高中数学竞赛讲义-集合(练习题)

高中数学竞赛讲义-集合(练习题)
高中数学竞赛讲义-集合(练习题)

课后练习

1.下列八个关系式:①{0}=φ ②φ=0 ③φ {φ} ④φ∈{φ}⑤{0}?φ ⑥0?φ ⑦φ≠{0} ⑧φ≠{φ} 其中正确的个数 ( )

(A )4 (B )5 (C )6 (D )7

2.设A 、B 是全集U 的两个子集,且A ?B ,则下列式子成立的是 ( )

(A )C U A ?C U B (B )C U A C U B=U (C )A C U B=φ (D )C U A B=φ

3.已知M=},13|{},,13|{},,3|{Z n n x x P Z n n x x N Z n n x x ∈-==∈+==∈=,且P c N b M a ∈∈∈,,,设c b a d +-=,则∈d ( )

(A )M (B )N (C )P (D )P M

4.设集合},2

14|{},,412|{Z k k x x N Z k k x x M ∈+==∈+==,则 ( ) (A )N M ? (B )M N ? (C )N M = (D )Φ=N M

5.设M={1,2,3,…,1995},A 是M 的子集且满足条件: 当x ∈A 时,15x ?A ,则A 中元素的个数最多是_______________.

6.集合A,B 的并集A ∪B={a 1,a 2,a 3},当且仅当A≠B 时,(A,B)与(B,A)视为不同的对,则这样的(A,B)对的个数有_________________.

7.若非空集合A={x|2a+1≤x≤3a -5},B={x|3≤x≤22},则能使A ?A∩B 成立的a 的取值范围是_______________.

8.若A={x|0≤x 2+ax+5≤4}为单元素集合,则实数a 的值为___________________.

9.设A={n|100≤n≤600,n ∈N},则集合A 中被7除余2且不能被57整除的数的个数为______________.

10.己知集合A={x|x=f(x)},B={x|x=f(f(x))},其中f(x)=x 2+ax+b (a,b ∈R),

证明:(1)A ?B (2)若A 只含有一个元素,则A=B .

11.集合A={(x,y )022=+-+y mx x },集合B={(x,y )01=+-y x ,且02≤≤x },

又A φ≠B ,求实数m 的取值范围.

?

课后练习答案

1-4 C C B A

5.解:由于1995=15?133,所以,只要n>133,就有15n>1995.故取出所有大于133而不超过1995的整数. 由于这时己取出了15?9=135, … 15?133=1995. 故9至133的整数都不能再取,还可取1至8这8个数,即共取出1995—133+8=1870个数, 这说明所求数≥1870。

另一方面,把k 与15k 配对,(k 不是15的倍数,且1≤k ≤133)共得133—8=125对,每对数中至多能取1个数为A 的元素,这说明所求数≤1870,综上可知应填1870

6.解:A=φ时,有1种可能;A 为一元集时,B 必须含有其余2元,共有6种可能;A 为二元集时,B 必须含有另一元.共有12种可能;A 为三元集时,B 可为其任一子集.共8种可能.故共有1+6+12+8=27个.

7.解:由A 非空知2a+1≤3a-5,故a ≥6. 由A ?A ?B 知A ?B. 即3≤2a+1且3a-5≤22, 解之,得1≤a ≤9. 于是知6≤a ≤9

8.解:由24122125)(5a a x ax x -++=++.若4524

1<-a ,则A 有无数个元,若45241>-a ,则A 为空集,只有当4524

1=-a 即2±=a 时,A 为单元素集}1{-或}1{.所以2±=a

9.解:被7除余2的数可写为7k+2. 由100≤7k+2≤600.知14≤k ≤85. 又若某个k 使7k+2能被57整除,则可设7k+2=57n. 即7

2725672578--+-+===n n n n n k . 即n-2应为7的倍数. 设n=7m+2代入,得k=57m+16. ∴14≤57m+16≤85. m=0,1.于是所求的个数为85-(14-1)-2=70

10.证明:(1)B A B x x x f x f f x x f A x ?∴∈?==∴=?∈)())((,)(

(2)设A={c},即二次方程f(x)-x =0有惟一解c ,即c 为 f(x)-x =0的重根.

∴ f(x)-x =(x -c)2 即f(x)=(x-c)2+x ,于是f(f(x))=(f(x)-c)2+f(x),

f(f(x))-x=(f(x)-c)2+f(x)-x=[(x-c)2+x-c]2+(x-c)2=0

∴?????==-+-c

x c x c x 0)(2 故f(f(x))=x 也只有惟一解x =c ,即B={c}. 所以A=B

11.解:由?????=+-=+-+0

1022y x y mx x 得01)1(2=+-+x m x 设1)1()(2+-+=x m x x f 由数形结合得:0)2(0

4)1(20221≤?????≥--=?≤-<-f m m 或 解得:1-≤m

高中数学专题-集合的概念及其基本运算

高中数学专题-集合的概念及其基本运算 【考纲考点剖析】 考 点 考纲内容 5年统计 分析预测 1.集合间的 基本关系 1.了解集合、元素的含义及其关系。 2.理解全集、空集、子集的含义, 及集合之间的包含、相等关系。 3.掌握集合的表示法 (列举法、描述法、Venn 图)。 1.集合交、并、补的运算是考查的热点; 2.集合间的基本关系 很少涉及; 3.题型:选择题 4.备考重点: (1) 集合的交并补的混合运算; (2) 以其他知识为载体考查集合之间的关系; (3) 简单不等式的解法. 2.集合的基 本运算 1.会求简单集合的并集、交集。 2.理解补集的含义,且会求补集。 【知识清单】 1.元素与集合 (1)集合元素的特性:确定性、互异性、无序性. (2)集合与元素的关系:若a 属于集合A ,记作a A ∈;若b 不属于集合A ,记作b A ?. (3)集合的表示方法:列举法、描述法、图示法. (4)常见数集及其符号表示 数集 自然数 集 正整数 集 整数集 有理数 集 实数集 符号 N N *或 N + Z Q R 2.集合间的基本关系 (1)子集:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合

A 包含于集合 B ,或集合B 包含集合A ,也说集合A 是集合B 的子集。记为A B ?或B A ?. (2)真子集:对于两个集合A 与B ,如果A B ?,且集合B 中至少有一个元素不属于集合A ,则称集合A 是集合B 的真子集。记为A B ?≠. (3)空集是任何集合的子集, 空集是任何非空集合的真子集. (4)若一个集合含有n 个元素,则子集个数为2n 个,真子集个数为21n -. 3.集合的运算 (1)三种基本运算的概念及表示 名称 交集 并集 补集 数学 语言 A∩B={x|x ∈A,且x ∈B} A ∪B={x|x ∈A,或x ∈B} C U A={x|x ∈ U,且x ?A} 图形 语言 (2)三种运算的常见性质 A A A =I , A ?=?I , A B B A =I I , A A A =U , A A ?=U , A B B A =U U . (C A)A U U C =,U C U =?,U C U ?=. A B A A B =??I , A B A B A =??U , ()U U U C A B C A C B =U I , ()U U U C A B C A C B =I U . 【重点难点突破】 考点1 集合的概念 【1-1】【全国卷II 理】已知集合,则中元素的 个数为 A. 9 B. 8 C. 5 D. 4 【答案】A

高中数学竞赛_函数【讲义】

1 第三章 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。集合{f (x )|x ∈A }叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。例如:函数y =x -11的反函数是y =1-x 1(x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称。 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。 定义7 函数的性质。 (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。 (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期。 定义8 如果实数a a }记作开区间(a , +∞),集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域。通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对称;(5)与函数y =-f (-x ) 的图象关于原点成中心对称;(6)与函数y =f -1(x )的图象关于直线y =x 对称;(7)与函数y =-f (x ) 的图象关于x 轴对称。 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”。例如y = x -21, u=2-x 在(-∞,2)上是减函数,y =u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数。 注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。 二、方法与例题 1.数形结合法。 例1 求方程|x -1|=x 1的正根的个数 .

讲义高一数学必修一函数复习

函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A →B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x 的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合. (5)指数、对数式的底必须大于零且不等于1. (6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义. 3. 相同函数的判断方法:(满足以下两个条件) ①定义域一致 (化简前) ②表达式相同(与表示自变量和函数值的字母无关); 4.值域:先考虑其定义域 (1)图像观察法(掌握一次函数、二次函数、指数函数、对数函数、幂函数、

)0,(>+ =b a x b ax y 三角函数等的图像,利用函数单调性) (2)基本不等式 (3)换元法 (4)判别式法 5. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x ∈A)中的x 为横坐标,函数值y 为纵坐标的点P(x ,y)的集合C ,叫做函数 y=f(x),(x ∈A)的图象.C 上每一点的坐标(x ,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x 、y 为坐标的点(x ,y)均在C 上 . (2) 画法 描点法 图象变换法:常用变换方法有三种:平移变换 伸缩变换 对称变换 6.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示. 7.映射 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。记作“f (对应关系):A (原象)→B (象)” 对于映射f :A →B 来说,则应满足: (1)集合A 中的每一个元素,在集合B 中都有象,并且象是唯一的;

高中数学竞赛讲义_复数

1 复数 一、基础知识 1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除 等运算。便产生形如a+bi (a,b ∈R )的数,称为复数。所有复数构成的集合称复数集。通常用C 来表示。 2.复数的几种形式。对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。若z=r(cos θ+isin θ),则θ称为z 的辐角。若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=2 2b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式。 3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。模与共轭的性质有: (1)2121z z z z ±=±;(2)2121z z z z ?=?;(3)2||z z z =?;(4)2121z z z z =???? ??;(5)||||||2121z z z z ?=?;(6)|||||| 2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则z z 1=。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1??z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若2 1212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2e i(θ1+θ2),.)(2 12121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2s i n 2(c o s n k i n k r w n πθπθ+++=,k=0,1,2,…,n-1。 7.单位根:若w n =1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=n i n ππ2sin 2cos +,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,

新高中数学《集合》专项测试 (1145)

高中数学《集合》测试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________ 一、选择题 1.设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中的元素个数为 (A)3 (B)4 (C)5 (D)6(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对)) 2.设集合{|1A x =-≤x ≤2},B={x |0≤x ≤4},则A ∩B=A (A)[0,2] (B)[1,2] (C)[0,4] (D)[1,4](2006年高考浙江理) 3.设集合{1,2}A =,则满足{1,2,3}A B ?=的集合B 的个数是( ) (A)1 (B)3 (C)4 (D)8(2006辽宁理) 4.已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N 等于( ) A.{x |x <-2} B.{x |x >3} C.{x |-1<x <2} D.{x |2<x <3}(2004全国Ⅱ1) 5.若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x∈A,y∈B}中的元素的个数为 ( ) A .5 B .4 C .3 D .2(2012江西理) C 6.设集合A={x|1<x <4},集合B ={x|2x -2x-3≤0}, 则A ∩(C R B )= A .(1,4) B .(3,4) C.(1,3) D .(1,2)∪(3,4) 7.若关于x 的一元二次不等式20ax bx c ++<的解集为实数集R ,则a 、b 、c 应满足的条件为-----------------------------------------------------------------------( ) (A ) a >0,b 2―4ac >0 (B ) a >0,b 2 ―4ac <0 (C ) a <0,b 2―4ac >0 (D ) a <0,b 2―4ac <0 二、填空题 8.已知全集U ={1,2,3,4,5,6,7,8,9,10},集合{}321,,a a a A =,则满足

高中数学竞赛讲义-抽屉原理

§23抽屉原理 在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。这类存在性问题中,“存在”的含义是“至少有一个”。在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。 “抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。 (一)抽屉原理的基本形式 定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。 证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n 个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。 在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。 同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。“鸽笼原理”由此得名。 例题讲解 1.已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。证明:至少有两个点之间的距离不大于 2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。

2019-2020学年高一数学《集合及其运算》全套讲义(精品)

2019-2020学年高一数学《集合及其运算》全套讲义 知识点总结及例题讲解 一、集合的含义 1.集合中元素的特性:确定性、互异性和无序性. 2.元素与集合的关系 (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A. (2)不属于:如果a不是集合A中的元素,就说a不属于A,记作a?A. 3.常见的数集及表示符号 【例1】 ①中国各地最美的乡村; ②直角坐标系中横、纵坐标相等的点; ③不小于3的自然数; ④2018年第23届冬季奥运会金牌获得者. A.③④B.②③④ C.②③D.②④ B[①中“最美”标准不明确,不符合确定性,②③④中的元素标准明确,均可构成集合,故选B.] 判断一组对象能否组成集合的标准 判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性. 1.判断下列说法是否正确,并说明理由.

(1)大于3小于5的所有自然数构成一个集合; (2)直角坐标平面内第一象限的一些点组成一个集合; (3)方程(x-1)2(x+2)=0所有解组成的集合有3个元素. [解](1)正确,(1)中的元素是确定的,互异的,可以构成一个集合. (2)不正确,“一些点”标准不明确,不能构成一个集合. (3)不正确,方程的解只有1和-2,集合中有2个元素. 【例2】 ①π∈R;②2?Q;③0∈N*;④|-5|?N*. A.1B.2 C.3D.4 (2)已知集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,那么a为() A.2 B.2或4 C.4 D.0 (1)B(2)B[(1)①π是实数,所以π∈R正确; ②2是无理数,所以2?Q正确;③0不是正整数,所以0∈N*错误;④|-5|=5为正整数,所以|-5|?N*错误.故选B. (2)集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,a=2∈A,6-a=4∈A, 所以a=2, 或者a=4∈A,6-a=2∈A, 所以a=4, 综上所述,a=2或4.故选B.] 判断元素与集合关系的两种方法 (1)直接法:如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否出现即可. (2)推理法:对于一些没有直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可,此时应首先明确已知集合中的元素具有什么特征.

高中数学竞赛_数列【讲义】

第五章 数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

高一数学集合练习题及答案(人教版)

一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A=} { 12x x <<,B=} { x x a <,若A ?B ,则a 的取值范围是 ( ) A } { 2a a ≥ B } { 1a a ≤ C } { 1a a ≥ D } { 2a a ≤

9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈, {}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 二、填空题(每题3分,共18分) 11、若}4,3,2,2{-=A ,},|{2 A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2 +x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={ } 2 2,3,23a a +-,A={}2,b ,C U A={} 5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 15、已知集合A={x|2 0x x m ++=}, 若A ∩R=?,则实数m 的取值范围是 16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人. 三、解答题(每题10分,共40分) 17、已知集合A={x| x 2 +2x-8=0}, B={x| x 2 -5x+6=0}, C={x| x 2 -mx+m 2 -19=0}, 若B ∩C ≠Φ,A∩C=Φ,求m 的值 18、已知二次函数f (x )=2 x ax b ++,A=}{ }{ ()222x f x x ==,试求 f ()x 的解析式

高中数学竞赛讲义_数列

数列 一、基础知识 定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。 定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式: S n =d n n na a a n n 2 )1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有 q a a n n =+1,则{a n }称为等比数列,q 叫做公比。 定理3 等比数列的性质:1)a n =a 1q n -1 ;2)前n 项和S n ,当q ≠1时,S n =q q a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。 定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞ → 定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为q a -11(由极限的定义可得)。 定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 竞赛常用定理 定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。 定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。 二、方法与例题 1.不完全归纳法。 这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。 例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。 【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1= 21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1= 2 1,又a 1+a 2=22·a 2,

高中数学竞赛标准教材讲义函数教案

第三章 函数 一、基础知识 定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射. 定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射. 定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射. 定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆 映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1 : A →B . 定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数.A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y 则y 叫做x 的象,x 叫y 的原象.集合{f (x )|x ∈A }叫函数的值域.通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}. 定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1 : A →B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域.例如:函数y = x -11的反函数是y =1-x 1 (x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称. 定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数. 定义7 函数的性质. (1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有 f (x 1)f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间. (2)奇偶性:设函数y =f (x )的定义域为D ,且D 是关于原点对称的数集,若对于任意的x ∈D ,都有f (-x )=-f (x ),则称f (x )是奇函数;若对任意的x ∈D ,都有f (-x )=f (x ),则称f (x )是偶函数.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (3)周期性:对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内每一个数时,f (x +T )=f (x )总成立,则称f (x )为周期函数,T 称为这个函数的周期,如果周期中存在最小的正数T 0,则这个正数叫做函数f (x )的最小正周期. 定义8 如果实数a a }记作开区间(a , +∞集合{x |x ≤a }记作半开半闭区间(-∞,a ]. 定义9 函数的图象,点集{(x ,y )|y =f (x ), x ∈D}称为函数y =f (x )的图象,其中D 为f (x )的定义域.通过画图不难得出函数y =f (x )的图象与其他函数图象之间的关系(a ,b >0);(1)向右平移a 个单位得到y =f (x -a )的图象;(2)向左平移a 个单位得到y =f (x +a )的图象;(3)向下平移b 个单位得到y =f (x )-b 的图象;(4)与函数y =f (-x )的图象关于y 轴对 称;(5)与函数y =-f (-x )的图象关于原点成中心对称;(6)与函数y =f -1 (x )的图象关于直线y =x 对称;(7)与函数y =-f (x )的图象关于x 轴对称. 定理3 复合函数y =f [g (x )]的单调性,记住四个字:“同增异减”.例如y = x -21 , u=2-x 在(-∞,2)上是减函数,y = u 1在(0,+∞)上是减函数,所以y =x -21在(-∞,2)上是增函数. 注:复合函数单调性的判断方法为同增异减.这里不做严格论证,求导之后是显然的. 二、方法与例题

高一数学必修一《集合》专题复习

高一数学必修一《集合》专题复习 一.集合基本概念及运算 1.集合{}1,2,3的真子集的个数为( ) A .5 B .6 C .7 D .8 2.已知{}{}1,2,3,2,4A B ==,定义{}|A B x x A x B -=∈?且,则A B -= A. {}1,2,3 B. {}2,4 C. {}1,3 D. {}2 3.已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=, 那么集合N M ?为 ( ) A. 3,1x y ==- B. {}(,)|31x y x y ==-或 C. (3,1)- D. {(3,1)}- 4.已知集合2{|2,}M y y x x ==-+∈R ,集合}{|2,02x N y y x ==≤≤,则 ()M N =R e( ) A .[]1,2 B .(]2,4 C .[)1,2 D .[)2,4 5.已知{}{}222,21x A y y x x B y y ==-++==-,则A B = _________。 6、已知R x ∈ ,集合{}{}11231322+--=+-=x ,x ,x B ,x ,x ,A 如果{}3A ?B =-,求x 的值和集合A?B . 7. 已知{}23,(5,)A x a x a B =≤≤+=+∞,若,A B =? 则实数a 的取值范围为 ▲ . 8.已知集合,,且,求实数 的取值范围。 9.设U R =,集合{}2|320A x x x =++=,{} 2|(1)0B x x m x m =+++=; 若A B ?,求m 的值。 10.已知集合{}{}{}|28,|16,|A x x B x x C x x a =≤≤=<<=>,U R =. (I)求A B , U C A B ;(II)若A C ≠? ,求实数a 的取值范围.

2020年上海新高一新教材数学讲义-专题21 期中复习(学生版)

专题21 期中复习 知识梳理 一、集合与命题 1.区分集合中元素的形式: 2.研究集合必须注意集合元素的特征,即集合元素的三性:确定性、互异性、无序性. 3.集合的性质:① 任何一个集合P 都是它本身的子集,记为P P ?. ① 空集是任何集合P 的子集,记为P ??. ① 空集是任何非空集合P 的真子集,记为P ? . 注意:若条件为B A ?,在讨论的时候不要遗忘了?=A 的情况. 集合的运算:①()()C B A C B A =、()()C B A C B A =; ()( )( )U U U A B A B =、 ()( )( )U U U A B A B =. ①U U U A B A A B B A B B A A B =?=??? ? ?=?. ①对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数 依次为:n 2、12-n 、12-n 、22-n . 4.命题是表达判断的语句.判断正确的叫做真命题;判断错误的叫做假命题. ① 命题的四种形式及其内在联系:

原命题:如果α,那么β; 逆命题:如果β,那么α; 否命题:如果α,那么β; 逆否命题:如果β,那么α; ① 等价命题:对于甲、乙两个命题,如果从命题甲可以推出命题乙,同时从命题乙也可以推出命题甲,既“甲?乙”,那么这样的两个命题叫做等价命题. ① 互为逆否命题一定是等价命题,但等价命题不一定是互为逆否命题. ① 当某个命题直接考虑有困难时,可通过它的逆否命题来考虑. 5.常见结论的否定形式: 6.充要条件: 在判断“充要条件”的过程中,应注意步骤性: 首先必须区分谁是条件、谁是结论,然后由推导关系判断结果. 二、不等式

高中数学竞赛标准讲义---排列组合与概率

高中数学竞赛标准讲义----排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。 2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。 3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n n m n m n C C C ;(3)k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为11--n r C 。 [证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x 1+x 2+…+x n =r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B 中每一个解(x 1,x 2,…,x n ),将x i 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n 份,共有11--n r C 种。故定理得证。 推论1 不定方程x 1+x 2+…+x n =r 的非负整数解的个数为.1r r n C -+

相关文档
最新文档