高频变压器的设计
高频变压器的设计公式

高频变压器的设计公式电源高频变压器的设计方法简介设计高频变压器是电源设计过程中的难点,下面以反应式电流不连续电源高频变压器为例,向大家介绍一种电源高频变压器的设计方法。
设计目标:电源输入交流电压在180V~260V之间,频率为50Hz,输出电压为直流5V、14A,功率为70W,电源工作频率为30KHz。
设计步骤:1、计算高频变压器初级峰值电流Ipp由于是电流不连续性电源,当功率管导通时,电流会到达峰值,此值等于功率管的峰值电流。
由电感的电流和电压关系V=L*di/dt可知:输入电压:Vin(min)=Lp*Ipp/Tc 取1/Tc=f/Dmax,那么上式为:Vin(min)=Lp*Ipp*f/Dmax其中: V in :直流输入电压,VLp :高频变压器初级电感值,mHIpp :变压器初级峰值电流,ADmax:最大工作周期系数f :电源工作频率,kHz在电流不连续电源中,输出功率等于在工作频率下的每个周期内储存的能量,其为:Pout=1/2*Lp*Ipp2*f将其与电感电压相除可得:Pout/Vin(min)=Lp*Ipp2*f*Dmax/(2*Lp*Ipp*f) 由此可得:Ipp=Ic=2*Pout/(Vin(min)*Dmax)其中:Vin(min)=1.4*Vacin(min)-20V(直流涟涉及二极管压降)=232V,取最大工作周期系数Dmax=0.45。
那么:Ipp=Ic=2*Pout/(Vin(min)*Dmax)=2*70/(232*0.45)=1.34A当功率管导通时,集极要能承受此电流。
2、求最小工作周期系数Dmin 在反应式电流不连续电源中,工作周期系数的大小由输入电压决定。
Dmin=Dmax/[(1-Dmax)*k+Dmax]其中:k=Vin(max)/Vin(min)Vin(max)=260V*1.4-0V(直流涟波)=364V,假设允许10%误差,Vin(max)=400V。
正激反激式双端开关电源高频变压器设计详解

正激反激式双端开关电源高频变压器设计详解高频变压器作为电源电子设备中的重要组成部分,起到了将输入电压进行变换的作用。
根据不同的使用环境和要求,电源电路中的电感元件可分为正激式、反激式和双端开关电源。
下面就分别对这三种电源的高频变压器设计进行详解。
1.正激式电源变压器设计正激式电源变压器是将输入电压通过矩形波进行激励的一种变压器。
其基本结构包括主磁线圈和副磁线圈两部分,主磁线圈用来耦合能量,副磁线圈用来提供输出电压。
正激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。
(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。
(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。
(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。
(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。
(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。
2.反激式电源变压器设计反激式电源变压器是通过反馈控制来实现变压的一种变压器。
其基本结构包括主磁线圈、副磁线圈和反馈元件等。
反激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。
(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。
(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。
(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。
(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。
(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。
(7)选择合适的反馈元件:根据反馈控制的需要来选择合适的反馈元件,并设计合适的反馈回路。
高频变压器设计的五个步骤

变压器的设计过程包括五个步骤:①确定原副边匝数比;为了提高高频变压器的利用率,减小开关管的电流,降低输出整流二极管的反向电压,减小损耗和降低成本,高频变压器的原副边变比应尽量大一些.为了在任意输入电压时能够得到所要求的电压,变压器的变比应按最低输入电压选择.选择副边的最大占空比为 ,则可计算出副边电压最小值为: ,式中, 为输出电压最大值, 为输出整流二极管的通态压降, 为滤波电感上的直流压降.原副边的变比为:②确定原边和副边的匝数;首先选择磁芯.为了减小铁损,根据开关频率 ,参考磁芯材料手册,可确定最高工作磁密、磁芯的有效导磁截面积、窗口面积 .则变压器副边匝数为: .根据副边匝数和变比,可计算原边匝数为③确定绕组的导线线径;在选用导线线径时,要考虑导线的集肤效应.所谓集肤效应,是指当导线中流过交流电流时,导线横截面上的电流分布不均匀,中间部分电流密度小,边缘部分电流密度大,使导线的有效导电面积减小,电阻增加.在工频条件下,集肤效应影响较小,而在高频时影响较大.导线有效导电面积的减小一般采用穿透深度来表示.所谓穿透深度,是指电流密度下降到导线表面电流密度的0.368(即: )时的径向深度. ,式中, , 为导线的磁导率,铜的相对磁导率为 ,即:铜的磁导率为真空中的磁导率 , 为导线的电导率,铜的电导率为 .为了有效地利用导线,减小集肤效应的影响,一般要求导线的线径小于两倍的穿透深度,即 .如果要求绕组的线径大于由穿透深度所决定的最大线径时,可采用小线径的导线多股并绕或采用扁而宽的铜皮来绕制,铜皮的厚度要小于两倍的穿透深度(4)确定绕组的导线股数绕组的导线股数决定于绕组中流过的最大有效值电流和导线线径.在考虑集肤效应确定导线的线径后,我们来计算绕组中流过的最大有效值电流.原边绕组的导线股数:变压器原边电流有效值最大值 ,那么原边绕组的导线股数 (式中,J 为导线的电流密度,一般取J=3~5 , 为每根导线的导电面积.).副边绕组的导电股数:①全桥方式:变压器只有一个副边绕组,根据变压器原副边电流关系,副边的电流有效值最大值为: ;②半波方式:变压器有两个副边绕组,每个负载绕组分别提供半个周期的负载电流,因此其有效值为 ( 为输出电流最大值).因此副边绕组的导线股数为(5)核算窗口面积在计算出变压器的原副边匝数、导线线径及股数后,必须核算磁芯的窗口面积是否能够绕得下或是否窗口过大.如果窗口面积太小,说明磁芯太小,要选择大一点的磁芯;如果窗口面积过大,说明磁芯太大,可选择小一些的磁芯.重新选择磁芯后,再重新计算,直到所选磁芯基本合适为止。
高频变压器的设计

高频变压器的设计高频变压器制作脉冲变压器也可称作开关变压器,或简单地称作高频变压器。
在传统的高频变压器设计中,由于磁芯材料的限制,其工作频率较低,一般在20kHz左右。
随着电源技术的不断发展,电源系统的小型化、高频化和大功率化已成为一个永恒的研究方向和发展趋势。
因此,研究使用频率更高的电源变压器是降低电源系统体积、提高电源输出功率比的关键因素。
随着应用技术领域的不断扩展,开关电源的应用愈来愈广泛,但制作开关电源的主要技术和耗费主要精力就是制作开关变压器的部件。
开关变压器与普通变压器的区别大致有以下几点: (1)电源电压不是正弦波,而是交流方波,初级绕组中电流都是非正弦波。
(2)变压器的工作频率比较高,通常都在几十赫兹,甚至高达几十万赫兹。
在确定铁芯材料及损耗时必须考虑能满足高频工作的需要及铁芯中有高次谐波的影响。
(3)绕组线路比较复杂,多半都有中心抽头。
这不仅增大了初级绕组的尺寸,增大了变压器的体积和重量,而且使绕组在铁芯窗口中的分布关系发生变化。
图1 开关电源原理图本文介绍了一款如图1所示的DC―DC变换器,输入电压为直流24V,输出电压分别为5V及12V的多路直流输出。
要求各路输出电流都在lA以上,核心器件是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片UC3842,最高工作频率可达200kHz。
根据锌锰铁氧体合金的优异电磁性能,通过具体示例介绍工作频率为100kHz的高频开关电源变压器的设计及注意事项。
2变压器磁芯的选择与工作点的确定 2.1 磁芯材料的选择从变压器的性能指标要求可知,传统的薄带硅钢已很难满足变压器在频率、使用环境方面的设计要求。
磁芯的材料只有从坡莫合金、铁氧体材料、钴基非晶态合金和超微晶合金几种材料中来考虑。
坡莫合金、钴基非晶态价格高,约为铁氧体材料的数倍,而饱和磁感应强度Bs也不是很高,且加工工艺复杂。
考虑到我们所要求的电源输出功率并不高,大约为30W,因此,综合几种材料的性能比较,我们还是选择了饱和磁感应强度Bs较高,温度稳定性好,价格低廉,加工方便的性价比较低的锌锰铁氧体材料,并选以此材料作为框架的EI28来绕制本例中的脉冲变压器。
高频变压器设计规范

高频变压器设计规范目录1.目的 (2)2.适用范围 (2)3.引用/参考标准或资料 (2)4.术语及其定义 (2)5.规范要求 (2)6.附录 (12)1.目的为了实现高频变压器设计的标准化,为我司工程师在设计变压器过程中提供参考,特制订此规范。
2.适用范围本规范适用于公司所有正激变压器及反激变压器的设计。
3.引用/参考标准或资料无。
4.术语及其定义正激变压器:因其初级线圈被直流电压激励时,次级线圈正好有功率输出而得名。
反激变压器:又称单端反激式变压器或Buck-Boost转换器。
因其输出端在原边绕组断开电源时获得能量故而得名。
5.规范要求5.1高频变压器磁芯材料与几何机构在大多数开关电源的高频变压器中,常用的软磁材料有铁氧体,铁粉芯,恒导合金,非晶态合金及硅钢片。
主要应用软磁材料四个特性:磁导率高、矫顽力小及磁滞回线狭窄、电阻率高、具有较高饱和磁感应强度。
现我司高频变压器通常采用锰锌铁氧体材料。
磁芯厂家都生产了一系列不同材质的磁芯,各厂家有自己的命名规范。
以常用的PC40(TDK命名规范)材质为例,东磁表示为DMR40,天通则表示为TP4,实际性能差异几乎可忽略不计。
通常我们关注的磁芯参数主要有初始磁导率,饱和磁通密度Bs,剩磁Br,矫顽力Hc,功耗Pv,居里温度Tc,在高频变压器的设计以及日后应用过程中,这些参数往往起到非常重要的作用。
图1所示各种磁芯的几何形状有EE型、ETD型、PQ型等多种。
EE型、ETD型、PQ型也是我司高频变压器设计时通常采用的磁芯结构。
每种规格磁芯对应多种尺寸可供选择。
一般每种类型及尺寸的磁芯,其对应的骨架是一定的,变动一般在于pin数和pin针间距的不同,设计者可根据实际应用需求选择,也可以联系骨架厂商进行开模定制。
图5.1 各种几何结构的变压器磁芯图1 磁芯的几何形状5.2高频变压器常用材料介绍上节主要介绍了高频变压器的磁芯特性及结构,除此以外,要构成一个完整的高频变压器,主要材料还有:导线材料,压敏胶带,骨架材料。
高频变压器设计与参数设计

高频变压器设计与参数设计高频变压器设计与参数设计是一项重要的技术,它能够帮助电子设备充分发挥性能。
高频变压器是指使用高频信号来改变交流电压的变压器,它通常用在微波炉、通信设备、打印机和医疗设备等领域,并且也用于高频功率转换、无线电、太阳能应用等等。
高频变压器的设计涉及到许多因素,包括电气特性,例如变压器的电压比、额定电流、变压器的绝缘耐压、损耗和过载能力。
同时,还必须考虑到变压器尺寸大小、重量、成本和可靠性等机械特性。
这些特性都会影响变压器的性能,从而影响其最终的性能表现。
在设计高频变压器时,首先应考虑变压器的工作频率。
一般来说,高频变压器的工作频率范围在1kHz~100MHz 之间,而且高频变压器的工作频率越高,其尺寸越小,耗散越低,性能也越好。
随后,应该考虑高频变压器的结构设计,采用的线圈数目,线圈的绕组方式,芯股的结构,冷却方式和绝缘材料等。
其中,线圈绕制方式和线圈的绕组方式是影响高频变压器的主要要素,它们会影响变压器的额定输出功率、输出纹波、温升和其他电气特性。
此外,还必须考虑到变压器的电压比以及母线电压。
电压比是指输出电压与输入电压之间的比率,它影响变压器的输出功率。
母线电压是指用于变压器的输入电压,它会影响变压器的最大输出功率,而且也会影响变压器的可靠性。
另外,在设计高频变压器时还应考虑变压器的外壳结构,这不仅影响变压器的重量和体积,还会影响变压器的热效应。
外壳结构应考虑到变压器的散热性能,以及变压器内部温度的分布情况等。
最后,需要重点考虑变压器的绝缘系统。
绝缘系统是高频变压器的核心部件,它具有高的绝缘强度和耐温性能,可以有效防止电路受到外界环境的干扰,也可以提高变压器的可靠性和安全性。
总之,高频变压器的设计与参数设计是一项复杂的工作,从上述内容可以看出,在设计高频变压器时,需要考虑变压器的电气特性、机械特性、工作频率、结构设计、电压比和母线电压、外壳结构以及绝缘系统等多个方面。
最终,变压器的设计与参数设计都是为了满足应用需求,并且有效地提高变压器的性能,以及提高变压器的可靠性和安全性。
4功率_高压_高频变压器的串联优化设计
4功率_高压_高频变压器的串联优化设计高压高频变压器是一种常见的电力转换设备,用于将输入电压转换为输出电压,通常用于工业生产、医疗设备、通信设备等领域。
串联优化设计可以提高变压器的性能和效率,本文将从四方面介绍高压高频变压器的串联优化设计。
一、磁路设计高压高频变压器的磁路设计是提高变压器性能的关键。
磁路设计应考虑到磁路的导磁性能、铁损耗和漏磁损耗等因素。
导磁性能可以通过选择高导磁材料和合理设计磁路截面积来提高,铁损耗可以通过合理设计磁路长度和材料厚度来降低,漏磁损耗可以通过绕组的合理布局和磁路屏蔽来减小。
二、绕组设计绕组设计是高压高频变压器的另一个重要方面。
绕组的合理布局可以减小绕组的电阻和电感,提高变压器的效率。
绕组采用多层绕组,可以减小绕组的尺寸,提高变压器的功率密度。
绕组的选择应考虑到高频信号的传输特性,采用较短的导线和合理的绕线方式,减小电阻、电感和串扰等因素的影响。
三、冷却设计高压高频变压器在工作过程中会产生大量的热量,因此冷却设计是必不可少的。
合理的冷却设计可以提高变压器的散热效果,保证变压器的稳定工作。
常见的冷却方式包括自然冷却、强迫冷却和液冷却等。
自然冷却适用于功率较小的变压器,强迫冷却适用于功率较大的变压器,液冷却适用于要求散热效果更好的变压器。
冷却设计时应注意选择适当的散热介质、合理布置散热器和风扇等。
四、绝缘设计高压高频变压器工作时会产生高电压和高频电场,因此绝缘设计是非常重要的。
绝缘设计应考虑到变压器的工作电压和频率,选择合适的绝缘材料和绝缘结构。
绝缘材料可以采用绝缘纸、绝缘漆等,绝缘结构可以采用缠绕、层间隔离等方式。
绝缘设计时还应注意绝缘层的厚度和抗击穿能力,以确保变压器的安全运行。
总结:高压高频变压器的串联优化设计是提高变压器性能和效率的重要手段。
通过磁路设计、绕组设计、冷却设计和绝缘设计的优化,可以提高变压器的导磁性能、减小损耗、提高功率密度、提高散热效果和确保安全运行。
专业高频变压器设计计算公式大全
专业高频变压器设计计算公式大全在设计变压器时,需要考虑多个因素,包括输入和输出电压、电流、功率、频率、磁通密度、磁路结构等。
下面是一些常用的变压器设计计算公式:1.需求计算公式:(1)计算输入和输出功率:P=V*I其中,P是功率,V是电压,I是电流。
(2)计算变压器变比:N=V1/V2其中,N是变比,V1是输入电压,V2是输出电压。
(3)计算输入和输出电流:I1=P/V1,I2=P/V2其中,I1是输入电流,I2是输出电流。
2.磁路计算公式:(1)计算磁路截面积:A=B/(f*μ*H)其中,A是磁路截面积,B是磁感应强度,f是频率,μ是磁导率,H 是磁场强度。
(2)计算磁通量:Φ=B*A其中,Φ是磁通量。
(3)计算铁心横截面积:S=Φ/B其中,S是铁心横截面积。
3.匝数计算公式:(1)计算初级匝数:N1=(V1*10^8)/(B*f*A)其中,N1是初级匝数。
(2)计算次级匝数:N2=(V2*10^8)/(B*f*A)其中,N2是次级匝数。
4.器件尺寸计算公式:(1)计算铁芯尺寸:U=1.8*(Lc/μ)*B*H/Bm其中,U是铁芯尺寸,Lc是直径或长度,B是磁感应强度,H是磁场强度,Bm是饱和磁感应强度。
(2)计算绕线长度:Lw=π*D*(N1+N2)其中,Lw是绕线长度,D是变压器内径。
(3)计算线径:d=(I*K)/(0.4*J*D)其中,d是线径,I是电流,K是充填系数,J是电流密度,D是变压器内径。
这些公式提供了一些变压器设计的基本计算方法。
在实际设计中,还需要考虑到其它因素,如损耗、效率、温升等,以确保设计的变压器满足要求。
高频变压器设计
高频变压器设计单端反激式开关电源中,高频变压器的设计是设计的核心。
高频变压器的磁芯一般用锰锌铁氧体,EE 型和EI 型,近年来,我国引进仿制了汤姆逊和TDK 公司技术开发出PC30,PC40高磁导率,高密度几个品种。
一、 计算公式单端反激式开关电源是以电感储能方式工作,反激式公式推导: 首先要计算出整流后的输入电压的最大值和最小值,如交流输入电压AC V (160~242V ),窄限范围;AC V (85~265V ),宽限范围。
整流后直流电压DC V =1.4*AC V (224~338V )窄限范围;DC V =1.4AC V (119~371V ),宽限范围。
整流后直流纹波电压和整流桥压降一般取20V ,和滤波电容有关。
(1)初级峰值电流p I集电极电压上升率p in p cI V L t = (c t 电流从0上升到集电极电流峰值作用时间)取max1c ft D =min max**p p in L I f V D =公式中,min in V : 是最低直流输入电压,V ; p L :变压器初级电感量,H ;f :开关频率,Hz ;输出功率等于存储在每个周期内的能量乘以工作频率。
21***2out p p P L I f =经进一步简化,就可以得到变压器初级电流峰值为min max2**outp c in P I I V D ==(2)初级电感量p L因为电感量*V S H I =(max D S f= ;1V*1S1mH=1A ) min max p L *in p V D I f=(3)关于最小占空比min D 和最大占空比max D最小占空比和最大占空比的设计可根据输入电压变化范围和负载情况合理决定,在输入电压比较高的情况下,如400VDC ,max D 可选0.25以下;在输入电压比较低的情况下,如110VDC , max D 可选0.45以下;max minin in V K V =;maxmin max max (1)*D D D K D =-+(4)磁芯的选择磁芯输出功率和磁芯截面积的经验关系式为(0.1~e A ≈对于磁芯EI16~EI40,系数一般按0.1~0.15计算。
600W双管正激变换器中高频变压器的设计方案
600W双管正激变换器中高频变压器的设计方案高频变压器是600W双管正激变换器中的核心组件,其设计方案的合理与否直接影响到整个变换器的性能和稳定性。
以下是一个设计高频变压器的一般步骤以及一些重要的设计考虑因素。
1.确定输入输出参数:设计高频变压器的第一步是确定输入输出参数,包括输入电压、输出电压和输出电流。
这些参数将直接决定变压器的设计规格和尺寸。
2.确定磁芯材料:选择适当的磁芯材料对于高频变压器的设计非常重要。
常用的磁芯材料有Ui、U、E、N、Mn、FeSi、FeCo和NiZn等。
需要根据设计要求和工作频率选择磁芯材料,并考虑磁芯的损耗、饱和磁感应强度和剩磁等因素。
3.计算变压器的参数:根据输入输出参数,计算变压器的参数,包括匝数比、磁感应强度和磁路饱和电流等。
这些参数可以通过一系列公式和计算方法得到,也可以通过电磁仿真软件进行模拟计算。
4.设计主线圈和辅线圈:根据计算结果设计主线圈和辅线圈。
主线圈是连接输入和输出的线圈,而辅助线圈主要用于调节输出电压和电流的稳定性。
线圈的匝数和绕组方式需要根据变压器的参数和使用场景来确定。
5.选择绝缘材料和绕组方式:绝缘材料的选择对于变压器的工作稳定性和安全性至关重要。
常见的绝缘材料有聚酯薄膜、纸板、气缸绝缘和涂漆。
在选定绝缘材料后,需要选择合适的绕组方式,包括层式绕组和环式绕组等。
6.优化设计:在设计过程中,需要不断进行优化,以提高变压器的性能和效率。
可以通过调整线圈的结构、优化磁芯的形状以及选择适当的电路连接方式来实现优化设计。
7.进行样品测试:完成设计后,制作样品进行测试和验证,包括输入输出电压波形、效率、温升和电气性能等。
根据测试结果进行调整和改进,以达到设计要求。
8.制造和组装:根据最终确定的设计方案,进行变压器的制造和组装。
需要注意的是,在制造过程中保证绕组的质量和精度,并进行适当的绝缘处理。
总结:设计高频变压器需要考虑诸多因素,包括输入输出参数、磁芯材料、线圈设计、绕组方式、绝缘材料等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕
一半原绕组的排列形式,这样有利于减小漏感。
2020/7/15
8
5.组装结构:
高频电源变压器组装结构分为卧式和立式两种。如果
选用平面磁芯、片式磁芯和薄膜磁芯,都采用卧式组
装结构。
6.温升校核:
温升校核可以通过计算和样品测试进行。实验温升低
于允许温升15度以上,适当增加电流密度和减小导线
2020/7/15
2
2.磁芯结构 选择磁芯结构时考虑的因数有:降低漏磁和漏感,
增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配 接线方便等。
漏磁和漏感与磁芯结构有直接关系。如果磁芯不需 要气隙,则尽可能采用封闭的环形和方框型结构磁芯。
2020/7/15
3
2020/7/15
4
3.磁芯参数: 磁芯参数设计中,要特别注意工作磁通密度不只是 受磁化曲线限制,还要受损耗的限制,同时还与功率传送的工 作方式有关。 磁通单方向变化时:ΔB=Bs-Br,既受饱和磁通 密度限制,又更主要是受损耗限制,(损耗引起温升,温升又 会影响磁通密度)。工作磁通密度Bm=0.6~0.7ΔB 开气隙可以降低Br,以增大磁通密度变化值ΔB,开气隙后,励 磁电流有所增加,但是可以减小磁芯体积。对于磁通双向工作 而言: 最大的工作磁通密度Bm,ΔB=2Bm。在双方向变化工作 模式时,还要注意由于各种原因造成励磁的正负变化的伏秒面 积不相等,而出现直流偏磁问题。可以在磁芯中加一个小气隙, 或者在电路设计时加隔直流电容。
●高频变压器设计程序: 1.磁芯材料 2.磁芯结构 3.磁芯参数 4.线圈参数 5.组装结构 6.温升校核
2020/7/15
1
1.磁芯材料 软磁铁氧体由于自身的特点在开关电源中应用很广泛。
其优点是电阻率高、交流涡流损耗小,价格便宜,易加 工成各种形状的磁芯。缺点是工作磁通密度低,磁导率 不高,磁致伸缩大,对温度变化比较敏感。选择哪一类 软磁铁氧体材料更能全面满足高频变压器的设计要求, 进行认真考虑,才可以使设计出来的变压器达到比较理 想的性能价格比。
7
4.线渐向外排列。下面推荐两种绕组排列形式:
1)如果原绕组电压高(例如220V),副绕组电压低,可
以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在
最外层的绕组排列形式,这样有利于原绕组对磁芯的
绝缘安排;
2)如果要增加原副绕组之间的耦合,可以采用一半原绕
+
0
-
+
0
-
+
+
2020/7/15 ‘+’=适合; ‘0’=一般;‘-’=不适合 11
磁芯材料的选择应注意的问题:
1、软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点, 而被广泛应用于开关电源中。 2、软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列, 锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz 以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体 的组成部分是Fe2O3,NiO,ZnO等,主要用于1MHz以上的各种调感 绕组、抗干扰磁珠、共用天线匹配器等。 3、在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用 途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为 高导磁率磁心,其材料牌号多为R4K~R10K,即相对磁导率为 4000~10000左右的铁氧体磁心,而用于主变压器、输出滤波器等 多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。
2020/7/15
5
2020/7/15
6
4.线圈参数: 线圈参数包括:匝数,导线截面(直径),导线形式, 绕组排列和绝缘安排。 导线截面(直径)决定于绕组的电流密度。通常取J为
2.5~4A/mm2。导线直径的选择还要考虑趋肤效应。如 必要,还要经过变压器温升校核后进行必要的调整。
2020/7/15
截面,如果超过允许温升,适当减小电流密度和增加
导线截面,如增加直径,窗口绕不下,要加大磁芯,
增加磁芯的散热面积。
2020/7/15
9
功率变压器根据拓扑结构分为三大类: (1)反激式变压器; (2)正激式变压器; (3)推挽式变压器(全桥/半桥变换器中的变压器) 磁芯结构适合的拓扑结构形式如下页表所示:
2020/7/15
13
变压器或者电感根据在拓扑结构中的工作方式分为三大类:1、 直流滤波电感工作状态,电感磁芯只工作在一个象限。属于这 类工作状态的电感有Boost电感、Buck电感、Buck/boost电感、 正激以及所有推挽拓扑变换器输出滤波电感、单端反激变换器 变压器;
2、正激变换器中的变压器,磁芯也只工作在一个象限, 但变压器要进行磁复位。
2020/7/15
10
磁芯结构 E cores
Planar E Cores
EFD Cores ETD Cores ER Cores U Cores RM Cores EP Cores P Cores Ring Cores
变换器电路类型
反激式 正激式
推挽式
+
+
0
-
+
0
-
+
+
0
+
+
0
+
+
+
0
0
0
+
0
-
1)双极性:电路为半桥、全桥、推挽等。变压器一次绕组里正负 半周励磁电流大小相等,方向相反,因此对于变压器磁心里的磁通 变化,也是对称的上下移动,B的最大变化范围为△B=2Bm,磁心中 的直流分量基本抵消。
2)单极性:电路为单端正激、单端反激等,变压器一次绕组在1个 周期内加上1个单向的方波脉冲电压(单端反激式如此)。变压器 磁心单向励磁,磁通密度在最大值Bm到剩余磁通密度Br之间变化, 这时的△B=Bm-Br,若减小Br,增大饱和磁通密度Bs,可以提高 △B,降低匝数,减小铜耗。
3、 推挽拓扑中的变压器,磁芯是双向交变磁化,属于这 类的变换器有推挽变换器、半桥和全桥变换器、交流滤波电感 等。
2020/7/15
12
开关电源用铁氧体磁性材应满足以下要求: (1)具有较高的饱和磁通密度Bs和较低的剩余磁通密度Br 磁通密度Bs的高低,对于变压器和绕制结果有一定影响。从 理论上讲,Bs高,变压器绕组匝数可以减小,铜损也随之减小 在实际应用中,开关电源高频变换器的电路形式很多,对于变 压器而言,其工作形式可分为两大类: