则满足上述条件的区域如图所示阴影部分Ⅰ、Ⅲ,由y=:(x-1)2+(y-1)2=1的图象都关于直线y=x对称知,区域Ⅰ与Ⅳ的面积相等.Ⅱ与Ⅲ的面积相等,故SⅠ+SⅢ=×π×12=.答案:D.本题考查可行域的画法,函数的对称性,考查学生数形结合,转化能力,难度较大.21.(2010年浙江卷,理7)若实数x,y满足不等式组且x+y的最大值为9,则实数m等于( )(A)-2 (B)-1 (C)1 (D)2解析:由题意易知m>0,则不等式组对应可行域如图所示,则x+y在点A处取最大值,解得A(4,5),而点A在直线x-my+1=0上,代入求得m=1.故选C.答案:C.22.(2010年北京卷,理7)设不等式组表示的平面区域为D.若指数函数y=a x的图象上存在区域D上的点,则a的取值范围是( )(A)(1,3] (B)[2,3](C)(1,2] (D)[3,+∞)解析:画出可行域D,如图所示,得交点A(2,9),B(3,8).若指数函数y=a x的图象上存在区域D上的点,则a>1.y=a x过A点时,a=3,所以1<a≤3,故选A.答案:A.对指数函数y=a x,当a>1时,a越大,图象越靠近y轴.。

高考线性规划必考题型非常(20200721230123)

高考线性规划必考题型非常(20200721230123)

线性规划专题一、命题规律讲解1、求线性(非线性)目标函数最值题2、求可行域的面积题3、求目标函数中参数取值范围题4、求约束条件中参数取值范围题5、利用线性规划解答应用题一、线性约束条件下线性函数的最值问题线性约束条件下线性函数的最值问题即简单线性规划问题,它的线性约束条件是一个二元一次不等式组,目标函数是一个二元一次函数,可行域就是线性约束条件中不等式所对应的方程所表示的直线所围成的区域,区域内的各点的点坐标x,y 即简单线性规划的可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标x, y 即简单线性规划的最优解。

x 4y 3 例1 已知3x 5y 25 ,z 2x y ,求z 的最大值和最小值x 1x y 1例2 已知x, y 满足2x 4y 1 ,求z= x 5y 的最大值和最小值x 2y 6二、非线性约束条件下线性函数的最值问题高中数学中的最值问题很多可以转化为非线性约束条件下线性函数的最值问题。

它们的约束条件是一个二元不等式组,目标函数是一个二元一次函数,可行域是直线或曲线所围成的图形(或一条曲线段),区域内的各点的点坐标x,y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标x, y 即最优解。

例3 已知x, y 满足,x2 y2 4,求3x 2y 的最大值和最小值例4 求函数y x 4x 1,5 的最大值和最小值。

x三、线性约束条件下非线性函数的最值问题这类问题也是高中数学中常见的问题,它也可以用线性规划的思想来进行解决。

它的约束条件是一个二元一次不等式组,目标函数是一个二元函数,可行域是直线所围成的图形(或一条线段),区域内的各点的点坐标x,y 即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标x, y 即最优解。

x y 1 0例5 已知实数x, y 满足不等式组x y 1 0 ,求x2 y2 4x 4y 8 的最小值。

例6实数x,y满足不等式组x y 0 ,求丄」的最小值x 12x y 2 0四、非线性约束条件下非线性函数的最值问题在高中数学中还有一些常见的问题也可以用线性规划的思想来解决,它的约束条件是一个二元不等式组,目标函数也是一个二元函数,可行域是由曲线或直线所围成的图形(或一条曲线段),区域内的各点的点坐标x,y即可行解,在可行解中的使得目标函数取得最大值和最小值的点的坐标x,y即最优解。

2020年高考数学(理)总复习:不等式、线性规划(解析版)

2020年高考数学(理)总复习:不等式、线性规划(解析版)

2020 年高考数学(理)总复习:不等式、线性规划题型一不等式的解法【题型重点】 解不等式的常有策略(1) 解一元二次不等式,一是图象法:利用“三个二次 ”之间的关系,借助相应二次函数图象,确立一元二次不等式的解集;二是因式分解法:利用“同号得正,异号得负 ”这一符号法例,转变为一元一次不等式组求解.(2)解简单的分式、指数、对数不等式的基本思想是把他们等价转变为整式不等式(一般为一元二次不等式 )求解.(3)解含 “f ”的函数不等式,第一要确立 f(x)的单一性,而后依据函数的单一性去掉“f ”转化为往常的不等式求解.(4) 解决含参数不等式的难点在于对参数的合适分类,重点是找到对参数进行议论的原由,确立好分类标准,有理有据、层次清楚地求解.x -12e , x<1【例 1】已知函数 f(x)=,则 f(f(x))<2 的解集为 ()x 3 +x , x ≥1A . (1- ln 2,+ ∞)B . (- ∞, 1- ln 2)C .(1- ln 2,1)D . (1,1+ ln 2)【分析】由于当3x-1等x ≥1时, f(x)= x + x ≥2,当 x<1 时, f(x)= 2e <2,所以 f(f(x))<2x -1<1 ,解得 x<1- ln 2,所以 f(f(x))<2 的解集为 (-∞,1- ln 2) ,应选 B.价于 f( x)<1 ,即 2e【答案】B- x 2+ 2x , x ≤0,【例 2】.已知函数 f(x)=若|f(x)| ≥ax ,则 a 的取值范围是 ()ln x + 1 , x > 0.A .(-∞,0]B . (- ∞, 1]C .[ -2,1]D . [- 2,0]【分析】 当 x ≤0时,f(x) =- x 2+ 2x =- (x - 1) 2+ 1≤0,所以 |f(x)| ≥ax 化简为 x 2-2x ≥ax ,即 x2≥(a+ 2)x,由于所以 |f( x)| ≥ax 化简为式|f(x)| ≥ax 恒成立.x≤0,所以 a+ 2≥x 恒成立,所以 a≥- 2;当 x> 0 时,f(x)= ln(x+ 1)>0, ln( x+ 1) ≥ax 恒成立,由函数图象可知 a≤0,综上,当- 2≤a≤0时,不等【答案】 D题组训练一不等式的解法1.若不等式ax2- bx+ c>0 的解集是1 ,2 ,则以下结论中:①a>0;②b<0;③c>0;2④a+ b+ c>0;⑤ a- b+c>0,正确的选项是 ()A .①②⑤B.①③⑤C.②③⑤D.③④⑤【分析】ax2- bx+ c>0 的解集是1,2 ,故 a<0,且 ax2- bx+c= 0 的两根为-1,2 22.由根与系数的关系得2-1=b>0,2 × 1 =c<0,故 b<0,c>0. 所以,②③正确,①错误.设2 a 2 af(x)= ax2- bx+ c,依据 f(- 1)<0,f(1)>0 ,可知 a+ b+ c<0 ,a- b+ c>0 ,故④错误,⑤正确.【答案】 C2.已知 f(x)是定义在R上的奇函数,且 f(x- 2)= f(x+ 2),当 0< x< 2 时,f(x)=1- log2(x +1),则当 0 <x< 4 时,不等式 (x- 2)f(x) >0 的解集是 ( )A . (0,1) ∪ (2,3) B. (0,1)∪ (3,4)C.(1,2) ∪(3,4) D. (1,2)∪ (2,3)【分析】当 0< x< 2 时,x- 2< 0,不等式可化为x- 2< 0,x- 2< 0,即1- log2 x+1 <0 ,f x < 0,解得 1< x<2,x- 2>0,当 2<x< 4 时, x- 2> 0,不等式可化为f x > 0,由函数 f(x)是奇函数,得f(- x)=- f(x) ,又 f(x- 2)= f(x+2) ,则 f(x) =f(x- 2+2) =f(x- 2- 2)=- f(4- x),由于 0< 4- x< 2,不等式可化为x- 2> 0,,解得 2< x< 3,-1+ log2 5- x >0则原不等式的解集为(1,2)∪ (2,3),应选 D.【答案】 D题型二简单的线性规划问题【题型重点】线性规划问题一般有三种题型:一是求最值;二是求地区面积;三是知最优解状况或可行域状况确立参数的值或取值范围.解决线性规划问题应特别关注以下三点:(1)第一要找到可行域,再注意目标函数所表示的几何意义,找到目标函数达到最值时可行域的极点 (或界限上的点 ),但要注意作图必定要正确,整点问题要考证解决.(2)画可行域时应注意地区能否包括界限.(3)对目标函数z= Ax+ By 中 B 的符号,必定要注意 B 的正负与z 的最值的对应,要结合图形剖析.x+y≤4【例 3】已知 P(x, y)为不等式组x-y≤0表示的平面地区M 内随意一点,若目标函x-a≥0数 z= 5x+ 3y 的最大值等于平面地区M 的面积,则a= ________.【分析】作出不等式组对应的平面地区如图:由 z = 5x +3y 得 y =- 5x + z,3 35z平移直线 y =- 3x + 3,由图象知当直线 y =-5 z z 最大,x + ,经过点 A 时,直线的截距最大,此时33x +y = 4 由,解得 x = y =2,即 A(2,2),x -y = 0此时 z =5×2+ 3×2= 16,x +y = 4 由.解得 x = a ,y = 4- a ,即 B(a,4-a),x =ax -y = 0由,解得 x = y =a ,即 C(a , a),x =a∴ BC = 4-a - a = 4-2a , △ ABC 的高为 2- a ,1 2∴ S △ABC = 2×(2- a)(4- 2a)= (2- a) = 16,解得 a =- 2, a = 6(舍去 ),【答案】- 2x ≥0,则x +2y + 3的取值范围是 ()【例 4】.设 x , y 知足拘束条件 y ≥x ,4x + 3y ≤ 12, x + 1A . [1,5]B . [2,6]C .[3,10]D . [3,11]【分析】依据拘束条件画出可行域如图暗影部分所示.∵x +2y + 3= 1+2 y +1,令 k =y +1,即为可行域中的随意点(x ,x + 1 x + 1 x +1y)与点 ( -1,- 1)连线的斜率.由图象可知,当点 (x ,y)为 A(0,4)时, k最大,此时 x + 2y + 3的最大值为 11,当点 (x ,y)在线段 OB 上时, k 最x + 1小,此时x + 2y + 3的最小值为 3.应选 D.x + 1【答案】D题组训练二 简单的线性规划问题y ≤x - 1,则 x 21.已知实数 x 、y 知足 x ≤3的最小值是 () x +5y ≥4yA . 1B . 2C .3D . 4【分析】作出不等式组所对应的平面地区:2由图象可知 x > 0,y > 0,设 z = x,则 x 2= zy ,对应y的曲线为抛物线,由图象可知当直线y = x - 1 与抛物线相切时,此时 z 获得最小值,将 y = x - 1 代入抛物线 x2= z y ,得 x 2- zx + z = 0,由 = 0? z = 4, z = 0(舍 )所以选择 D.【答案】 Dx ≥0,2.已知点 P(x , y)知足条件 y ≤x ,若 z = x +3y 的最大值为 8,则实数 k =2x + y + k ≤0,________.【分析】依题意 k<0 且不等式组表示的平面地区如下图.易得,Bkk113 , 3 .目标函数 z =x + 3y 可看作直线 y =- 3x + 3z 在 y 轴上的截距的 3倍,明显当直线过点B 时截距最大,此时 z 获得最大值.所以 z max =- k3+ 3×k=-4k3= 8,解得 k =- 6.3【答案】- 6题型三基本不等式的应用【题型重点】利用基本不等式求函数或代数式的最值应关注的三个方面(1)形式:一般地,分子、分母有一个一次、一个二次的分式构造的函数以及含有两个变量的函数,特别适适用基本不等式求最值.(2)条件:利用基本不等式求最值需知足“正”(即条件要求中字母为正数 )、“定”(不等式的另一边一定为定值 )、“等”(等号获得的条件 )的条件才能应用,不然会出现错误.(3) 方法:使用基本不等式时,一般经过“拆、拼、凑”的技巧把求最值的函数或代数式b化为ax+x(ab>0) 的形式,常用的方法是变量分别法和配凑法.【例 5】已知二次函数f(x)= ax2+ bx+c 的导数为 f′(x), f′(0)> 0,对于随意的实数x 都有 f(x) ≥0,则f 1的取值范围是 ()f′0A. 3 , B. [2,+∞)2C. 5 , D. [3,+∞)2【分析】∵ f′(x)= 2ax+ b,∴ f′(0)=b> 0.又∵对于随意的实数x 都有 f(x) ≥0,∴ a>0 且 b2- 4ac≤0,∴ b2≤4ac,∴ c> 0,∴f 1 =f′0a+ b+ c a+ c 2 acb = b + 1≥b+ 1≥2.【答案】 B1+2= 1,则 2 +1的最小值为 ()2.若正数 a, b 知足:a b a- 1 b- 23 2A . 2 B. 253 2C.2D .1+ 4【分析】 由 a ,b 为正数,且 1+ 2= 1,得 b =2a2 + 1a ba - 1>0,所以 a - 1>0,所以 a - 1b - 2= 2 + 1 = 2 + a -1 2a - 1=2,当且仅当 2 = a - 1和1+ 2= 1 同时成 a - 1 2a - 2 a - 1 2 ≥2 a - 1 · 2 a - 1 2a b a - 1立,即 a =b = 3 时等号成立,所以2 + 1的最小值为 2,应选 A.a - 1b - 2【答案】 A题组训练三 基本不等式的应用1.若直线 l : ax + by + 1=0(a > 0,b > 0)把圆 C : (x + 4)2+ (y + 1)2= 16 分红面积相等的两部分,则当 ab 获得最大值时,坐标原点到直线l 的距离是 ( )A . 4B .8 178 17 C .2D. 17【分析】由题意,圆心 (-4,- 1)代入直线 l : ax +by + 1= 0,可得 4a + b = 1,4a + b=1≥4ab ,∴ ab ≤1 ,当且仅当 a = 1,b =1时, ab 获得最大值,坐标原点到直线 l 的距离16 82是1=8 17,应选 D.641+1417【答案】D2.设正实数1,不等式 4x 2y 2≥m 恒成立,则 m 的最大值为 ()x ,y 知足 x> ,y>1+2y - 1 2x - 1A .2 2B . 4 2C .8D . 162222【分析】依题意得, 2x - 1>0 , y - 1>0,4x+ y = [ 2x - 1 + 1] + [ y -1 +1]y - 1 2x - 1 y - 12x - 14 2x- 1 4 y- 1 2x- 1 y- 1 2 2=8,即4x +y ≥8,当且仅当≥+≥ 4×2×y-1 2x- 1 y- 1 2x- 1 y- 1 2x-12x- 1= 1y- 1=1 x= 1 2 2时,取等号,所以4x +y 的最小值是8, m≤8,m 的最,即2x- 1 y- 1 y= 2 y- 1 2x-1y- 1 =2x- 1大值是8,选 C.【答案】 C题型四“点”定乾坤求解与线性规划相关的问题【题型重点】线性规划求目标函数的最值时,常用方法是数形联合判断所过的定点,也能够把界限端点的坐标代入目标函数,找寻最值,研究可行域与其余函数的关系时,可用界限端点确立出答案.x≥0,【例 7】记不等式组x+ 3y≥4,所表示的平面地区为D,若直线 y= a(x+ 1)与 D 有3x+ y≤4公共点,则 a 的取值范围是________.3x+ y= 4,【分析】法一:作出可行域,利用可行域的上下界,成立的不等式,由x= 0得(0,4) ,x+3y= 4,由得 (1,1).3x+ y= 4地区 D 的上界为 (0,4),下界为 (1,1),∴ y= a(x+ 1)与 D 有公共点,则有2a≥1,a≤41∴2≤a≤ 4.法二:直线y= a(x+ 1)为经过定点P(- 1,0)且斜率为a,作出可行域后数形联合可知.不等式组所表示的平面地区 D 为如下图暗影部分(含界限 ),且 A(1,1),B(0,4) ,C4,0,31直线 y=a(x+ 1)恒过定点 P(- 1,0)且斜率为a,由斜率公式可知k BP= 4, k AP=2,若直线 y =a(x+1)知地区 D 有公共点,数形联合可得12≤a≤ 4.【答案】1 ,4 2题组训练四“点”定乾坤求解与线性规划相关的问题3x+ 4y- 10≥0,已知不等式组x≤4,表示地区D,过地区 D 中随意一点P 作圆 x2+y2=1 的两y≤3条切线且切点分别为A, B,当∠ PAB 最小时, cos∠ PAB= ()3 B.1A. 2 23D.-1C.-2 23x+ 4y- 10≥0,【分析】作出不等式组x≤4,表示的平面地区D,如下图:y≤3要使∠ APB 最大,则∠ OPB 最大.∵sin∠ OPB=|OB|=1,|OP| |OP |∴只需 OP 最小即可,即点 P 到圆心 O 的距离最小即可.由图象可知当|OP|垂直于直线3x- 4y- 10=0,|- 10|此时 |OP|==2,|OA|=1.2 23 + 4αα OA 1,设∠ APB=α,则∠ APO=,即 sin ==2 2 OP 22 α此时 cos α= 1- 2sin2=1-2×122=1-12=12,即 cos∠ APB=1,∴∠ APB=60°, 21∴△ PAB 为等边三角形,此时对应的∠PAB= 60°为最小,且cos∠PAB=2.应选 B.【答案】 B【专题训练】一、选择题1.已知一元二次不等式f(x) < 0 的解集为x x1 1或 x3A . { x|x<- 1 或 x>- ln 3} B.{ x|- 1< x<- ln 3} C.{ x|x>- ln 3}D. { x|x<- ln 3}x的解集为 (),则 f(e )> 01【分析】f(x)>0 的解集为x1x3xx1则由 f(e )> 0 得- 1< e < ,解得 x <- ln 3 ,即 f(e x )> 0 的解集为 { x|x <- ln 3} .【答案】 D2+ 1= 1, x + 2y >m 2- 2m 恒成立,则 m 的取值范围是 ()2.已知 x > 0, y >0, x y 3A . [- 6,4]B . [- 4,6]C .( -4,6)D . (- 6,4)2 12 1 2 【分析】∵ x + y ≥2 xy ,即3≥2xy, 解得 xy ≥72,∵ 2+ 1= 1,∴ 6+ 3= 1,xy 3x y1即 3x +6y = xy ,∴ x +2y = 3xy ≥ 24,∴ m 2- 2m <24 恒成立,解不等式 m 2-2m -24< 0得- 4< m < 6.应选 C.【答案】 C3.设 x , y 知足拘束条件x + y ≥a 7,则 a = (),且 z = x + ay 的最小值为x - y ≤-1A .- 5B . 3C .-5或 3D .5 或- 3【分析】依据拘束条件画出可行域如图中暗影部分所示:可知可行域为张口向上的V 字型.在极点处 z 有最小值,极点为 a 1 , a 1 ,则 a- 12 2 2+a a 1=7,解得 a= 3 或 a=- 5.当 a=- 5 时,如图 2,2图 2虚线向上挪动时 z 减小,故 z→-∞,没有最小值,故只有a= 3 知足题意.选 B. 【答案】 B4.已知 g(x)是R上的奇函数,当 x< 0x3, x≤0,时,g(x) =- ln(1 - x),函数 f(x)=g x ,x>0,若 f(2- x2)> f(x),则实数 x 的取值范围是 ( )A.(-∞,1)∪(2,+∞ ) B. (-∞,- 2)∪ (1,+∞)C.(1,2) D. (- 2,1)【分析】设 x>0,则- x< 0,所以 g(- x)=- ln(1 + x),由于 g(x)是R上的奇函数,x3, x≤0,易知 f(x)是R上的单一递所以 g(x)=- g(-x)=ln(1 + x),所以 f(x)=ln 1+ x , x> 0,增函数,所以原不等式等价于2- x2> x,解得- 2< x< 1.应选 D.【答案】 D2x- y≤0,5.已知实数x, y 知足x+ y- 5≥0,若不等式a(x2+ y2) ≥(x+ y)2恒成立,则实数a 的y- 4≤0,最小值是 ________.【分析】可行域为一个三角形ABC 及其内部 (图略 ),此中 A(2,4),B(1,4),C5 ,10,3 3所以 y∈ [k OA , k OB ] = [2,4] ,由于 y + x在 [2,4] 上单一递加,所以y + x ∈5 ,17,不等式 a(x 2xxyx y2 422x y 299+y ) ≥(x + y) 恒成立等价于 a ≥ x2y 2 5? a min = 5.max【答案】9 52x -y - 2≥06.已知实数 x ,y 知足 x +y - 1≤0 ,z = mx + y 的最大值为 3,则实数m 的值是 ( )y + 1≥0A .- 2B . 3C .8D . 22x - y - 2≥0【分析】由实数 x , y 知足 x + y - 1≤0 作出可行域如图,y + 1≥02x - y - 2=0 ,解得A1, 1,联立y + 1= 0 22x - y - 2=0,解得 B(1,0),同理 C(2,- 1)联立x + y - 2=0化目标函数 z = mx + y 为 y =- mx + z ,当直线 z = mx + y 经过 C 点时,获得最大值3;∴ 3= 2m - 1,解得 m = 2.应选 D.【答案】 D1+ 4的最小值为 ()7.已知函数 f(x) =cos πx(0<x<2),若 a ≠b ,且 f(a)= f(b),则 a b 9A. 2 B . 9【分析】函数 f( x)= cosπx(0< x<2) ,轴为 x= 1,若 a≠b,且 f(a)= f( b),所以 a+ b= 2131 4=1 4 1 1 b 4a所以+a b (a+ b) ×=25ba b 2 a 1 9 2 4 1 ≥ (5+ 4)=,当 a=,b=时取等号,故a 2 2 3 3+4b的最小值为92,应选 A.【答案】 A2x- y+ 6≥08.已知实数 x,y 知足 x+ y≥0,若目标函数 z=- mx+ y 的最大值为- 2m+ 10,x≤2最小值为- 2m- 2,则实数 m 的取值不行能是 ( )A . 3 B. 2C.0 D.- 12x- y+ 6≥0【分析】由拘束条件x+ y≥0作出可行域如图,x≤2联立方程组求得A(- 2,2), B(2,- 2), C(2,10) ,化目标函数z=- mx+ y 为 y= mx+ z,若 m≥0,则目标函数的最大值为 2m+ 2,最小值为- 2m-2,-2m+ 10=2m+2由,可知 m= 2;-2m- 2=- 2m- 2若 m= 0,则目标函数的最大值为 10,最小值为- 2,切合题意;若 m=- 1,则目标函数的最大值为- 2m+ 10,最小值为- 2m- 2,切合题意.∴实数 m 的取值不行能是 3.应选 A.【答案】 A- ln x-x, x> 0,1 < ln 1- 2 的解集为9.已知函数f(x)=则对于 m 的不等式 f- ln -x + x, x< 0. m 2()A. 0,1B . (0,2)2C.1,0 ∪ 0,1D . (- 2,0)∪ (0,2)22【分析】函数 f(x)的定义域 ( -∞, 0)∪ (0,+ ∞)对于原点对称,∵ x > 0 时,- x < 0,f(- x)=- ln x - x = f(x),同理: x<0 时, f(- x)= f(x) ,∴ f(x)为偶函数.∵ f(x)在(0 ,+ ∞)上为减函数,且 f(2) =- ln 2 - 2= ln 1 -2.2∴当 m > 0 时,由 f1< ln 1- 2,得 f 1 < f(2),m2m∴ 11m <0 时,得-1 > 2,解得 0< m < .依据偶函数的性质知当< m < 0.m 22【答案】Cx ≥2,时,z = x + y10.已知 x ,y 知足 y ≥2, (a ≥b > 0)的最大值为 2,则 a + b 的最小值为 ()x + y ≤8 a bA .4+2 3B .4-2 3C .9D . 8x ≥2,【分析】由拘束条件y ≥2,作出可行域如图,x + y ≤8x = 2, 联立,x + y = 8解得 A(2,6),化目标函数 x y bz = + 为 y =- x + bz ,a b ab由图可知,当直线y=-a x+ bz 过点 A 时,2 6直线在 y 轴上的截距最大,z 有最大值为+=2,即1+3=1. a b所以 a+ b= (a+ b) 1 3a bb +3a b 3a= 4+b ≥4+ 2 ·=4+2 3.a a b1+3= 1,当且仅当 a b 即 a= 3+ 1, b= 3+3时取等号.b=3a,【答案】 A11.若函数 f(x)= x4+ 4x3+ ax2- 4x+ 1 的图象恒在 x 轴上方,则实数 a 的取值范围是 () A.(2,+∞ ) B. (1,+∞)C.( 3-1,+∞) D. (2- 1,+∞)2 2【分析】x4+ 4x3+ ax2- 4x+ 1>0 恒成立,当x= 0 时, a∈R,当 x≠0时, a> -x4+ 4x3- 4x+ 1 2 4 1 2 2 1 x2 =- (x +4x-x+x2)=- (t + 4t+ 2) =- (t+ 2) + 2,此中t= x-x∈R,由于-( t+ 2)2+ 2≤2,进而 a>2,所以实数 a 的取值范围是 (2,+∞),选 A.【答案】 A二、填空题2x+ y- 4≥012.已知点 M 的坐标 (x,y)知足不等式x- y- 2≤0,N为直线y=-2x+2上任一点,y- 3≤0则|MN|的最小值是 ()5 2 5A. 5B. 5C. 5D. 5 102x + y - 4≥0【分析】点 M 的坐标 ( x , y)知足不等式组 x - y - 2≤0 的可行y -3≤0域如图: N 为直线 y =- 2x +2 上任一点,则 |MN |的最小值,就是两条|- 2+4|25 平行线 y =- 2x + 2 与 2x + y - 4=0 之间的距离: d ==,故选 B.【答案】Ba ba13.设 a>b>c>0 ,若不等式 log2018+ log 2018 ≥dlog2018 对全部知足题设的 a ,b , cbcc均成立,则实数 d 的最大值为 ____________.a b a lg2018 lg2018 lg2018【分析】log b 2018+ log c 2018 ≥dlog c 2018?a +b ≥d a ,由于 a>b>c>0 ,lg b lg clg ca ba ab a 1 1)(x + y)的最小值,所以 lg >0 ,lg>0,lg >0 ,设 x = lg ,y = lg ,则 lg= x + y ,所以 d ≤(+bccbccx y1 1 y x y xd ≤4,即实数 d 的而( + )( x + y)= 2++ ≥2+2·= 4,当且仅当 x = y 时取等号,进而x y x yx y最大值为 4.【答案】 4x +y ≥2,14.已知点 O 是坐标原点,点A(- 1,- 2),若点 M(x , y)是平面地区 x ≤1,上y ≤2,→ → →1的一个动点, OA ·(OA -MA )+ m ≤0恒成立,则实数 m 的取值范围是 ________.【分析】→ →由于 OA = ( -1,- 2),OM = (x , y),→ → → → →所以 OA ·(OA - MA )= OA ·OM =- x - 2y.→ → → 1 1 1恒成立.所以不等式 OA ·(OA - MA )+ ≤0恒成立等价于- x - 2y +m≤0,即 ≤x + 2ym m设 z = x + 2y ,作出不等式组表示的可行域如下图,当目标函数 z = x + 2y 表示的直线经过点 D(1,1)时获得最小值, 最小值为 1+ 2×1=3;当目标函数 z = x + 2y 表示的直线经过点B(1,2)时获得最大值,最大值1+ 2×2= 5.1所以 x +2y ∈ [3,5] ,于是要使 m ≤x + 2y 恒成立,只需 11m 的取值范围是 (- ∞, 0)∪ 1≤3,解得m ≥ 或 m <0,即实数 ,m33【答案】 (-∞,0)∪1,3。

高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析

高三数学线性规划试题答案及解析1.设变量满足约束条件则目标函数的最小值为()A.2B.3C.4D.5【答案】B【解析】根据约束条件画出可行域如下图所示由得:当变化时,它表示一组平行直线,在轴上的截距是,截距越小越小,由图可知,当直线经过点截距最小,从而最小,所以故选B.【考点】线性规划.2.若变量满足约束条件则的最小值为________【答案】1【解析】依题意如图可得目标函数过点A时截距最大.即.【考点】线性规划.3.由不等式组确定的平面区域记为,不等式组,确定的平面区域记为,在中随机取一点,则该点恰好在内的概率为()A.B.C.D.【答案】D【解析】依题意,不等式组表示的平面区域如图,易求得,,,,由几何概型公式知,该点落在内的概率为,故选D.【考点】不等式组表示的平面区域,面积型的几何概型,中等题.4.若变量x,y满足约束条件,则z=2x+y-4的最大值为()A.-4B.-1C.1D.5【答案】C【解析】画出不等式组表示的平面区域(如图中的阴影部分所示)及直线2x+y=0,平移该直线,当平移到经过该平面区域内的点(2,1)(该点是直线x+y-3=0与y=1的交点)时,相应直线在y轴上的截距最大,此时z=2x+y-4取得最大值,最大值为z=2×2+1-4=1,因此选C.max5.已知α,β是三次函数f(x)=x3+ax2+2bx(a,b∈R)的两个极值点,且α∈(0,1),β∈(1,2),求动点(a,b)所在的区域面积S.【答案】【解析】解:由函数f(x)=x3+ax2+2bx(a,b∈R)可得,f′(x)=x2+ax+2b,由题意知α,β是方程x2+ax+2b=0的两个根,且α∈(0,1),β∈(1,2),因此得到可行域即,画出可行域如图.∴动点(a,b)所在的区域面积S=.6.若不等式组表示的平面区域是一个钝角三角形,则实数的取值范围()A.B.C.D.【答案】B【解析】不等式组表示的平面区域如图由图可知:故选【考点】线性规划.7.设变量满足,则的最大值和最小值分别为()A.1,-1B.2,-2C.1,-2D.2,-1【解析】由约束条件,作出可行域如图,设,则,平移直线,当经过点时,取得最大值,当经过点时,取得最小值,故选.【考点】线性规划.8. (2014·孝感模拟)已知实数x,y满足若z=x2+y2,则z的最大值为________.【答案】13【解析】画出可行域,z=x2+y2=()2,表示可行域内的点(x,y)和原点(0,0)距离的平方,可知点=13.B(2,3)是最优解,zmax9.已知,满足约束条件,且的最小值为6,则常数.【答案】-3【解析】画出可行域及直线,如图所示.平移直线,当其经过直线的交点时,,所以,.【考点】简单线性规划的应用.10.设变量x,y满足约束条件:,则z=x﹣3y的最小值()A.﹣2B.﹣4C.﹣6D.﹣8【解析】根据题意,画出可行域与目标函数线如图所示,由图可知目标函数在点(﹣2,2)取最小值﹣8故选D.11.若,满足约束条件,则的最大值是( )A.B.C.D.【答案】(C)【解析】,满足约束条件如图所示. 目标函数化为.所以z的最大值即为目标函数的直线在y轴的截距最小.所以过点A最小为1.故选(C).【考点】1.线性规划的知识.2.数学结合的数学思想.12.原点和点(2,﹣1)在直线x+y﹣a=0的两侧,则实数a的取值范围是()A.0≤a≤1B.0<a<1C.a=0或a=1D.a<0或a>1【答案】B【解析】∵原点和点(2,﹣1)在直线x+y﹣a=0两侧,∴(0+0﹣a)(2﹣1﹣a)<0,即a(a﹣1)<0,解得0<a<1,故选:B.13.点在不等式组表示的平面区域内,到原点的距离的最大值为,则的值为.【答案】3.【解析】由题意,不等式组表示的平面区域如下图:当点在点时,到原点的距离最大为5,则,解得.【考点】1.线性规划求参数范围.14.已知为坐标原点,两点的坐标均满足不等式组设与的夹角为,则的最大值为()A.B.C.D.【答案】C【解析】画出可行域,如图所示,当点A,B分别与点重合时,向量与的夹角最大,且是锐角,,则,又,故当时,取到最大值为.【考点】1、二元一次不等式表示的平面区域;2、向量的夹角;3、同角三角函数基本关系式. 15.设关于x,y的不等式组表示的平面区域内存在点,满足.求得m的取值范围是()A.(-∞,)B.(-∞,)C.(-∞,)D.(-∞,)【答案】C【解析】作出不等式组表示的平面区域(如图)若存在满足条件的点在平面区域内,则只需点A(-m,m)在直线x-2y-2=0的下方,即-m-2m-2>016.若、满足约束条件,则的取值范围是()A.B.C.D.【答案】D【解析】作出不等式组所表示的平面区域如下图所示,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,此时直线在轴上的截距最小,此时取最小值,即,当直线经过可行域上的点,此时直线在轴上的截距最大,此时取最大值,即,因此的取值范围是,故选D.【考点】线性规划17.已知实数满足,则的取值范围是______.【答案】【解析】不等式组所表示的区域如下图:,其中即为的斜率,由图像计算得,观察可知,令,则,故是的增函数,因此,没有最大值,所以的取值范围是.【考点】1、线性规划;2、函数的单调性与值域;3、数形结合的思想.18.实数、满足则=的取值范围是( )A.[-1,0]B.-∞,0]C.[-1,+∞D.[-1,1【答案】D【解析】作出满足不等式组约束条件的平面区域,如下图所示:∵表示区域内点与点连线的斜率,又∵当,时,,直线与平行时,,∴的取值范围为,故选D.【考点】1、简单的线性规划;2、直线斜率.19.已知变量、满足条件,则的最大值是______.【答案】.【解析】作出不等式组所表示的平面区域如下图的阴影部分所表示,设,联立,解得,即点,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,直线在轴上的截距最大,此时取最大值,即.【考点】线性规划20.设满足约束条件,则的最大值为_____________.【答案】【解析】画出对应的平面区域,直线,如图所示.令则平移直线,当直线经过点时,;当直线经过点时,,所以的最大值为.【考点】简单线性规划的应用21.设实数x,y满足则点(x,y)在圆面x2+y2≤内部的概率为() A.B.C.D.【答案】B=2.x2+y2≤恰好【解析】不等式组表示的可行域是边长为的正方形,所以S正在正方形的内部,且圆的面积为πr2=π,所以点(x,y)在圆面x2+y2≤内部的概率为=.22.已知正数a,b,c满足:5c-3a≤b≤4c-a,cln b≥a+cln c,则的取值范围是________.【答案】[e,7]【解析】由题意知作出可行域(如图所示).由得a=,b= c.=7.此时max由得a=,b=.==e.所以∈[e,7].此时min23.设实数x,y满足约束条件,若目标函数()的最大值为8,则的最小值为 .【答案】4【解析】约束条件所表示的区域如图所示:目标函数在处取得最大值,所以,即,所以,当且仅当时取等号.【考点】线性规划.24.设变量满足约束条件,则的最大值为_________.【答案】6【解析】不等式组表示的平面区域如图所示,当目标函数对应的直线过点时;的值最大,即.【考点】线性规划.25.已知点在不等式表示的平面区域上运动,则的最大值是 .【答案】【解析】如下图所示,不等式组所表示的可行域如下图中的阴影部分表示,在直线方程,令,解得,得点的坐标为,作直线,其中可视为直线在轴上的截距,当直线经过区域中的点时,直线在轴上的截距最大,此时取最大值,即.【考点】线性规划26.设平面区域是由双曲线的两条渐近线和抛物线的准线所围成的三角形(含边界与内部).若点,则目标函数的最大值为.【答案】【解析】约束条件为画出可行域,的最大值在点(2,1)处取得最大值为3..【考点】双曲线和抛物线的基础知识、线性规划.27.已知实数满足,若该不等式组所表示的平面区域是一个面积为的直角三角形,则的值是 ( )A.B.-2C.2D.【答案】A【解析】实数满足所表示的区域如上图,当直线与直线垂直时,此时,直线方程变为,与轴交点坐标为,与直线交点的纵坐标为,而三角形面积,解得,当直线与轴或与直线时,求出的值不符合.【考点】二元一次不等式所表示的区域.28.已知是由不等式组所确定的平面区域,则圆在区域内的弧长为________.【答案】【解析】作出可行域及圆如图所示,图中阴影部分所在圆心角所对的弧长即为所求.易知图中两直线的斜率分别是,得,,得得弧长 (为圆半径).【考点】1.线性规划;2.两角和的正切公式;3.弧长公式.29.不等式组表示的平面区域的面积是 .【答案】【解析】不等式组表示的可行域如图所示,故面积为.【考点】考查线性规划.30.设x,y满足约束条件,则z=2x-3y的最小值是()A.B.-6C.D.【答案】B【解析】画出不等式组表示的平面区域可知,平面区域为三角形,当目标函数表示的直线经过点(3,4)时,取得最小值,所以的最小值为,故选B.【考点】本小题考查线性规划的基础知识,难度不大,线性规划知识在高考中一般以小题的形式出现,是高考的重点内容之一,几乎年年必考.31.已知点在不等式组表示的平面区域上运动,则的取值范围是( )A.B.C.D.【答案】C【解析】做出线性约束条件下的可行域,可行域为由直线围成的三角形,三角形的三个顶点分别为,结合可行域可知的最大值为2,最小值为-1,所以范围是【考点】线性规划问题点评:线性规划问题求最值的题目取得最值的位置一般位于可行域的顶点或边界值处32.设x,y满足约束条件,若目标函数的最小值为2,则ab的最大值()A.1B.C.D.【答案】D【解析】因为目标函数,故,,由目标函数的最小值为2,则,即,则,故的最大值为.选C.【考点】简单线性规划点评:本题考查的知识点是简单线性规划,基本不等式,是不等式的综合应用,难度中档.33.若变量满足约束条件,则的最大值为A.B.C.D.【答案】C【解析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x-y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最小值即可解:画出可行域(如下图),L:z=2x-y,由图可知,当直线l经过点A(2,1)时, z最大,且最大值为z=2×1-1=3.故答max【考点】线性规划点评:本小题主要考查线性规划知识、作图、识图能力及计算能力,以及利用几何意义求最值,属于基础题34. x,y满足约束条件,目标函数z=ax+2y仅在点(1,0)处取得最小值,则a的取值范围是_________.【答案】(-4,2)【解析】解:可行域为△ABC,如图,=-1,a<2.当a<0时,当a=0时,显然成立.当a>0时,直线ax+2y-z=0的斜率k=->kAC=2,a>-4.综合得-4<a<2,故答案为(-4,2)k=-<kAB【考点】线性规划点评:借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定35.若实数,满足条件则的最大值为()A.B.C.D.【答案】A【解析】根据约束条件画出可行域,可行域为一个等腰梯形,画出目标函数,通过平移可知在点处取到最大值,最大值为9.【考点】本小题主要考查利用线性规划知识求最值.点评:解决线性规划问题的前提是正确画出可行域,其次要注意适当转化.36.设变量满足约束条件,线性目标函数的最大值为,则实数的取值范围是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【2019最新】精选高考数学 25个必考点专题16 线性规划检测
一、基础过关题
1.(2018北京卷)设集合,,,则
A.对任意实数a,
B. 对任意实数a,
C. 当且仅当时,
D. 当且仅当时,
【答案】D
利用a的取值,反例判断是否成立即可.
本题考查线性规划的解答应用,利用特殊点以及特殊值转化求解,避免可行域的画法,简洁明了.
2.若点(m,1)在不等式2x+3y-5>0所表示的平面区域内,则m的取值范围是( )
A.m≥1 B.m≤1 C.m<1 D.m>1
【答案】 D
【解析】由2m+3-5>0,得m>1.
3.若函数y=log2x的图象上存在点(x,y),满足约束条件则实数m的最大值为( ) A. B.1 C. D.2
【答案】 B
【解析】如图,作出不等式组表示的可行域,
当函数y=log2x的图象过点(2,1)时,实数m有最大值1.
4.直线2x+y-10=0与不等式组表示的平面区域
的公共点有( )
A.0个B.1个
C.2个D.无数个
【答案】 B
【解析】由不等式组画出可行域的平面区域如图(阴影部分).
5.若不等式组表示的平面区域是一个三角形,则a的取值范围是( )
A. B.(0,1]
4
C. D.(0,1]∪,+∞
【答案】 D
【解析】不等式组表示的平面区域如图(阴影部分),
求A,B两点的坐标分别为和 (1,0),
若原不等式组表示的平面区域是一个三角形,则a的取值范围是0<a≤1或a≥. 6.(2016·天津)设变量x,y满足约束条件则目标函数z=2x+5y的最小值为( ) A.-4 B.6 C.10 D.17
【答案】 B
【解析】由约束条件作出可行域如图所示,
7.设x,y满足约束条件则z=2x-y的最大值为( )
A.10 B.8 C.3 D.2
【答案】 B
【解析】画出可行域如图所示.
8.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原
料2千克;生产乙产品1桶需耗A原料2千克、B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )
A.1 800元B.2 400元
C. 2 800元D.3 100元
【答案】 C
【解析】设每天生产甲种产品x桶,乙种产品y桶,
x+2y≤12,
则根据题意得x、y满足的约束条件为2x+y≤12.
设获利z元,
则z=300x+400y.
画出可行域如图.
9.(2017·枣庄月考)已知实数x,y满足约束条件则ω=的最小值是( )
A.-2 B.2
C.-1 D.1
【答案】 D
【解析】作出不等式组对应的平面区域如图,
ω=的几何意义是区域内的点P(x,y)与定点A(0,-1)所在直线的斜率,
由图象可知当P位于点D(1,0)时,直线AP的斜率最小,此时ω=的最小值为=1.故选D.
10.若关于x,y的不等式组表示的平面区域是等腰直角三角形,则其表示的区域面
积为________.
【答案】或41
【解析】直线kx-y+1=0过点(0,1),要使不等式组表示的区域为直角三角形,只有直线kx-y+1=0垂直于y轴(如图(1))或与直线x+y=0垂直(如图(2))时才符合题意.所以S=×1×1=或S=××=.
11.已知变量x,y满足约束条件若目标函数z=ax+y(其中a>0)仅在点(3,0)处取得最大值,则a的取值范围是__________.
1
【答案】,+∞
12.(2016·宜春中学、新余一中联考)设x,y满足约束条件则的取值范围是________.【答案】 [3,11]
【解析】设z===1+2·,
设z′=,
则z′的几何意义为动点P(x,y)到定点D(-1,-1)的斜率.
画出可行域如图阴影部分所示,
则易得z′∈[kDA,kDB],易得z′∈[1,5],∴z=1+2·z′∈[3,11].
13. 已知D是以点A(4,1),B(-1,-6),C(-3,2)为顶点的三角形区域(包括边界与内部).如图所示.
(1)写出表示区域D的不等式组;
(2)设点B(-1,-6),C(-3,2)在直线4x-3y-a=0的异侧,求a的取值范围.【答案】 (1) 区域D的不等式组为;
(2) a的取值范围是(-18,14).
14.某客运公司用A、B两种型号的车辆承担甲、乙两地间的长途客运业务,每辆车每天往返一次.A、B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?
【答案】配备A型车5辆、B型车12辆
【解析】设A型、B型车辆分别为x、y辆,相应营运成本为z元,则z=1 600x+2 400y.
由题意,得x,y满足约束条件
作出可行域如图阴影部分所示,
二、能力提高题
1.已知变量x,y满足约束条件若z=x-2y的最大值与最小值分别为a,b,且方程x2-kx+1=0在区间(b,a)上有两个不同实数解,则实数k的取值范围是( ) A.(-6,-2) B.(-3,2)
C.(-,-2) D.(-,-3)
【答案】 C
【解析】作出可行域,如图所示,
则目标函数z=x-2y在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3,2.给定区域D:令点集T={(x0,y0)∈D|x0,y0∈Z,(x0,y0)是z=x+y在D上取得最大值或最小值的点},则T中的点共确定________条不同的直线.
【答案】 6
【解析】作出图形可知,△ABF所围成的区域即为区域D,
其中A(0,1)是z在D上取得最小值的点,
B,C,D,E,F是z在D上取得最大值的点,
则T中的点共确定AB,AC,AD,AE,AF,BF共6条不同的直线.。

相关文档
最新文档