高频变压器计算步骤

高频变压器计算步骤
高频变压器计算步骤

高频变压器计算

(CCM模式)

反激式DC/DC变换电路

电路基本参数:

Vo1=15V Io1=0.4A

Vo2=-10V Io2=0.4A

Vs=15V(范围10V~20V)

Po=10W

设定参数:

1.电路工作频率(根据UC3843的特性,初步确定为50KHz),电路效率为G=75%

2.反激式变换器的工作模式CCM

3.占空比确定(Dmax=0.4)

4.磁芯选型(EE型)

设计步骤

(1)选择磁芯大小

Pin=Po/G=10/0.75=13.3W(查表),选择EE19磁芯

(2)计算导通时间

Dmax=0.4,工作频率fs=50KHz

ton=8us

(3)选择工作时的磁通密度

根据所选择的磁芯EE19(PC40材料)Ae=22mm2,Bmax=0.22T

(4)计算原边匝数

Np=(Vs*ton)/(Bmax*Ae)=(10*8)/(0.22*22)=16.52,取整16

(5)计算副边绕组

以输出电压为15V为例进行计算,设整流二极管及绕组的压降为1V

15+1=16V

原边绕组每匝伏数=Vs/Np=10/16=0.625V/匝

副边绕组匝数Ns1=16/0.625=25.6,取整26

(6)计算选定匝数下的占空比;辅助输出绕组匝数

新的每匝的反激电压为:16/26=0.615V

ton=(Ts*0.615)/(0.625+0.615)=9.92us

占空比D=9.92/20=0.496

对于10V直流输出,考虑绕组及二极管压降1V后为11V

Ns2=11/0.615=17.88,取整17

(7)初级电感,气隙的计算

在周期Ts内的平均输入电流Is=Pin/Vs=13.3/10=1.33A

导通时间内相应的平均值为Iave=(Is*Ts)/ton=1.33*20/9.92=2.68A

开关管导通前的电流值Ip1=Iave/2=2.68/2=1.34A

开关管关闭前的电流值Ip2=3Ip1=1.34*3=4.02A

初级电感量Lp=Vs*&t/&i=10*9.92/2.68=37.01uH

气隙长度Lg=(u0*Np^2*Ae)/Lp=0.19mm

(8)检测磁芯磁通密度和饱和区间

计算磁心饱和边界.计算交流磁通产生的磁感应强度变化幅值:

△Bac=(Vs*ton)/(Ae*Np)=(10*9.92)/(16*22)=0.282T

使用磁感应强度与直流电有关的关系式计算直流成分Bdc

假设磁芯所有的磁阻都集中在气隙中,显然作为一个比较保守的结果,可求得一个较高的直流磁感应强度.此近似值允许使用一个简单的公式

Bdc=u*H=u0*Np*Ip1/(Lg*0.001)=0.142T

交流和直流磁感应强度之和得到磁感应强度最大值为

Bmax=△Bac/2+Bdc=0.141+0.142=0.283T<0.39T

(9)选择导线

●初级电流有效值为:

Krp=0.667

Irms=Ip*sqr(Dmax*(Krp^2*1/3-Krp+1))= 1.96A,

选取电流密度为4A/mm2

则导线线径为:D=1.13(I/J)^1/2=0.792mm

选择AWG20导线

注:由于高频电流在导体中会有趋肤效应,所以在确定线经时还要计算不同频率时导体的穿透深度.公式:d=66.1/(f)^1/2.如果计算出的线径D大于两倍的穿透深度,就需要采用多股线或利兹线

考虑集肤效应, d=66.1/(f)^1/2=66.1/50000^1/2=0.296mm,2*d=0.592mm<0.792mm

则初级导线需要采用多股线并绕

AWG20导线的截面积为Sc=0.606mm2,采用AWG23导线双股并绕截面积Sc=0.3135*2=0.627mm2>0.606mm2

● 15V次级输出电流峰值为:

Isp1=(Ip*Np/Ns1)*(Po1/Po)=1.484A

有效值为Isrms1=Isp1*sqr[(1-Dmax)*(Krp^2*1/3-Krp+1)]=0.731A

则导线线径为:D=1.13(I/J)^1/2=0.483mm

选择AWG25导线

● -10V次级输出电流峰值为:

Isp2=(Ip*Np/Ns2)*(Po2/Po)=1.513A

有效值为Isrms2=Isp2*sqr[(1-Dmax)*(Krp^2*1/3-Krp+1)]=0.745 A

则导线线径为:D=1.13(I/J)^1/2=0.487mm

选择AWG25导线

◆◆◆磁芯及骨架分别采用TDK公司的PC40EE19-Z,BE19-118CPHFR◆◆◆

高频变压器计算(DCM模式)

电路基本参数:

Vo1=15V Io1=0.4A

Vo2=-10V Io2=0.4A

Vin=15V(范围10V~20V)

Po=10W

设定参数:

1.电路工作频率(根据UC3843的特性,初步确定为50KHz),电路效率为G=75%

2.反激式变换器的工作模式DCM

3.占空比确定(Dmax=0.4)

4.磁芯选型(EE型)

设计步骤:

先选定一个工作点(即最小输入电压,最大占空比的情况):

(1)初级峰值电流

Ip=2 Po/(G*Vinmin*Dmax)=2*10/(0.75*10*0.4)=6.67A

(2)初级电感量

Lp=Dmax* Vinmin /fs*△Ip=0.012mH

(3)选择TDK的铁氧体磁芯PC40

其温升100摄氏度时饱和磁通密度为390mT,取工作Bmax为220mT

AeAw=(Lp* Ip22 * 104/Bw*K0 *Kj)1.14

其中Bw=0.22,K0=0.4;Kj=395A/cm2 ;

计算得AeAw=0.118

选择PC40EE19的磁芯,其AeAw=0.22*0.054=0.119cm4>0.118cm4

(4)计算气隙

Lg=0.4Л* Lp*Ip2/Ae*Bmax2 =0.63mm

(5)变压器初级匝数

Np=(Lp*Ip)*104/(Ae*Bmax)=16.54匝,取整16匝.

(6)变压器次级匝数

设次级二极管压降及绕线压降为Vd=1V

15V次级绕组匝数Ns1=Np(Vo1+Vd)(1-Dmax)/(Vmin*Dmax)=38.4, 取整38匝.

-10V次级绕组匝数Ns2= Np(Vo2+Vd)(1-Dmax)/(Vmin*Dmax)=26.4, 取整26匝. (7)导线线径的选择

断续模式下Krp=1,选择电流密度为4A/mm2

●初级有效电流Irms=Ip*sqr(Dmax*(Krp^2*1/3-Krp+1))= Ip*sqr (Dmax/3)=2.44A 可以得原边导线直径d=1.13*sqr(Irms/J)=1.13*sqr(2.44/4)=0.882mm

选择AWG20#线

注:由于高频电流在导体中会有趋肤效应,所以在确定线经时还要计算不同频率时导体的穿透深度.公式:d=66.1/(f)^1/2.如果计算出的线径D大于两倍的穿透深度,就需要采用多股线或利兹线

考虑集肤效应, d=66.1/(f)^1/2=66.1/50000^1/2=0.296mm,2*d=0.592mm<0.882mm

则初级导线需要采用多股线并绕

AWG20导线的截面积为Sc=0.606mm2,采用AWG23导线双股并绕截面积Sc=0.3135*2=0.627mm2>0.606mm2

●15V次级峰值电流

Isp1=(Ip*Np/Ns1)*(Po1/Po)=1.685A

有效值为Isrms1=Isp1*sqr[(1-Dmax)*(Krp^2*1/3-Krp+1)]= Isp1*sqr ((1-Dmax)/3)=0.753A

则导线线径为:D=1.13(Isrms1/J)^1/2=0.490mm

选择AWG25导线

●-10V次级峰值电流

Isp2=(Ip*Np/Ns2)*(Po2/Po)=1.642A

有效值为Isrms2=Isp2*sqr[(1-Dmax)*(Krp^2*1/3-Krp+1)]= Isp2*sqr ((1-Dmax)/3)=0.734A

则导线线径为:D=1.13(Isrms2/J)^1/2=0.484mm

选择AWG25导线

◆◆◆磁芯及骨架分别采用TDK公司的PC40EE19-Z,BE19-118CPHFR◆◆◆

EE型变压器参数及高频变压器计算Word版

我们知道,与一般的电流电压测量不同,磁场强度和磁感应强度的测量都是间接测量。磁场强度通过测量励磁电流后计算得到,磁感应强度是通过测量感应磁通后计算得到,参与计算的样品有效参数Le和Ae将直接与测量结果相关。 磁场强度的计算公式:H = N xI / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ / (N xAe) 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 根据样品尺寸计算样品的有效参数Le和Ae,在不同的行业中,计算方法往往不统一,这可能使测试结果缺乏可比性。 在SMTest软磁测量软件中,样品有效参数的计算依照行业标准SJ/T10281。下面以环形样品为例,讲述样品有效磁路长度Le和有效截面积Ae的计算方法。 第一种情况:指定叠片系数Sx,指定样品的外径A、内径B和高度C。 根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和 Ae,这是严格按照标准执行的计算方法。

第二种情况:指定材料密度De和样品质量W,指定样品的外径A、内径B和高度C。 根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和 Ae,并可推算叠片系数Sx,这是另外一种计算方法,与标准有点差别,但计算结果与标准比较接近。 第三种情况:指定材料密度De和样品质量W,指定样品的外径A和内径B,不指定样品的高度。 不按SJ/T10281标准求磁芯常数,而是按平常的数学公式来求Le和Ae。这种计算方法与标准相差较大,只有环形样品才有这种计算方法。

高频逆变器中高频变压器的绕制方法

高频逆变器中高频变压器的绕制方法 用EE55等高频磁芯制作高频逆变器,其中高频变压器的线包绕制最好参考一下电子管音响功率放大器中音频输出变压器的绕制方法.这种变压器因为要在音频20Hz~20KHz范围内力求做到平坦响应,绕法讲究,顶级的电子管音频输出变压器的频响范围甚至做到了10Hz~100KHz,而用的磁芯不过就是高矽硅钢片而已. 以大家在坛子中讨论最多也用得最多的“SG3525A(或KA3525A、UC3525)+场管IRF3205(或MTP75N06等)+EE55磁芯变压器”组合为例,功率可做到500W以上,工作频率一般在20~50KHz.其中的EE55磁芯变压器,大家一般是低压绕组(初级)3T+3T,中心抽头,高压绕组(次级)75T. 要制作好它就要注意两点: 一是每个绕组要采用多股细铜线并在一起绕,不要采用单根粗铜线,因为高频交流电有集肤效应.所谓集肤效应,简单地说就是高频交流电只沿导线的表面走,而导线内部是不走电流的(实际是越靠近导线中轴电流越弱,越靠近导线表面电流越强).采用多股细铜线并在一起绕,实际就是为了增大导线的表面积,从而更有效地使用导线.例如初级的3T+3T,你如果用直径2.50mm的

单根漆包线,导线的截面积为4.9平方毫米,而如果用直径0.41mm的漆包线(单根截面积0.132平方毫米)38根并绕,总的截面积也达到要求.然而,第二种方法导线的表面积大得多(第一种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=2.5×3.14×1×L=7.85L,第二种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=0.41×3.14×38×L=48.92L,后者是前者的48.92L/7.85L=6.2倍),导线有效使用率更高,电流更通畅,并且因为细导线较柔软,更好绕制.次级75T高压绕组用3~5根并绕即可. 二是高频逆变器中高频变压器最好采用分层、分段绕制法,这种绕法主要目的是减少高频漏感和降低分布电容.例如上述变压器的绕法,初级分两层,次级分三层三段.具体是: ①绕次级高压绕组第一段.接好引出线(头),先用5根并绕次级高压绕组25T,线不要剪断,然后包一层绝缘纸(绝缘纸要薄,包一层即可,否则由于以下多次要用到绝缘纸,有可能容不下整个线包),准备绕初级低压绕组的一半. ②绕初级低压绕组的一半.预留引出线(头),注意是预留,因为后面要统一并接后再接引出线,以下初级用“预留”一词时同理.用19根并绕3T,预留中心抽头,再并绕3T,预留引出线(尾),线剪断.在具体操作时这里还有一个技巧,即由于股数多,19股线一次并绕不太方便,扭矩张力也大,就可以分做多次,如这里可分做三次,每次用线6到7股,这样还可绕得更平整.注意三次的头、中、尾放在一起,且绕向要相同.然后又包一层绝缘纸,准备绕次级高压绕组

高频变压器的计算

高频变压器参数计算 2009-08-28 11:26 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф / ⊿t * N⑷ EL = ⊿i / ⊿t * L⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S )⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: QL = 1/2 * I2 * L⑼ QL -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数

如何计算高频变压器参数

如何计算高频变压器参数 2009年12月30日 11:54 不详作者:佚名用户评论(0) 关键字:变压器(455)高频(56)参数(24) 如何计算高频变压器参数 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф / ⊿t * N⑷ EL = ⊿i / ⊿t * L⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S )⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: QL = 1/2 * I2 * L⑼

反激电源高频变压器参数计算方法

四、设计开关电源主要在变压器计算与画板 高频变压器参数计算方法 1﹚、磁通量与磁通密度相关公式: Ф = B * S⑴ Ф----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ⑵ μ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф / ⊿t * N⑷ EL = ⊿i / ⊿t * L⑸ ⊿Ф----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S可得下式: N = ⊿i * L / ( B * S )⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: QL = 1/2 * I2 * L⑼ QL -------- 电感中储存的能量(焦耳)

I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数 比与占空比的关系式: N1/N2 = (E1*D)/(E2*(1-D))⑽ N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特) N2 -------- 次级电感的匝数(圈) E2 -------- 次级输出电压(伏特) 二.根据上面公式计算变压器参数: 1.高频变压器输入输出要求: 输入直流电压:200--- 340 V 输出直流电压:23.5V 输出电流: 2.5A * 2 输出总功率:117.5W 2.确定初次级匝数比: 次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高;匝数比小则功率管反低,这样就有下式:N1/N2 = VIN(max) / (VRRM * k / 2)⑾N1 ----- 初级匝数VIN(max) ------ 最大输入电压k ----- 安全系数N2 ----- 次级匝数Vrrm ------ 整流管最大反向耐压 这里安全系数取0.9 由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌7.6 3.计算功率场效应管的最高反峰电压: Vmax = Vin(max) + (Vo+Vd)/ N2/ N1⑿ Vin(max) ----- 输入电压最大值Vo ----- 输出电压 Vd ----- 整流管正向电压 Vmax = 340+(23.5+0.89)/(1/7.6) 由此可计算功率管承受的最大电压: Vmax ≌525.36(V) 4.计算PWM占空比: 由⑽式变形可得: D = (N1/N2)*E2/(E1+(N1 /N2*E2) D=(N1/N2)*(Vo+Vd)/Vin(min)+N1/N2*(Vo+Vd)⒀ D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89) 由些可计算得到占空比D≌0.481 5.算变压器初级电感量: 为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。那么计算初级电感量就可以只以PWM的一个周期来分析,这时可由⑼式可以有如下推 导过程:

高频变压器计算步骤精编版

高频变压器计算 (CCM模式) 反激式DC/DC变换电路 电路基本参数: Vo1=15V Io1=0.4A Vo2=-10V Io2=0.4A Vs=15V(范围10V~20V) Po=10W 设定参数: 1.电路工作频率(根据UC3843的特性,初步确定为50KHz),电路效率为G=75% 2.反激式变换器的工作模式CCM 3.占空比确定(Dmax=0.4) 4.磁芯选型(EE型) 设计步骤 (1)选择磁芯大小 Pin=Po/G=10/0.75=13.3W(查表),选择EE19磁芯 (2)计算导通时间 Dmax=0.4,工作频率fs=50KHz ton=8us (3)选择工作时的磁通密度 根据所选择的磁芯EE19(PC40材料)Ae=22mm2,Bmax=0.22T (4)计算原边匝数 Np=(Vs*ton)/(Bmax*Ae)=(10*8)/(0.22*22)=16.52,取整16 (5)计算副边绕组 以输出电压为15V为例进行计算,设整流二极管及绕组的压降为1V 15+1=16V 原边绕组每匝伏数=Vs/Np=10/16=0.625V/匝 副边绕组匝数Ns1=16/0.625=25.6,取整26 (6)计算选定匝数下的占空比;辅助输出绕组匝数 新的每匝的反激电压为:16/26=0.615V ton=(Ts*0.615)/(0.625+0.615)=9.92us 占空比D=9.92/20=0.496 对于10V直流输出,考虑绕组及二极管压降1V后为11V Ns2=11/0.615=17.88,取整17 (7)初级电感,气隙的计算 在周期Ts内的平均输入电流Is=Pin/Vs=13.3/10=1.33A 导通时间内相应的平均值为Iave=(Is*Ts)/ton=1.33*20/9.92=2.68A 开关管导通前的电流值Ip1=Iave/2=2.68/2=1.34A 开关管关闭前的电流值Ip2=3Ip1=1.34*3=4.02A 初级电感量Lp=Vs*&t/&i=10*9.92/2.68=37.01uH 气隙长度Lg=(u0*Np^2*Ae)/Lp=0.19mm

如何计算高频变压器参数

如何计算高频变压器参数 一. 电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S ⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米) B = H * μ ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l ⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф / ⊿t * N ⑷ EL = ⊿i / ⊿t * L ⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S ) ⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L ⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2 ⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素)

3.电感中能量与电流的关系: QL = 1/2 * I2 * L ⑼ QL -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式: N1/N2 = (E1*D)/(E2*(1-D)) ⑽ N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特) N2 -------- 次级电感的匝数(圈) E2 -------- 次级输出电压(伏特) 二. 根据上面公式计算变压器参数: 1. 高频变压器输入输出要求: 输入直流电压: 200--- 340 V 输出直流电压: 23.5V 输出电流: 2.5A * 2 输出总功率: 117.5W 2. 确定初次级匝数比: 次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式: N1/N2 = VIN(max) / (VRRM * k / 2) ⑾ N1 ----- 初级匝数 VIN(max) ------ 最大输入电压 k ----- 安全系数 N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压 这里安全系数取0.9 由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.6 3. 计算功率场效应管的最高反峰电压: Vmax = Vin(max) + (Vo+Vd)/ N2/ N1 ⑿ Vin(max) ----- 输入电压最大值 Vo ----- 输出电压 Vd ----- 整流管正向电压 Vmax = 340+(23.5+0.89)/(1/7.6) 由此可计算功率管承受的最大电压: Vmax ≌ 525.36(V)

开关电源-高频-变压器计算设计

要制造好高频变压器要注意两点: 一是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便是高频交流电只沿导线的表面走,而导线内部是不走电流的实习是越挨近导线中轴电流越弱,越挨近导线表面电流越强。选用多股细铜线并在一同绕,实习便是为了增大导线的表面积,然后更有效地运用导线。 二是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的是削减高频漏感和降低分布电容。 1、次级绕组:初级绕组绕完,要加绕(3~5 层绝缘垫衬再绕制次级绕组。这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,契合绝缘耐压的需求。减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模打扰。若是开关电源的次级有多路输出,而且输出之间是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。 若是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。其他次级绕组严密的绕在这个次级绕组的上面。当开关电源多路输出选用共地技能时,处置方法简略一些。次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。 2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。初级绕组放在最里边,使初级绕组得到其他绕组的屏蔽,有助于减小变压器初级绕组和附近器材之间电磁噪声的相互耦合。初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其他有些电磁打扰的耦合。 3、偏压绕组:偏压绕组绕在初级和次级之间,仍是绕在最外层,和开关电源的调整是依据次级电压仍是初级电压进行有关。若是电压调整是依据次级来进行的则偏压绕组应放在初级和次级之间,这样有助于削减电源发生的传导打扰发射。若是电压调整是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组和次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。 初级偏压绕组最佳能布满完好的一层,若是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。 高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该

高频变压器匝数计算

高频变压器参数计算 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S ⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l ⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: E L =⊿Ф / ⊿t * N ⑷ E L = ⊿i / ⊿t * L ⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S ) ⑹ 且由⑸式直接变形可得: ⊿i = E L * ⊿t / L ⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: Q L = 1/2 * I2 * L ⑼ Q L -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式: N1/N2 = (E1*D)/(E2*(1-D)) ⑽ N1-------- 初级线圈的匝数(圈) E1-------- 初级输入电压(伏特) N2-------- 次级电感的匝数(圈) E2-------- 次级输出电压(伏特)

单级PFC高频变压器设计及参数计算详解

单级PFC高频变压器设计及参数计算详解 由于LED照明电源要求:民用照明PF值必需大于0.7,商业照明必需大于0.9。对于10~70W的LED驱动电源,一般采用单级PFC来设计。即节省空间又节约成本。接下来我们来探讨一下单级PFC高频变压器设计。 以一个60W的实例来进行讲解: 输入条件: 电压范围:176~265Vac 50/60Hz PF>0.95 THD<25% 效率ef〉0.87 输出条件: 输出电压:48V 输出电流:1.28A 第一步:选择ic 和磁芯: Ic用士兰的SA7527,输出带准谐振,效率做到0.87应该没有问题。 按功率来选择磁芯,根据以下公式: Po=100*Fs*Ve Po:输出功率;100:常数;Fs:开关频率;Ve:磁芯体积。 在这里,Po=Vo*Io=48*1.28=61.44;工作频率选择:50000Hz;则: Ve=Po/(100*50000) =61.4/(100*50000)=12280 mmm PQ3230的Ve值为:11970.00mmm,这里由于是调频方式工作。完全可以满足需求。可以代入公式去看看实际 需要的工作频率为:51295Hz。 第二步:计算初级电感量。 最小直流输入电压:VDmin=176*1.414=249V。 最大直流输入电压:VDmax=265*1.414=375V。 最大输入功率:Pinmax=Po/ef=61.4/0.9=68.3W(设计变压器时稍微取得比总效率高一点)。 最大占空比的选择: 宽电压一般选择小于0.5,窄电压一般选择在0.3左右。考虑到MOS管的耐压,一般不要 选择大于0.5 ,220V供电时选择0.3比较合适。在这里选择:Dmax=0.327。 最大输入电流: Iinmax=Pin/Vinmin=68.3/176=0.39 A 最大输入峰值电流:Iinmaxp=Iin*1.414=0.39*1.414=0.55A MOS管最大峰值电流:Imosmax=2*Iinmaxp/Dmax=2*0.55/0.327=3.36A 初级电感量:Lp= Dmax^2*Vin_min/(2*Iin_max*fs_min)*10^3 =0.327*0.327*176/(2*0.39*50000)*1000 =482.55 uH 取500uH。 第三步:计算初级匝数NP: 查磁芯资料,PQ3230的AL值为:5140nH/N^2,在设计反激变压器时,要留一定的气息。选择0.6倍的AL值比较合适。在这里AL我们取:

高频变压器设计和计算方法RCC变压器设计

高频变压器设计和计算方法【公式套用】RCC变压器设计2008-07-11 09:08 RCC变压器设计 50-70VAC f=30KHz Dmax=0.5 η=0.95 d=3.5A/mm2 Bmax=2800mT 输出:12V 1.5A 采用EF20 Ae=0.66cm2 f=30KHz → T=33us → Ton=T*Dmax=16.7us 算直流电压 Vinmin=50*√2*0.95=67V Vs=Vout+VD+VL=12+0.7+0.2=12.9≈13V 匝比:n= 13/67 =0.194 按三倍电流计算 Pout=3*Iout*Vs=3*1.5*13=58.5W 输入峰值电流Ip Ip= 2*Pout*T = 2*58.5*33 Vinmin*Ton*η 67*16.7*0.95 Ip=3.6A 初级电感量计算: Lp= Vinmin*Ton = 67*16.7 Ip*103 3.6*103 Lp=0.3mH (可取0.3-0.4) 副边匝数Ns Ns= n*Ip*10′7 = 67*16.7 Ae*Bmax 66*2800 Ns=13.2≈13\14匝 原边匝数 Np= Ns/n Np=14/0.194 =72 取70匝 辅助绕组 Ns1 = VD*Np = 7*72 Vinmin 67 Ns1 =7.5取8匝 线径和90-265一样 Pout=Iout*Vs=1.5*13=19.5W 则Ip、= 2*Pout*T = 2*19.5*33 Η*Vinmin*Ton 0.95*67*16.7 Ip、=1.21A Ip的有效值为 Irms= Ip、 √6 Irms=0.494A 三倍的Ip为 I3p= Iout = 1.5 Dmax 0.5

EE型变压器参数及高频变压器计算

nre EE<05 UmJAL FOIO Diicnsi^nd Gi) A * B * C 5. 35*2. £5*1, 95 A D (d) 0” toil - Ae (M*1) 2. S3 I LT (u:> 5. 00' A L (H H/I^) 285. CO Lc C u > 12.60 BE&3FOIO 6. 1?*2. H5*T<9C a. ooif乱31 4. 46405. CO12.20 EES F?108. X 0*3,60. 00917. 00L&. OS590. CO1&47 EI10/11FO40X 75o. ces?12, 10竝TO850, 00:6.(50 EE13P740>6. 150.067017. 10SSL 351130,003D.20 me rcio1S*T* ?4.e0.皿519. 2039L B61140.00:5.Ot> Btl9FC4Q9^5. 0X 124323. OO陆N1250.003& 40 BD.^36FO40112B48. L*4. 750.119122. 40531151350.0039.1& Bi'2O/2C/5FC4020.15*10*5.1Di 157231, OO5(X TO1460.0(?49100 Hl 22卜讪2?9_3a*EL7S C L 13904]. no3BL 7921BO.OO39.40 PI 23395FP1023+M. 7+6O. 436 日35. BO123B001280.00卧£刖0 KXO25, t*9. 4沪乩290. 3J2EI40, UU va. so200U r OD EF2FL4FC4Q25. 68*6< 35tx 317340,. 3078.732QCIO.OO'4E.TO EE2S25FC4020H2. TUg fl0. 552535. 9098L 1(3300.0057.70 EISO FC4O30*13. LH41Q.7o. ma109,0073. 35<650.0057,70 FB3CM -10/7PC4D30.1*1^7-050. 7455附?冗124.872100,00S6.90 ^B352B PC4.34. 0*1< ?0.S 1. 3396BL 801S6.002600. J.张M EE4Q EW 4 0札了吃6 T N 3000127,00173.23<150, Ct77,00 E84133PC40H.^LTrl2._2,821501BT.OQ180.004300.0079.00 EE^2Z2LAS PC*O42+21t2n5 4. %旅-n QM278.0038M.OO97.90 EE12/2LZ2O PC40A2*21.2t30 e. tt&S230.00275.005050.00紳.30 EE47^9PC4047.12*19-63*15. &2 4 . 75292+2.00196H06S60. 0090,60 LHSO PU4.5tJ+21.3*L4. 6乩丹也22& 001^.136111 ..95. BO EE 55/5 5 ^21 PCJJ55,1^27.5*2(^7LS.AI64351,00336.34"100,00倚00 EH37/4?PU4D SG. B7*33.G*iaS5L 713Z344.00232.3G Bsao一nn JOZ on ESSO PC4060*22.3*15’ 69l 8558MM3?9皿5610-00no. oo EE 50. 3PC4050.5*25. £<6.1L. &447120. 35152.642MO.OO104. DO FE62. 3/62/F.PC40&2.3*3J*ai 3. 0B3O153.01196.223100.00125. 74 BE65/3a/2?PC4065,Lb*U2.b+2Y eT倨535.0057b. 008000. J.147.00 F

高频变压器参数计算

铁芯截面积A=1.25*√P(功率)。 铁芯取8500高斯。 每伏匝数取:T=450000/8500*S(截面积) 漆包线载流量取2.5A-3.5A/mm2 小型变压器的绕制: 小型变压器铁心匝数绕制 随着电子元件大量应用在电厂控制、监测和自动回路中,小型变压器的应用日益广泛。因小型变压器损坏,市场上一时又难以买到,引起设备不能正常运行的事故较多。因此,除加强小型变压器的运行维护外,还应掌握小型变压器的绕制。 1 小型变压器的设计 设计小型变压器,主要有以下几个步骤:(1)计算变压器的功率;(2)计算变压器的铁心;(3 )计算变压器线圈匝数;(4)计算变压器绕组导线的截面积;(5)计算变压器铁心窗口容纳绕组的导线及绝缘物。 1.1 功率的计算 变压器的功率可根据下式计算,即 P=IV (1) 式中P——电功率; I——电流; V——电压。 先算出次级功率,然后再算初级功率。线圈总功率(即变压器功率)的计算方法与硅钢片的种类有关,将次级功率加上消耗功率即得初级功率,一般来说,铁心消耗功率约为15%,即初级功率算式如下 P1=1.18 P2 (2)

式中P1——初级功率; P2——次级功率。 1.2 铁心的计算 变压器的功率求出后,可用下式求出铁心有效截面积,即 (3) 式中A为铁心有效截面积(cm2),数字1.2是根据铁片的不同种类通过经验公式取得的,一般变压器硅钢片采用磁通密度1~1.2 T,用公式(3);如电动机硅钢片采用磁通密度0.8~1 T,可将公式(3)中的1.2改成1.6;如普通黑铁片采用磁通密度0.6~ 0.7 T,可将公式(3)中的1.2改成2。 以上是已知电功率后选铁心时使用的方法,如有现成的铁心,则可以用下式来求可绕制的功率。 (4) 式中铁心有效截面积A=铁心宽(cm)×铁心迭厚(cm)。 1.3 匝数的计算 求出了铁心有效截面积就可求出每伏应绕制的匝数,计算公式如下 (5) 式中T为每伏匝数,B为铁心磁通密度(T),A为铁心有效截面积(c m2)。铁心磁通密度可根据前面铁心的计算选用,求出每伏匝数就可根据变压器初级电压算出各绕组的总匝数。初级总匝数的计算公式如下 T1=TV1 (6) 式中T1——初级总匝数; V1——初级电压。 因次级电压由初级感应而得,故在铁心内有一定损耗,而且次级绕组的导线有一定的阻抗,

开关电源高频变压器AP法计算方法

AP表示磁心有效截面积与窗口面积的乘积。 计算公式为 AP=AwAe 式中,AP的单位是cm4;Aw为磁心可绕导线的窗口面积(cm2) Ae为磁心有效截面积(cm2),Ae≈Sj=CD,Sj为磁心几何尺寸的截面积,C 为舌宽,D为磁心厚度。根据计算出的AP值,即可查表找出所需磁心型号。下面介绍将AP法用于开关电源高频变压器设计时的公式推导及验证方法。 1 高频变压器电路的波形参数分析 开关电源的电压及电流波形比较复杂,既有输入正弦波、半波或全波整流波,又有矩形波(PWM波形)、锯齿波(不连续电流模式的一次侧电流波形)、梯形波(连续电流模式的一次侧电流波形)等。高频变压器电路中有3个波形参数:波形系数(Kf),波形因数(kf),波峰因数(kP)。 1)波形系数Kf 为便于分析,在不考虑铜损的情况下给高频变压器的输入端施加交变的正弦电流,在一次、二次绕组中就会产生感应电动势e。根据法拉第电磁感应定律,e=dΦ/dt=d( NABsinωt)/dt=NABoωcosωt其中N为绕组匝数,A为变压器磁心的截面积,B为交变电流产生的磁感应强度,角频率ω=2Πf。正弦波的电压有效值为

在开关电源中定义正弦波的波形系数Kf=

√2*Π=4.44利用傅里叶级数不难求出方波的波形系数。 2)波形因数kf 为便于对方波、矩形波、三角波、锯齿波、梯形波等周期性非正弦波形进行分析,需要引入波形因数的概念。在电子测量领域定义的波形因数与开关电源波形系数的定义有所不同,它表示有效值电压 压(URMS)与平均值电压之比,为便于和Kf区分,这里用小写的kf表示,有公式 以正弦波为例, 这表明,Kf=4kf,二者相差4倍。 开关电源6种常见波形的参数见表1。因方波和梯形波的平均值为零,故改用电压均绝值来代替。对于矩形波,表示脉冲宽度,丁表示周期,占空比D=t/T。

各种开关电源变压器各种高频变压器参数EEEEEEEIEI等等的参数

功率铁氧体磁芯 常用功率铁氧体材料牌号技术参数 EI型磁芯规格及参数 PQ型磁芯规格及参数

EE型磁芯规格及参数 EC、EER型磁芯规格及参数

1,磁芯向有效截面积:Ae 2,磁芯向有效磁路长度:le 3,相对幅值磁导率:μa 4,饱和磁通密度:Bs 1磁芯:正弦波与矩形波比较 一般情况下,磁芯损耗曲线是按正弦波+/-交流(AC)激励绘制的,在标准的和正常的时候,是不提供极大值曲线的。涉及到开关电源电路设计的一个共同问题是正弦波和矩形波激励的磁芯损耗的关系。对于高电阻率的如类似,正弦波和矩形波产生的损耗几乎是相等的,但矩形波的损耗稍微小一些。材料中存在高的涡流损耗(如大 一般情况下,具有矩形波的磁芯损耗比具有正弦波的磁芯损耗低一些。但在元件存在铜损的情况下,这是不正确的。在变压器中,用矩形波激励时的铜损远远大于用正弦波激励时的铜损。高频元件的损耗在铜损方面显得更多,集肤效应损耗比矩形波激励磁芯的损耗给人们的印象更深刻。举个例子,在 20kHz、用17#美国线规导线的绕组时,矩形波激励的磁芯损耗几乎是正弦波激励磁芯损耗的两倍。例如,对于许多开关电源来说,具有矩形波激励磁芯的 5V、20A和30A输出的电源,必须采用多股绞线或利兹(Litz)线绕制线圈,不能使用粗的单股导线。 2Q值曲线 所有磁性材料制造厂商公布的Q值曲线都是低损耗滤波器用材料的典型曲线。这些测试参数通常是用置于磁芯上的最适用的绕组完成的。对于罐形磁芯,Q值曲线指出了用作生成曲线时的绕组匝数和导线尺寸,导线是常用的利兹线,并且绕满在线圈骨架上。 对于钼坡莫合金磁粉芯同样是正确的。用最适合的绕组,并且导线绕满了磁芯窗口时测试,则Q值曲线是标准的。Q值曲线是在典型值为5高斯或更低的低交流(AC)激励电平下测量得出的。由于在磁通密度越高时磁芯的损耗越大,故人们警告,在滤波电感器工作在高磁通密度时,磁芯的Q值是较低的。3电感量、AL系数和在正常情况下,磁芯制造厂商会发布电感器和滤波器磁芯的AL系数、电感量和磁导率等参数。这些AL的极限值建立在初始磁导率范围或者低磁通密度的基础上。对于测试AL系数,这是很重要的,测试AL系数是在低磁通密度下实施的。 某些质量管理引入检验部门,希望由他们用几匝绕组检查磁芯,并用不能控制频率或激励电压的数字电桥测试磁芯。几乎毫不例外,以几百高斯、若干千高斯(kG)、甚至使磁芯饱和的磁通密度的电压激励磁芯时,该电桥是平衡的。使用这些存在很少匝数的电桥对不开气隙的磁芯进行初始磁导率测量是不合适的。 另外一种现象发生在测量低磁导率磁芯,诸如测量具有很少匝数的钼磁芯时,在很低电感量(如1mH或更低)时,即不再应用AL的方程式。由于邻近的

高频变压器计算公式

磁导率英文名称:magnetic permeability 表征磁介质磁性的物理量。表示在空间或在磁芯空间中的线圈流过电流后、产生磁通的阻力、或者是其在磁场中导通磁力线的能力、其公式μ=B/H 、其中H=磁场强度、B=磁感应强度,常用符号μ表示,μ为介质的磁导率,或称绝对磁导率。 如果空气(非磁性材料)的相对磁导率是1,则铁氧体的相对磁导率为10,000,即当比较时,以通过磁性材料的磁通密度是10,000倍。铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000 初始磁导率μi:是指基本磁化曲线当H→0时的磁导率 最大磁导率μm:在基本磁化曲线初始段以后,随着H的增大,斜率μ=B/H逐渐增大,到某一磁场强度下(Hm),磁密度达到最大值(Bm),即 饱和磁导率μS:基本磁化曲线饱和段的磁导率,μs值一般很小,深度饱和时,μs=μo 磁芯参数: (1)有效磁导率μro。在用电感L形成闭合磁路中(漏磁可以忽略),磁心的有效磁导率为: 式中 L——绕组的自感量(mH); W——绕组匝数; 磁心常数,是磁路长度Lm与磁心截面积Ae的比值(mm). (2)饱和磁感应强度Bs。随着磁心中磁场强度H的增加,磁感应强度出现饱和时的B值,称为饱和磁感应强度B。 (3)剩余磁感应强度Br。磁心从磁饱和状态去除磁场后,剩余的磁感应强度(或称残留磁通密度)。 (4)矫顽力Hco。磁心从饱和状态去除磁场后,继续反向磁化,直至磁感应强度减小到零,此时的磁场强度称为矫顽力(或保磁力)。

(5)温度系数aμ°温度系数为温度在T1~T2范围内变化时,每变化1℃相应磁导率的相对变化量,即 式中μr1——温度为T1时的磁导率; μr2——温度为T2时的磁导率。 在介质中,磁场强度则通常被定,式中为磁化强度。 磁化强度,magnetization,描述磁介质磁化状态的物理量。是磁化强度,通常用符号M表示。 定义为媒质微小体元ΔV内的全部分子磁矩矢量和与ΔV之比,即对于顺磁与抗磁介质,无 外加磁场时,M恒为零;存在外加磁场时,则有或 其中H是媒质中的磁场强度,B是磁感应强度,μo是真空磁导率,它等于4π×10^-7H/m。Ⅹ是磁化率,其值由媒质的性质决定。顺磁质的Ⅹ为正,抗磁质的Ⅹ为负。 如果媒质是各向异性的,则Ⅹ为一张量。对于铁磁质,M和B、H之间有复杂的非线性关系(见磁滞回线)。 在外磁场作用下,磁介质磁化后出现的磁化电流要产生附加磁场,它与外磁场之和为总磁场B。对于线性各向同性磁介质,M与B、H成正比,顺磁质的M与B、H同方向,抗磁质的M 与B、H反方向。对于各向异性磁介质,M与B、H成正比,但比例系数是一个二阶张量。对于铁磁质,M和B、H之间有复杂的非线性关系,构成磁滞回线。 在国际单位制(SI)中,磁化强度M的单位是安培/米(A/m)。 ========================================== 磁场强度在历史上最先由磁荷观点引出。类比于电荷的库仑定律,人们认为存在正负两种磁荷,并提出磁荷的库仑定律。单位正点磁荷在磁场中所受的力被称为磁场强度H。后来安培提出分子电流假说,认为并不存在磁荷,磁现象的本质是分子电流。自此磁场的强度多用磁感应强度B表示。但是在磁介质的磁化问题中,磁场强度H作为一个导出的辅助量仍然发挥着重要作用 在国际单位制(SI)中,磁场强度的单位为安[培]/米(),量纲为; 在高斯单位制(CGS)中,磁场强度单位是奥[斯特]()。1安/米相当于奥。[2] 简易定义:把磁场中某点磁感应强度B与介质磁导率μ的比值叫作该点的磁场强度。 磁场强度由磁感应强度与磁导率定义而来,起辅助作用,重要的是理解后两者。

系统的设计中如何计算高频变压器参数

一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S⑴ Ф----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ⑵ μ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l ⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф / ⊿t * N ⑷ EL = ⊿i / ⊿t * L ⑸ ⊿Ф----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S可得下式: N = ⊿i * L / ( B * S ) ⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L ⑺

联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: QL = 1/2 * I2 * L ⑼ QL -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比 的关系式: N1/N2 = (E1*D)/(E2*(1-D)) ⑽ N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特) N2 -------- 次级电感的匝数(圈) E2 -------- 次级输出电压(伏特) 二.根据上面公式计算变压器参数: 1.高频变压器输入输出要求: 输入直流电压:200--- 340 V 输出直流电压:23.5V 输出电流: 2.5A * 2 输出总功率:117.5W 2.确定初次级匝数比: 次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式: N1/N2 = VIN(max) / (VRRM * k / 2) ⑾N1 ----- 初级匝数VIN(max) ------ 最大输入电压k ----- 安全系数N2 ----- 次级匝数Vrrm ------ 整流管最大反向耐压 这里安全系数取0.9 由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌7.6

相关文档
最新文档