VERICUT的应用技巧建立车床

VERICUT的应用技巧建立车床
VERICUT的应用技巧建立车床

要进行NC程序仿真,需要预先构建整个工艺系统的仿真环境,一般过程如下:

(1)工艺系统分析,明确机床CNC系统型号、机床结构形式和尺寸、机床运动原理、机床坐标系统以及所用到的毛坯、刀具和夹具等;

(2)建立机床几何模型,用三维CAD软件建立机床运动部件和固定部件的实体几何模型,并转换成VERICUT软件可用的STL格式;

(3)建立刀具库;

(4)在VERICUT软件中新建用户文件,设置所用CNC系统,并建立机床运动模型,即部件树;

(5)添加各部件的几何模型,并准确定位;

(6)设置机床参数;

(7)保存所有文件。

下面以CJK6132经济型数控车床为例进行说明。

(1)机床概述

此车床为卧式、平床身、前刀座、四工位电动刀架、步进电机驱动的经济型车床。所用数控系统为FANUC—0T,X、Z两轴二联动控制,分别控制纵向、横向滑板。X轴部件上装四工位电动方刀架(转动轴线垂直),自动换刀。主轴变频调速,床身、两个床脚、主轴箱为固定部件,夹具为三爪卡盘。机床坐标原点为卡盘右端面中心,机床坐标系如图1示。

图1 CJK6132经济型数控车床的机床坐标系

(2)部件分类

依VERICUT软件部件分类原则,部件分类如表1所示。

表1 机床部件分类

(3)建立部件的3D模型

用SolidWorks软件造型,以运动单元建模,可不按照机床零部件连接结构构建。BASE可四零件一体建模,也可各零件单独建模,之后在VERICUT中装配。主轴箱建模不考虑内部传动机构,只建外形模型。X、Z轴传动链可简化不建,也可作为固定部件建模。建立几何模型后,另存为STL格式。

(4)建立部件树

先设CONTROL为“FANUC—0T”:选菜单“SETUP→CONTROL→OPEN”,在弹出对话框中设“SHORT CUT”为“CGTECH_LIBRARY”,选“”打开后建部件树。选菜单

“MODEL→COMPONENT TREE”,弹出部件树对话框,单击“BASE→右键单击→在光标菜单选APPEND→选ZLINEAR”,添加Z轴,单击“ZLINEAR→右键单击→在光标菜单选APPEND→选XLINEAR”,添加X轴。同样方法,添加其他部件,得到部件树如图2所示。

因为机床坐标系的X轴正方向指向操作者方向,则在添加Z轴部件时,由于默认Z 轴部件的X轴正方向为远离操作者方向,因此应绕Z轴正方向转动180°,这样,Z轴部件的X轴正方向才指向操作者。添加四把刀具时,刀架控制点为刀架转动中心,它应使后一把刀具比前一把刀具绕Y轴同一方向多转90°,并从每把刀的COMPONENT ATTRIBUTES中改TOOL INDEX 分别为1、2、3、4,指定刀具号。

图2 所得到的目录树

(5)在TOOL MANAGER中建立刀具库

以常用的外圆粗车刀、精车刀、螺纹刀、切断切槽刀为例,分别记为1、2、3、4

号刀。刀柄先用SolidWorks软件建模,并将其转换成STL格式,便于使用时调入和调整位置。刀片在VERICUT中设置,选择相应刀片型号,输入刀片尺寸。每把刀具都可应用GAGE OFFSET 选项设置刀具相对与刀架中心的偏置,确定刀尖点到刀架中心的距离(DX,DY,DZ),因刀尖应与工件轴线等高,则DY必须为0。

(6)添加机床几何模型

先添加工件、卡盘、主轴、四把刀具、刀架转动部分,其他再按配合关系加入。添加STL模型时应注意将模型TYPE选择为MODEL FILES类型,按BROWSE找到相应STL格式文件,NORMALS方向应设为OUTWARD。

1)工件STOCK可用VERICUT的圆柱体CYLINDER建模,设置半径、长度,从POSITION 选项的POSITION输入框可设置工件左端面在机床坐标系的位置,便于左右移动工件。

2)主轴卡盘和卡爪添加时,卡盘右端面中心应定位在坐标系原点处,卡爪调入模型后,用MATE配合定位,第二、三个卡爪可用ROTATE工具旋转120°得到。

3)调节刀架转动部分部件,应定位X、Z向位置使转动中心在坐标系原点,并调整Y 方向位置使装刀位置与刀柄底部接触。

4)其他部件可调入后用配合方式定位。

(7)设置参数

选菜单“SETUP→G-CODE→SETTING”,在弹出对话框中选“JOB TABLES”选项,在TABLE NAME列表框中选择如下参数进行添加:

initial machine location(机床初始位置):300 0 750(X Y Z 坐标用空格间隔)

machine reference location(机床参考点):300 0 750

input program zero(工件编程原点):0 0 200(200为Z方向工件原点距机床坐标系原点距离)

选TOOL TABLES选项,在列表框中选择如下参数进行添加:

Gage offset index (刀具号) values (刀尖点偏置值:刀尖到刀架中心距离)

1 120 0 90

2 120 0 90

3 120 0 90

120 0 90

还有一些参数,如机床行程、换刀方式、NC程序类型和碰撞设置等,可进行相应操作,这里不再重复。

(8)保存文件

分别保存用户文件USR、控制系统文件CTL、机床文件MCH。为便于使VERICUT软件开始运行即进入自己的用户文件,可编辑文件,将其中改为所需的用户文件名。另外,为了开始运行VERICUT即进入所需工作目录,可将复制到所需工作目录中运行,并在桌面建立快捷方式。图3是我们所建立的虚拟机床环境。

图3 虚拟机床环境

四、用定制功能建立易于软件操作的定制面板

因VERICUT软件为全英文界面,为使培训学员易于操作,可用定制功能定制面板。由菜单“File→Custom interface”,进入定制界面。按F7进入编辑模式,再按F7退出编辑模式,用PAGE UP/DOWN进行界面翻页。在编辑模式中,用添加页APPEND PAGE工具添加HTML 页或FROM页。若添加FROM页,单击右键显示菜单如图4所示,选择相应控件进行添加。图5为CJK6132车床定制面板的一部分。

4 右键菜单

图5 CJK6132车床定制面板图

五、进行仿真操作,检验NC程序正确性

用定制好的操作面板时,操作过程如下:

(1)单击上面建立的桌面快捷方式,启动VERICUT,并调用所需用户文件和进入所需工作目录。

(2)单击菜单“File→custom interface”,进入已定制好的操作界面。

(3)在定制操作界面设置工件半径、长度。

(4)在定制操作界面设置工件原点Z值。

(5)单击操作界面上的“新建NC程序”,打开记事本输入NC程序,并保存(编写NC 程序应按当前工艺环境,如刀具号)。

(6)单击操作界面上的“选择NC程序”,指定刚才编写的NC程序。

(7)单击工具条上的“单步仿真”或“连续仿真”键,开始加工仿真。

(8)用测量工具测量工件尺寸,检查加工结果。

用缩放、移动和旋转工具,能从不同视点观察、测量工件。仅更换NC程序、设置不同工件尺寸,即可进行所需程序和工件的加工仿真。

六、结束语

本文基于VERICUT软件构建了数控车床加工培训的仿真环境,不占用机床机器时间,培训效率高。用同样方法可构建数控铣床、加工中心的培训仿真环境,应用于教学。此方式基于完整的加工工艺系统环境进行NC编程仿真,比一些CAD/CAM软件的单纯刀位文件仿真更真实、直观,更接近实际加工情况,仿真后的NC程序不用试切可直接输入机床进行加工,解决了数控培训中的设备不足困难,收到了良好的教学效果。

数控车床仿真加工项目

数控加工仿真操作 数控仿真系统是基于虚拟显示的仿真软件。下面以斯沃数控仿真系统为平台,以FANUC0iT系统为例讲述数控加工模拟的操作。 1、零件图及其工艺分析 零件分析:如图1-1所示,该工件为阶梯轴零件,其成品最大直径为Φ28mm,由于直径较小,毛坯可以采用Φ30mm的圆柱棒料,加工后切断即可,这样可以节省装夹料头,并保证各加工表面间具有较高的相互位置精度。装夹时注意控制毛坯外伸量,提高装夹的刚性。 图1-1 零件图 工艺分析:由于阶梯轴零件径向尺寸变化较大,可利用恒线速度切削功能,以提高加工质量和生产效率。从右端至左端轴向走刀车外圆轮廓,切螺纹退刀槽,车螺纹,最后切断。粗加工每次背吃刀量为1.5mm,粗加工进给量为0.2mm/r,精加工进给量为0.1mm/r,精加工余量为0.5mm。 [加工工序] 1)车端面。选择Φ30的毛坯,将毛坯找正、夹紧,用外圆端面车刀平右端面,并用试切法对刀。 2)从右端至左端促加工外圆轮廓,留0.5mm精加工余量。 3)精加工外圆轮廓至图样要求尺寸。 4)切螺纹退刀槽。 5)加工螺纹至图样要求。 6)切断,保证总长尺寸要求。 7)去毛刺,检测工件各项尺寸要求。

2、选择机床系统和加工面板 1)在桌面上找到“斯沃数控仿真软件”的图标,双击进入,在数控系统中找到“FANUC0i T”如图2-1,点运行进入(此为单机版登录)。 2)出现FANUC0i T系统的系统仿真,在右下角下拉菜单中选择FANUC0i T标准面板。 3)整个仿真软件主要由机床操作面板、工具菜单和仿真机床模型窗口组成,如图2-2。 图2-1“选择机床系统”对话框

数控编程中的基础坐标系建立

数控编程中的基础坐标系建立 1.刀位点 刀位点是刀具上的一个基准点,刀位点相对运动的轨迹即加工路线,也称编程轨迹。 2.对刀和对刀点 对刀是指操作员在启动数控程序之前,通过一定的测量手段,使刀位点与对刀点重合。可以用对刀仪对刀,其操作比较简单,测量数据也比较准确。还可以在数控机床上定位好夹具和安装好零件之后,使用量块、塞尺、千分表等,利用数控机床上的坐标对刀。对于操作者来说,确定对刀点将是非常重要的,会直接影响零件的加工精度和程序控制的准确性。在批生产过程中,更要考虑到对刀点的重复精度,操作者有必要加深对数控设备的了解,掌握更多的对刀技巧。 (1)对刀点的选择原则 在机床上容易找正,在加工中便于检查,编程时便于计算,而且对刀误差小。 对刀点可以选择零件上的某个点(如零件的定位孔中心),也可以选择零件外的某一点(如夹具或机床上的某一点),但必须与零件的定位基准有一定的坐标关系。 提高对刀的准确性和精度,即便零件要求精度不高或者程序要求不严格,所选对刀部位的加工精度也应高于其他位置的加工精度。 选择接触面大、容易监测、加工过程稳定的部位作为对刀点。 对刀点尽可能与设计基准或工艺基准统一,避免由于尺寸换算导致对刀精度甚至加工精度降低,增加数控程序或零件数控加工的难度。 为了提高零件的加工精度,对刀点应尽量选在零件的设计基准或工艺基准上。例如以孔定位的零件,以孔的中心作为对刀点较为适宜。 对刀点的精度既取决于数控设备的精度,也取决于零件加工的要求,人工检查对刀精度以提高零件数控加工的质量。尤其在批生产中要考虑到对刀点的重复精度,该精度可用对刀点相对机床原点的坐标值来进行校核。 (2)对刀点的选择方法 对于数控车床或车铣加工中心类数控设备,由于中心位置(X0,Y0,A0)已有数控设备确定,确定轴向位置即可确定整个加工坐标系。因此,只需要确定轴向(Z0或相对位置)的某个端面作为对刀点即可。 对于三坐标数控铣床或三坐标加工中心,相对数控车床或车铣加工中心复杂很多,根据数控程序的要求,不仅需要确定坐标系的原点位置(X0,Y0,Z0),而且要同加工坐标系G54、G55、G56、G57等的确定有关,有时也取决于操作者的习惯。对刀点可以设在被加工零件上,也可以设在夹具上,但是必须与零件的定位基准有一定的坐标关系,Z方向可以简单的通过确定一个容易检测的平面确定,而X、Y方向确定需要根据具体零件选择与定位基准有关的平面、圆。 对于四轴或五轴数控设备,增加了第4、第5个旋转轴,同三坐标数控设备选择对刀点类似,由于设备更加复杂,同时数控系统智能化,提供了更多的对刀方法,需要根据具体数控设备和具体加工零件确定。 对刀点相对机床坐标系的坐标关系可以简单地设定为互相关联,如对刀点的坐标为(X0,Y0,Z0),同加工坐标系的关系可以定义为(X0+Xr,Y0+Yr,Z0+Zr),加工坐标系G54、G55、G56、G57等,只要通过控制面板或其他方式输入即可。这种方法非常灵活,技巧性很强,为后续数控加工带来很大方便。 3.零点漂移现象 零点漂移现象是受数控设备周围环境影响因素引起的,在同样的切削条件下,对同一台设备来说、使用相同一个夹具、数控程序、刀具,加工相同的零件,发生的一种加工尺寸不一致或精度降低的现象。

数控车床中机床坐标系-机床参考点与工件坐标系的关系(1)

数控车床中机床坐标系\机床参考点与工件 坐标系的关系(1) [摘要] 我们可以把数控车床分为三大模块,一是数控系统,二是车床本体,三是被加工工件,它们分别有三个坐标系,编程坐标系、机床坐标系和工件坐标系。 [关键词] 机床坐标系机床参考点工件坐标系之间的关系 在多年的数控编程理论和实践教学中,笔者发现,许多学生只注重数控编程的学习,而对坐标系的设置只是机械的照搬,对各坐标系的原理和它们之间的关系却不求甚解,虽然经常强调,但在思想上还是引不起足够的重视,致使在实际使用的时候不知所措。 那么什么是机床坐标系什么是机床原点什么是机床参考点它们与设置工件坐标系又有什么关系呢 机床原点为机床上的一个固定点,也称机床零点或机床零位。是机床制造厂家设置在机床上的一个物理位置,在数控车床上,一般设在主轴旋转中心与卡盘后端面之交点处。以机床原点为坐标系原点在水平面内沿直径方向和主轴中心线方向建立起来的X、Z轴直角坐标系,成为机床坐标系。建立机床坐标系,其目的有三: 一、机床坐标系是制造和调整机床的基础

不论是普通车床还是数控车床,在车床硬件组装和调试时,都必须首先建立一个工艺点,以此为基准来调整和修调一些工艺尺寸诸如机床导轨与主轴轴线的平行度、导轨与主轴的高度、尾座顶尖与主轴是否等高、主轴的径向跳动量、轴向窜动量等等。这是一个固定点,这个工艺点一旦确定,一般不允许随意变动。 二、建立机床与数控系统的位置关系 我们可以把数控车床分为三大模块,一是数控系统,二是车床本体,三是被加工工件它们分别有三个坐标系,即程序坐标系、机床坐标系和工件坐标系。 数控机床上电后,三个坐标系并没有直接的联系,因此每次开机后无论刀架停留在机床坐标系中的任何位置,系统都把当前位置认定为,这样会造成坐标系基准的不统一,数控车床一般采用手动或自动方式让机床回零点的办法来解决这一问题。 其原理是将刀架运行到主轴旋转中心与卡盘后端面之交点处,这时溜板碰到了已预先精确设置好的行程开关或机械挡块,信号即刻传送到计算机系统,系统复位,此时CRT 上显示系统已预设置好的、坐标值,使机床与系统建立了同步关系,也就是让系统知道了机床零点的具体坐标位置,建立了测量机床运动坐标的起始点。此后CRT上会适时准确地跟踪刀架在机床坐标系中运动的每一个坐标值。

数控车床仿真软件实习教程

一、数控加工仿真系统的运行 单击【开始】按钮,在【程序】中选择【数控加工仿真系统】,在弹出的子菜单中单击【加密锁管理程序】,如图1所示。 图1 单击【加密锁管理程序】,WINDOWS XP右下角任务栏会出现如图2所示的电话形状图标。 图2 再次进入【程序】菜单中的【数控加工仿真系统】,在弹出的子菜单中单击【数控加工仿真系统】,如图3所示。

图3 单击【数控加工仿真系统】弹出系统登陆界面,如图4所示。直接单击【快速登陆】按钮进入系统。 图4

二、数控加工仿真系统的基本用户界面 1.选择机床 在主界面下,单击下拉菜单中的【机床】,在弹出的下拉子菜单中单击【选择机床】;或者单击图标 菜单中的图标,如图5所示,系统将会弹出选择机床子界面,将【控制系统】选为【FANUC】,然后在选择【FANUC OI Mate】【机床类型】【选车床】然后在选择机床的生产厂家【南京第二机床厂】选项,然后单击确定,如图6。 图5

图6

机械操作面板 图7 图5所示为数控加工仿真系统的主界面,用户可以通过操作鼠标或键盘来完成数控机床的仿真操作。它包括下拉菜单;图标菜单;机械操作面板;机床操作面板和数控机床动画仿真五部分组成。 2.图标菜单 3.机械操作面板 数控仿真加工系统的机械操作面板即为真实机床操作面板上的操作区,其各键名称功能见图7。

模式旋钮上的功能: 为编辑模式,在此模式下才可以进行程序的输入和修改 . 为手动模式在此模式下可以进行手动操作. 为微米模式,指针对准1则为1微米模式,对准10为10微米模式,以此类推,同时在微米模式下激活手轮旋钮.手轮共有100个小格,指针对准哪个数字则每个小格单位为多少微米。 模式旋钮 主轴正转 倍率开关 主轴反转

数控车床坐标系

一、基本坐标系 机床坐标轴: 为简化编程和保证程序的通用性,对数控机床的坐标轴和方向命 名制定了统一的标准,规定直线进给坐标轴用X,Y,Z表示,称基本 坐标轴。X,Y,Z坐标轴的相互关系用右手笛卡尔法则确定,如下图 所示 图中大拇指指向X轴的正方向, 食指指向Y轴的正方向, 中指指向Z轴的正方向。 小结:机床坐标系坐标轴应遵循的原则

运动方向的确定 刀具相对与静止工件而运动的原则,且刀具远离工件 的方向为坐标轴正方向。则坐标系用加“’”的字母 表示,按相对运动关系,工件运动的正方向恰好与刀 具运动的正方向相反,则有: ?+X=-X′ +Y=-Y′ +Z=-Z′ ?+A=-A′ +B=-B′ +C=-C′ 确定机床坐标轴的正方向

坐标轴方向的确定 1、Z轴坐标的运动 一般取产生切削力的主轴轴线方向为Z轴方向 2、X轴坐标的运动 X轴一般位于平行于工件装夹面的水平面内,且垂直于Z轴,车床上是对应刀架的径向移动方向。 3、Y轴坐标的运动 Y轴(车床上通常设为虚轴)于X轴和Z轴一起构成遵循右手笛卡尔坐标系。 确定机床坐 标系各坐标 轴的具体方 位的方法

二、坐标系的类型 1、机床坐标系 以机床原点为坐标原点建立起来的直角坐标系称为机床坐标系。 机床坐标系是机床固有的,它是制造和调整机床的基础,也是设 置工件坐标系的基础。其坐标轴及方向按标准规定,其坐标原点 的位置则由各机床生产厂设定,一般情况下,不允许用户随意变 动。 刀具运动的参照坐标系 机床坐标系

2、工件坐标系 工件坐标系也称编程坐标系,专供编程时使用,选择工件上的某一已知点为原点,建立一个新的坐标系,称为工件坐标系。,如下图所示。工件坐标系一旦建立便一直有效,直到被新的坐标系所代替为止。 工件坐标系编制程序所用的参照坐标系

数控机床仿真模拟加工实验报告

数控机床仿真模拟加工实验报告 实验目的 1、熟悉典型数控加工仿真软件——宇龙数控加工仿真软件的特点及其应用; 2、通过软件系统仿真操作和编程模拟加工,进一步熟悉实际数控机床操作,提高编写和调试数控加工程序的能力。 3、了解如何应用数控加工仿真软件进行加工过程预测,以及验证数控加工程序的可靠性、防止干涉和碰撞的发生。 实验基本原理 宇龙数控加工仿真软件是模拟实际数控机床加工环境及其工作状态的计算机仿真加工系统;应用该软件,可以基于虚拟现实技术,模拟实际的数控机床操作和数控加工全过程。本实验在熟悉软件的用户界面及使用方法的基础上,针对典型零件进行机床仿真操作运行和零件数控编程模拟加工,从而预测加工过程,验证数控加工程序的可靠性、防止干涉和碰撞的发生。 实验内容及过程 本实验通过指导老师讲解和自己的实际操作练习,分两个阶段完成实验任务;具体如下: 一、初步熟悉数控加工仿真软件的用户界面及基本使用方法: 通过实际练习,了解应用宇龙数控加工仿真软件系统进行仿真加工操作的基本方法,包括: 如何选择机床类型; 如何定义毛坯、使用夹具、放置零件; 如何选择刀具; FANUC 0i 数控系统的键盘操作方法; 汉川机床厂XH715D加工中心仿真操作方法等。 二、针对汉川机床厂XH715D数控加工中心,应用宇龙数控加工仿真软件对凸轮零件进行机床仿真操作运行和数控编程模拟加工: 凸轮零件图如下所示:

机床仿真操作运行和数控编程模拟加工过程如下: 1、机床开启 启动数控铣系统前必须仔细检查以下各项:1.所有开关应处于非工作的安全位置;2.机床的润滑系统及冷却系统应处于良好的工作状态;3.检查工作台区域有无搁放其他杂物,确保运转畅通。之后打开数控机床的电器总开关,启动数控车床。 2、机床回参考点 启动数控铣系统后,首先应手动操作使机床回参考点。将工作方式旋钮置于“手动”,按下“回参考点”按键,健内指示灯亮之后,按“+X”健及“+Z”键,刀架移动回到机床参考点 3、设置毛坯,并使用夹具放置毛坯 通过三爪卡盘将工件夹紧。 4、选择刀具并安装

数控机床的坐标系 机床坐标系的确定步骤及方法

数控机床的坐标系机床坐标系的确定步骤及方法 在数控编程时,为了描述机床的运动,简化程序编制的方法及保证纪录数据的互换性,数控机床的坐标系和运动方向均已标准化,ISO和我国都拟定了命名的标准。通过这一部分的学习,能够掌握机床坐标系、编程坐标系、加工坐标系的概念,具备实际动手设置机床加工坐标系的能力。 机床坐标系的确定步骤及方法: (1)机床相对运动的规定 在机床上,我们始终认为工件静止,而刀具是运动的。这样编程人员在不考虑机床上工件与刀具具体运动的情况下,就可以依据零件图样,确定机床的加工过程。 (2)机床坐标系的规定 标准机床坐标系中X、Y、Z坐标轴的相互关系用右手笛卡尔直角坐标系决定。 在数控机床上,机床的动作是由数控装置来控制的,为了确定数控机床上的成形运动和辅助运动,必须先确定机床上运动的位移和运动的方向,这就需要通过坐标系来实现,这个坐标系被称之为机床坐标系。 例如铣床上,有机床的纵向运动、横向运动以及垂向运动,如下图所示。在数控加工中就应该用机床坐标系来描述。 图立式数控铣床 标准机床坐标系中X、Y、Z坐标轴的相互关系用右手笛卡尔直角坐标系决定: 图直角坐标系 1)伸出右手的大拇指、食指和中指,并互为90°。则大拇指代表X坐标,食指代表Y坐

标,中指代表Z坐标。 2)大拇指的指向为X坐标的正方向,食指的指向为Y坐标的正方向,中指的指向为Z坐标的正方向。 3)围绕X、Y、Z坐标旋转的旋转坐标分别用A、B、C表示,根据右手螺旋定则,大拇指的指向为X、Y、Z坐标中任意轴的正向,则其余四指的旋转方向即为旋转坐标A、B、C的正向,见上图。 (3)运动方向的规定 增大刀具与工件距离的方向即为各坐标轴的正方向,如图所示为数控车床上两个运动的正方向。 图机床运动的方向

数控机床坐标系

数控机床坐标系

教学过程 图2-3 右手直角坐标系 2.刀具运动坐标与工件运动坐标 数控机床的坐标系是机床运动部件进给运动的坐标系。由于进给 运动可以是刀具相对于工件的运动(车床),也可以是工件相对于刀具 的运动(铣床),所以统一规定:有字母不带“'”的坐标表示刀具相 对于“静止”的工件而运动的刀具运动坐标;带“'”的坐标表示工 件相对于“静止”的刀具而运动的工件运动坐标。 3.运动的正方向 运动的正方向是使刀具与工件之间距离增大的方向。 (三)、X、Y、Z坐标轴与正方向的确定 1.Z坐标轴 (1) Z坐标轴的运动由传递切削力的主轴决定,与主轴轴线平 行的标准坐标轴为Z坐标轴,其正方向为增加刀具和工件之间距离的 方向。 (2)若机床没有主轴(刨床),则Z坐标轴垂直与工件装夹平面。 (3)若机床有几个主轴,可选择一个垂直与工件装夹平面的主要 轴为主轴,并以它确定Z坐标轴。 2.X坐标轴 (1)X坐标轴的运动是水平的,它平行于工件装夹平面,并垂直 于Z坐标轴。是刀具或工件定位平面内运动的主要坐标轴 (2)对于工件旋转的机床(车床、磨床),X坐标轴的方向在工 件的径向上,并且平行与横滑座,刀具离开工件回转中心的方向为X 坐标轴的正方向。 教师通过多 媒体讲解,模型 演示,学生分组 练习,教师巡回 指导

教学过程 (3)对于刀具旋转的机床(铣床),若Z坐标轴是水平的(卧式铣床),当由主轴向工件看时,X坐标轴的正方向指向右方;若Z坐标轴是垂直的(立式铣床),当由主轴向立柱看时,X坐标轴的正方向指向右方;对于双立柱的龙门铣床,当由主轴向左侧立柱看时,X 坐标轴的正方向指向右方。 (4)对刀具和工件均不旋转的机床(刨床),X坐标平行于主要切削方向,并以该方向为正方向。 3.Y坐标轴 根据X、Z坐标轴,按照右手笛卡儿直角坐标系确定。 注:如在X、Y、Z主要直线运动之外还有第二组平行于它们的运动,可分别将它们坐标定为U、V、W。 立式数控铣床的坐标方向为: Z轴垂直(与主轴轴线重合),向上为正方向;面对机床立柱的左 右移动方向为X轴,将刀具向右移动(工作台向左移动)定义为正方向; 根据右手笛卡尔坐标系的原则,Y轴应同时与Z轴和X轴垂直,且正方向指向床身立柱。 卧式升降台铣床的坐标方向为: Z轴水平,且向里为正方向(面对工作台的平 行移动方向);工作台的平行向左移动方向为X轴正方向;Y轴垂直向上。

数控车仿真软件操作指导

数控车仿真软件操作指导

8、数控加工仿真系统 依次点击“开始→程序→数控加工仿真系统→数控加工仿真系统”(或双击桌面上的数控加工仿真系统快捷图标),系统将弹出如图1-38所示的用户登录界面。 图1-38 登录界面 单击“快速登录”进入仿真软件主界面,如图1-39所示。 仿真系统界面由以下三方面组成: ①菜单栏及快捷工具栏:(图形显示调节及其它快捷功能图标) ②机床显示区域:三维显示模拟机床,可通过视图选项调节显示方式。 ③系统面板区域:通过对该区域的操作,执行仿真对刀、参数设置及完成仿真加工。

图1-39 仿真软件主界面 (1)数控仿真软件的基本操作 ◆对项目文件的操作 1)项目文件的作用 保存操作结果,但不包括操作过程。 2)项目文件包括的内容 ①机床、毛坯、经过加工的零件、选用的刀具和夹具、在机床上的安装位置和方式; ②输入的参数:工件坐标系、刀具长度和半径补偿数据; ③输入的数控程序。 3)对项目文件的操作

①新建项目文件 打开菜单“文件\新建项目”;选择新建项目后,就相当于回到重新选择机床后的初始状态。 ②打开项目文件 打开选中的项目文件夹,在文件夹中选中并打开后缀名为“.MAC”的文件。注意:“.MAC”文件只有在仿真软件中才能被识别,因此只能在仿真软件中打开,而不能直接打开。 ③保存项目文件 打开菜单“文件\保存项目”或“另存项目”;选择需要保存的内容,按下“确认”按钮。如果保存一个新的项目或者需要以新的项目名保存,选择“另存项目”,内容选择完毕后输入另存项目名,“确认”保存。 保存项目时,系统自动以用户给予的文件名建立一个文件夹,所有内容均放在该文件夹中,默认保存在用户工作目录相应的机床系统文件夹内。 提示:在保存项目文件时,实际上是一个文件夹内保存了多个文件,这些文件中包含了“2)”中所讲到的所有内容,这些文件共同构成一个完整的仿真项目,因此文件夹中的任一文件丢失都会造成项目内容的不完整,需特别注意。 ◆其他操作 1)零件模型 如果仅想对加工的零件进行操作,可以选择“导入\导出零件模型”,零件模型的文件以“.PRT”为后缀。 2)视图变换的选择 在工具栏中选之一,它们分别对应于菜单“视图”下拉菜单的“复位”、“局部放大”、“动态缩放”、“动态平移”、“动态旋转”、“绕X轴旋转”、“绕Y轴旋转”、“绕Z轴旋转”、“左视图”、“右视图”、“俯视图”、“前视图”。或者可以将光标置于机床显示区域内,点

机床的坐标系分为机床坐标系和工件坐标系

机床的坐标系分为机床坐标系和工件坐标系。 一般来说,数控机床程序编制过程主要包括:分析零件图样、工件处理、数学处理、分析零件图样、编写程序单输入程序及程序检验。 G00快速定位指令,在编程中常用作快速接近工件切削起点或快速返回换刀点刀具补偿的作用是把零件轮廓轨迹换成刀具中心轨迹。 切削用量包括主轴转速切削深度和宽度、进给速度等。 数控铣床加工零件的工作原点选择时应该注意:工件原点应选在零件图的尺寸基准对于对称零件,工件原点应设在对称中心上。 主轴转速应根据允许的切削速度和工件(或刀具)直径来选择,其计算公式为n=1000V/πD 数控铣床加工零件时,对于Z轴方向的工件原点,一般设在工件表面或工件的最高点 在机床每次通电之后,工作之前,必须进行回机床零点操作使刀具运动到机床参考点,其位置由机械档块确定。 G83表示啄钻循环 数控铣床的最大进给速度受机床刚度和进给系统的性能限制。 刀具补偿有长度补偿和直径补偿。 在输入的零件加工程序中,含有的辅助信息是指M、S、T代码。 刀具磨损分为初期磨损正常磨损和急剧磨损三个阶段。 在铣床上镗台阶孔时,镗刀的主偏角应取75度。 机床原点一般设置在刀具运动的X、Y、Z正向最大极限位置。 主轴转速的编码方式一般用S代码和4位数表示时,单位为r/min 在机床每次通电之后,工作之前,必须进行回机床零点操作使刀具运动到机床参考点,其位置由机械档块确定。 G17是指选择XY平面,G90指绝对指令,G80_取消镗削循环 刀具半径右补偿指令是G42 顺/逆时针圆弧切削指令是G02/G03 选择XY平面的指令是G17 MDI运转可以通过操作面板输入一段指令并执行该程序段 刀具半径左补偿指令是G41 铣床CNC中,刀具长度补偿指令是G43,G44,G49 准备功能G90指令代码的是定义绝对尺寸 铣床的切削深度是指垂直与铣刀轴线所度量的切削层尺寸。 铣削数控系统中进给功能字F后的数字表示每分钟进给量(mm/min) G81指令是指钻镗循环动作 数控系统常用的两种插补功能是直线插补和圆弧插补 准备功能G02代码的功能是顺时针方向圆弧插补 坐标系设定的预置寄存指令为G92 15、数控铣床编程时,除了用主轴功能(S功能)来指定主轴转速外,还要用M功能指定主轴的方向。 加工中心按照功能特征分类,可分为复合、卧式和三轴加工中心。 G73、G83为攻丝循环指令。 在程序中利用变量进行赋值及处理,使程序具有特殊功能,这种程序叫小程序。宏程序最后用M00返主程序。

FANUC 0i 数控车床加工仿真实训

实训一车成形面的加工 一、实训目的 1、了解数控车床加工成形面的特点。 2、能够正确地对成形面零件进行数控车削工艺分析。 3、掌握G70、G71用法。 4、掌握圆弧表面加工程序的编写方法。 二、实训内容 完成如图所示零件的加工。毛坯尺寸ф28×53,材料为45#钢材。 三、实训步骤 1、分析工件图样,选择定位基准和加工方法,确定走刀路线选择刀具和装夹方法,确定切削用量参数,填写数控车床加工工艺卡。 数控车床加工工艺卡 2、根据零件的加工工艺分析和所使用的数控车床的编程指令说明,编写加工程序,填写程序卡。

3、使用数控仿真系统中的数控车床加工此零件的仿真过程。 实训二车螺纹、切槽与切断加工 一、实训目的 1、掌握数控车床加工螺纹、切槽、切断加工中的一般编程方法。 2、能够正确地对加工螺纹的数控车削工艺分析。 3、掌握G92的用法。 4、注意确定切断刀刀尖与工件端面的位置关系,以确定长度方向的尺寸。 二、实训内容 完成如图所示零件的加工。设毛坯是Φ40×80的棒料,材料为45钢。

三、实训步骤 1、分析工件图样,选择定位基准和加工方法,确定走刀路线选择刀具和装夹方法,确定切削用量参数,填写数控车床加工工艺卡。 数控车床加工工艺卡

2、根据零件的加工工艺分析和所使用的数控车床的编程指令说明,编写加工程序,填写程 3、使用数控仿真系统中的数控车床加工此零件的仿真过程。 3.如图所示,已知材料为Q235-A,毛坯为φ125×40,制定零件的加工工艺,编写零件的加工程序,在上海宇龙数控仿真系统仿真加工。

二、工艺分析 1、加工方案 2、刀具选用 通过分析可知本任务需要如下刀具:

机床坐标系与程序坐标系区别

数控车床基本坐标关系及几种对刀方法比较 在数控车床的操作与编程过程中,弄清楚基本坐标关系和对刀原理是两个非常重要的环节。这对我们更好地理解机床的加工原理,以及在处理加工过程中修改尺寸偏差有很大的帮助。 一、基本坐标关系 一般来讲,通常使用的有两个坐标系:一个是机械坐标系;另外一个是工件坐标系,也叫做程序坐标系。 在机床的机械坐标系中设有一个固定的参考点(假设为(X,Z))。这个参考点的作用主要是用来给机床本身一个定位。因为每次开机后无论刀架停留在哪个位置,系统都把当前位置设定为(0,0),这样势必造成基准的不统一,所以每次开机的第一步操作为参考点回归(有的称为回零点),也就是通过确定(X,Z) 来确定原点(0,0)。 为了计算和编程方便,我们通常将程序原点设定在工件右端面的回转中心上,尽量使编程基准与设计、装配基准重合。机械坐标系是机床唯一的基准,所以必须要弄清楚程序原点在机械坐标系中的位置。这通常在接下来的对刀过程中完成。 二、对刀方法 1. 试切法对刀 试切法对刀是实际中应用的最多的一种对刀方法。下面以采用MITSUBISHI 50L 数控系统的RFCZ12车床为例,来介绍具体操作方法。 工件和刀具装夹完毕,驱动主轴旋转,移动刀架至工件试切一段外圆。然后保持X坐标不变移动Z轴刀具离开工件,测量出该段外圆的直径。将其输入到相应的刀具参数中的刀长中,系统会自动用刀具当前X坐标减去试切出的那段外圆直径,即得到工件坐标系X原点的位置。再移动刀具试切工件一端端面,在相应刀具参数中的刀宽中输入Z0,系统会自动将此时刀具的Z坐标减去刚才输入的数值,即得工件坐标系Z原点的位置。 例如,2#刀刀架在X为150.0车出的外圆直径为25.0,那么使用该把刀具切削时的程序原点X值为150.0-25.0=125.0;刀架在Z为180.0时切的端面为0,那么使用该把刀具切削时的程序原点Z值为180.0-0=180.0。分别将(125.0,180.0)存入到2#刀具参数刀长中的X与Z中,在程序中使用T0202就可以成功建立出工件坐标系。 事实上,找工件原点在机械坐标系中的位置并不是求该点的实际位置,而是找刀尖点到达(0,0)时刀架的位置。采用这种方法对刀一般不使用标准刀,在加工之前需要将所要用刀的刀具全部都对好。

数控车床对刀及建立工件坐标系的几种方法

数控车床对刀及建立工件坐标系的方法 在数控车床上加工零件时,我们通常先开机回零,然后安装零件毛坯和刀具,接着要进行对刀和建立工件坐标系的操作,最后才是编制程序和自动加工。对刀操作的正确与否,直接会影响后续的加工。对刀有误的话,轻则影响零件的加工精度,重则会造成机床事故。所以作为数控车床的操作者,首先要掌握对刀及工件坐标系的建立方法。 数控车床上的对刀方法有两种:试切法对刀和机外对刀仪对刀。一般学校没有机外对刀仪这种设备,所以采用试切法对刀。而根据实际需要,试切法对刀又可以采用三种形式,本文以华中数控HNC-21/T系统为例来阐述这三种形式的对刀及工件坐标系的建立方法。 一、T对刀 T对刀的基本原理是:对于每一把刀,我们假设将刀尖移至工件右端面中心,记下此时的机床指令X、Z的位置,并将它们输入到刀偏表里该刀的X偏置和Z 偏置中。以后数控系统在执行程序指令时,会将刀具的偏置值加到指令的X、Z 坐标中,从而保证所到达的位置正确。其具体的操作如下: (1)开启机床,释放“急停”按钮,按“回零”,再按“+X”和“+Z”,执行回参考点操作。 (2)按“主轴正转”启动主轴,按“手动”,将刀具移动到合适的位置然后按“-Z”手动车削外圆,最后按“+Z”沿Z向退刀,如图1所示。 (3)按“主轴停止”停止主轴,然后测量试切部分的直径,测得直径为Φ69.934,按“F4(MDI)”,再按“F2(刀偏表)”,将光条移到1号刀的试切直径

上,回车,输入69.934,再回车,1号刀的X偏置会自动计算出来,如图3所示。 图1 图2 (4)移动刀具到合适的位置,按“主轴正转”启动主轴,按“手动”,然后按“-X”手动车削端面,最后按“+X”沿X向退刀,如图2所示。 (5)按“主轴停止”停止主轴,将光条移到1号刀的试切长度上,回车,输入0,再回车,1号刀的Z偏置会自动计算出来,如图3所示。

数控机床坐标轴方向的确定步骤及方法实例

数控机床坐标轴方向的确定步骤及方法实例 1.坐标轴方向的确定方法步骤: (1)Z坐标 Z坐标的运动方向是由传递切削动力的主轴所决定的,即平行于主轴轴线的坐标轴即为Z坐标,Z坐标的正向为离开工件的方向。 如果机床上有几个主轴,则选一个垂直于工件装夹平面的主轴方向为Z坐标方向;如果主轴能够摆动,则选垂直于工件装夹平面的方向为Z坐标方向;如果机床无主轴,则选垂直于工件装夹平面的方向为Z坐标方向。图1.7所示为数控的Z 坐标。 数控车床的坐标系 (2)X坐标 X坐标平行于工件的装夹平面,一般在水平面内。确定X轴的方向时,要考虑两种情况: 1)如果工件做旋转运动,则刀具离开工件的方向为X坐标的正方向。 2)如果刀具做旋转运动,则分为两种情况: Z坐标水平时,观察者沿刀具主轴向工件看时,+X运动方向指向右方;Z坐标垂直时,观察者面对刀具主轴向立柱看时,+X运动方向指向右方。图1.7所示为数控车床的X坐标。 (3)Y坐标 在确定X、Z坐标的正方向后,可以用根据X和Z坐标的方向,按照右手直角坐标系来确定Y坐标的方向。图1.7所示为数控车床的Y坐标。 数控立式的坐标系 2.举例 例:根据图1.8所示的数控立式铣床结构图,试确定X、Y、Z直线坐标。 (1)Z坐标:平行于主轴,刀具离开工件的方向为正。 (2)X坐标:Z坐标垂直,且刀具旋转,所以面对刀具主轴向立柱方向看,向右为正。 (3)Y坐标:在Z、X坐标确定后,用右手直角坐标系来确定。(end) 文章内容仅供参考 () ()(2011-4-27) 本文由冷镦机https://www.360docs.net/doc/8514400327.html, 风机盘管https://www.360docs.net/doc/8514400327.html, 联合整理发布

数控车床仿真步骤

数控车床仿真步骤 一.机床的选择 1.控制系统:华中世纪星四代 2.机床类型:车床、标准平床身前置刀架 3.确定 4.调整试图:先选俯视图,在动态平移 5.通电源:点开“紧急停止”按钮 6.回零:先回x轴正向,再回z轴正向 7.调整刀架位置-机床导轨中间靠左 二.毛坯的定义 (直接定义图纸上零件长度) 编程尺寸=基本尺寸+(上偏差+下偏差)/2 材料选择:45#钢 三.装夹毛坯 在菜单栏中选择“放置零件”-选择设定好的毛坯-确定-最后再把毛坯一直往外拉(拉不动为止) 零件的掉头加工-在菜单栏中找到“零件”-选择“移动零件”-打开一个新的窗口-点中间带箭头的按钮 四.装夹刀具(安装三把刀) 1.分别是“外圆车刀”“切槽刀”“螺纹车刀”-分别对应三个刀位-外圆车刀1号刀位、切槽刀2号刀位、螺纹车刀3号刀位 2. 外圆车刀选择:定制中第一个图标-选择序号为2的刀片(刀片

参数:刀尖半径为0的35°菱形刀片、刀柄:外圆、主偏角93) 3. 切槽刀选择:根据零件图上槽的宽度选择(定制中倒数第二个图标、刀尖半径为0、刀柄:外圆切槽深度为20) 4. 螺纹车刀选择:标准中最后一个图标、序号为一的刀片、刀柄:外圆、选序号为一的 五.对刀 1.外圆试切:由于工件长度直接设定,所以在对刀时不能试切端面。 1号外圆车刀试切一外圆,刀具不退刀,点击“主轴停止”按钮,停止主轴旋转和刀具进刀。 2.外圆测量:测量所切外圆的直径x轴及z轴向长度点击所切外圆,并记录在纸上,(注意的是:测量时看到的是一个长度值和一个试切外圆的半径值、但输入的是直径值)。 3.对刀参数输入:退出测量界面切换界面到“刀具补偿-刀偏表”在番号1后面,在试切直径中输入直径值;在试切长度中输入试切外圆的长度值。(注意:输入的长度为负值) 六.工件的掉头 零件的掉头加工-在菜单栏中找到“零件”-选择“移动零件”-打开一个新的窗口-点中间带箭头的按钮。(工件掉头之后不需要对刀) 七.加工程序 小数点编程

数控机床_斯沃仿真实验报告

机械制造工程系 目录 实验一:数控车软件的启动与基本操作03 实验二:数控车削加工对刀方法分析与操作04 实验三:数控车削加多刀车削加工对刀及操作09 实验四:刀具磨损补偿控制原理与方法分析与操作11 五、实验心得 13

实验一:数控车软件的启动与基本操作 1) 实验目的:了解斯沃数控车削仿真软件的启动与基本操作方法,通过软键的操作,熟悉数 控车削加工的基本操作方法。 2) 实验设备:斯沃数控车削仿真软件 3) 实验内容:通过软件掌握数控车的启动与基本操作,其中包括数控车面板上的各种按键的 作用,主要有方式建、机床操作选择键、功能键、补正键、系统参数键、故障 资料键及图形显示键、编辑程序键等构成。 4) 实验步骤:1、启动swanc6.3软件,单击运行。 2、按下系统启动键,系统启动。 3、按下急停按钮,消除警报。 4、在标准工具栏中使用各种图标,熟悉各种图标的作用,了解软件图标的用途。 5、进行机床面板上的各种操作,如回零,绝对坐标、相对坐标、综合坐标的

显示操作,手动移动,手摇移动,主轴倍率的调节及MID运行方式等。 6、运用编辑程序键,练习程序的键入。如insert键、alter键、delete键等。(注 意:打开保护锁) 7、了解数控机床的四种运行方式:锁住运行、空运行、单段运行、存储器运 行。 机床回零的作用: 数控机床在开机之前,通常都要执行回零的操作,归根于机床断电后,就失去了对各坐标位置的记忆,其回零的目的在于让各坐标轴回到机床一固定点上,即机床的零点,也叫机床的参考点(MRP).回参考点操作是数控机床的重要功能之一,该功能是否正常,将直接影响零件的加工质量. 数控机床安全规程的作用: 它能提醒我们在操作机床时要注意的东西,而这些东西与我们的人身安全及机床的财产安全密切相关。 5) 实验小结: 在本次实验中,使用斯沃软件的这种数控仿真形式行进练习,使我对机床的加工过程和机床的操作流程有了更深的理解。在实践中学习到了课本上没有的东西。我相信,通过本次实验,必定会指导我在今后的工作中更加努力的去学习! 实验二:数控车削加工对刀方法分析与操作 1) 实验目的:了解数控车加工的三种对刀原理,掌握三种对刀方法与操作。 2) 实验设备:斯沃数控车削仿真软件 3) 实验内容:数控车的对刀有三种方法,即刀具偏置、G50指令及G54~G59指令。 1、刀具偏置的方法是从机械坐标零点看是,通过刀具偏置直接补偿到工件端面和X轴线零点处。使每把刀具与工件零点产生准确值,再把这些值输入到每把刀具对应的刀补号中,以此来确定机床坐标系与工件坐标的正确关系,达到加工之目的。 2、G50是通过其设定了“起刀点”的位置,再把起刀点至机械零点的距离通过对刀移动刀架求的出来,把这一距离之编到程序段中的第一条移动指令中,这样就把机床坐标与工件坐标系联系起来,形成了一个完整的尺寸链关系,从而建立起了一个确定的工件坐标系。 3、G54~G59对刀方法是用MDI功能从CNC G54~G59六个坐标系中任选一个(如:G54),将工件坐标系偏置X值Z值存在其中。加工时只要在G54的工件坐标系即可正确的加工。G54指令的X轴和Z轴的坐标值可用“基准刀”对刀来取得。

宇龙数控加工仿真系统说明书

宇龙数控加工仿真系统实验指导书 主要内容 ?基于FANUC 0i数控加工仿真系统的基本操作方法 ?基于FANUC 0i数控车床的仿真加工操作 ?基于FANUC 0i数控铣床的仿真加工操作 ? FANUC 0i数控加工仿真实验 1 宇龙数控加工仿真系统基本操作方法 1.1 界面及菜单介绍 1.1.1 进入数控加工仿真系统 进入宇龙数控加工仿真系统3.7版要分2步启动,首先启动加密锁管理程序,然后启动数控加工仿真系统,过程如下: 鼠标左键点击“开始”按钮,找到“程序”文件夹中弹出的“数控加工仿真系统”应用程序文件夹,在接着弹出的下级子目录中,点击“加密锁管理程序”,如图1.1(a)所示。 (a) 启动加密锁管理程序(b) 启动数控加工仿真系统(c) 数控加工仿真系统登录界面 图1.1 启动宇龙数控加工仿真系统3.7版 加密锁程序启动后,屏幕右下方工具栏中出现的图表,此时重复上面的步骤,在二级子目录中点击数控加工仿真系统,如图1.1(b)所示,系统弹出“用户登录”界面,如图1.1(c)所示。 点击“快速登录”按钮或输入用户名和密码,再点击“登录”按钮,即可进入数控加工仿真系统。 1.1.2 机床台面菜单操作 用户登录后的界面,如图1.2所示。图示为FANUC 0i车床系统仿真界面,由四大部分构成,分别为:系统菜单或图标、LCD/MDI面板、机床操作面板、仿真加工工作区。 1 选择机床类型

图1.2 宇龙数控加工仿真系统3.7版FANUC 0i 车床仿真加工系统界面 打开菜单“机床/选择机床…”,或单击机床图标菜单,如图1.3(a )鼠标箭头所示,单击弹出“选择机床”对话框,界面如图1.3(b )所示。选择数控系统FANUC0i 和相应的机床,这里假设选择铣床,通常选择标准类型,按确定按钮,系统即可切换到铣床仿真加工界面,如图1.4所示。 (a) 选择机床菜单 (b) 选择机床及数控系统界面 图1.3 选择机床及系统操作 图1.4 宇龙数控加工仿真系统3.7版FANUC 0i 铣床仿真加工系统界面 系统菜单或图标 仿真加工工作区 LCD/MDI 面板 机床操作面板

最新工件坐标系教程文件

工件坐标系 工件坐标系是固定于工件上的笛卡尔坐标系,是编程人员在编制程序时用来确定刀具和程序起点的,该坐标系的原点可使用人员根据具体情况确定,但坐标轴的方向应与机床坐标系一致并且与之有确定的尺寸关系。 工件坐标系(Workpiece Coordinate System )固定于工件上的笛卡尔坐标系。于加工工件而使用的坐标系,称为工件坐标系。当工件在机床上固定以后,工件原点与机床原点也就有了确定的位置关系,即两坐标原点的偏差就已确定。这就要测量工件原点与机床原点之间的距离。这个偏差值通常是由机床操作者在手动操作下,通过工件测量头或碰刀的方式测量的。该测量值可以预存在数控系统内或编写在加工程序中,在加工时工件原点与机床原点的偏差值便自动加到工件坐标系上,使数控系统按照机床坐标系确定工件的坐标值,实现零件的自动加工。 加工开始时首先要设定工件坐标系:用G54~G59可选择工件坐标系;TXXXX可以通过刀具偏置来实现工件坐标系偏移;G92(G5O)指令可设定工件坐标系。这几种方法均可建立起工件坐标系。 1、G54~G59选择工件坐标系 使用G54,---G59指令可以在预设的工件坐标系中选择一个作为当前工件坐标系。这六个工件坐标系的坐标原点在机床坐标系中的坐标值(称为零点偏置值),必须在程序运行前,从“零点偏置”界面输入。一般多用于需要建立不止一个工件坐标系的场合。选择好工件坐标系后,若更换刀具,则结合刀具长度补偿指令变换Z向坐标即可。不必更换工件坐标系。 2 、TXXXX工件坐标系偏置 TXXXX可以在选择刀具的同时调用该刀具的偏置值。类似于G54----G59的使用,使用前需在相应的位置偏置处输入对刀值。T代码前两位数字代表刀位号,后两位代表数据偏置号。数据偏置号一般为0至99,也就是说可以进行最多100个数值设置一一相当于建立100个工件坐标系。使用起来无限制。 3、G92(G50)设置工件坐标系 G92一般为数控铣床及加工中心设定工件坐标系指令。G50为数控车床设定工件坐标系指令。使用该指令工件坐标系的原点可设定在相对于刀具起始点的某一符合加工要求的空间点

宇龙数控车床仿真软件的操作

第18章宇龙数控车床仿真软件得操作 本章将主要介绍上海宇龙数控仿真软件车床得基本操作,在这一章节中主要以FANUC 0I与SIEMENS802S数控系统为例来说明车床操控面板按钮功能、MDA键盘使用与数控加工操作区得设置。通过本章得学习将使大家熟悉在宇龙仿真软件中以上两个数控系统得基本操作,掌握机床操作得基本原理,具备宇龙仿真软件中其它数控车床得自学能力. 就机床操作本身而言,数控车床与铣床之间并没有本质得区别。因此如果大家真正搞清楚编程与机床操作得得一些基本理论,就完全可以将机床操作与编程统一起来,而不必过分区分就是什么数控系统、什么类型得机床. 在编程中一个非常重要得理论就就是在编程时采用工件坐标值进行编程,而不会采用机床坐标系编程,原因有二:其一机床原点虽然客观存在,但编程如果采用机床坐标值编程,刀位点在机床坐标系中得坐标无法计算;其二即使能得到刀位点在机床坐标系得坐标,进而采用机床坐标值进行编程,程序就是非常具有局限性得,因为如果工件装夹得位置与上次得位置不同,程序就失效了。实际得做法就是为了编程方便计算刀位点得坐标,在工件上选择一个已知点,将这个点作为计算刀位点得坐标基准,称为工件坐标系原点。但数控机床最终控制加工位置就是通过机床坐标位置来实现得,因为机床原点就是固定不变得,编程原点得位置就是可变得。如果告诉一个坐标,而且这个就是机床坐标,那么这个坐标表示得空间位置永远就是同一个点,与编程原点得位置、操作机床得人都没有任何关系;相反如果这个坐标就是工件坐标值,那么它得位置与编程原点位置有关,要确定该点得位置就必须先确定编程原点得位置,没有编程原点,工件坐标值没有任何意义。编程原点变化,这个坐标值所表示得空间位置也变化了,这在机床位置控制中就是肯定不行得,所以在数控机床中就是通过机床坐标值来控制位置。为了编程方便程序中采用了工件坐标值,为了加工位置得控制需要机床坐标值,因此需要将程序中得工件坐标转换成对应点得机床坐标值,而前提条件就就是知道编程原点在机床中得位置,有了编程原点在机床坐标系中得坐标,就可以将工件坐标值转换成机床坐标值完成加工位置得控制,解决得方法就就是通过对刀计算出编程原点在机床坐标系中得坐标。程序执行时实际上做了一个后台得工作,就就是根据编程原点得机床坐标与刀位点在工件坐标系中得坐标计算出对应得机床坐标,然后才加工到对应得机床位置。 这就是关于编程得最基本理论,所有轮廓加工得数控机床在编程时都采用这样得理论,无论铣床、车床、加工中心等类型得机床,还就是FANUC、SIEMENS、华中数控、广州数控等数控系统,数控机床都必须要对刀,原理都就是完全相同得,而对刀设置工件坐标系或刀补则就是机床操作中得核心内容,如果大家搞清楚这些理论对机床操作将十分具有指导意义. 18、1实训目得 本章主要使大家了解宇龙仿真软件车床得基本操作,熟悉并掌握FANUC0I数控车床得操作界面,在此基础上过渡并熟悉SIEMENS802S数控车床得界面与操作。

数控车床加工坐标系如何确定

数控车床加工坐标系如何确定? 数控车床加工坐标系如何确定?数控车床加工工作是一件要求比较高的事业,在对工件加工制作时,如果坐标设置有一点小小的偏差,就会使产品报废,甚至有可能会带来安全事故。那么数控车床加工坐标系怎么确定呢? (1)数控机床参考点:参考点也是机床上的一个固定点,它是用机械挡块或电气装置来限制刀架移动的极限位置。它的主要作用是用来给机床坐标系一个定位。 (2)机床坐标系:数控机床上的坐标系采用右手笛卡尔直角坐标系。 (3)工件坐标系:工件坐标系是编程人员在编程时设定的坐标系,也称为编程坐标系。 工件坐标系原点:在进行数控编程时,首先要根据被加工零件的形状特点和尺寸,将零件图上的某一点设定为编程坐标原点,该点称编程原点。从理论上将,工件坐标系的原点选在工件上任何一点都可以,但这可能代理啊繁琐的计算问题,增添编程困难。为了计算方便,简化编程,通常是把工件坐标系的原点选在工件的回转中心上,具体位置可考虑设置在工件的左端面(或右端面)上,尽量使编程基准与设计基准、定位基准重合。 对刀:机床坐标系是机床唯一的基准,所以必须要弄清楚程序原点在机床坐标系中的位置,通过对刀完成。对刀的实质是确定工件坐标系的原点在机床坐标系中

唯一的位置。对刀是数控加工中的主要操作和重要技能。对到的准确性决定了零件的加工精度,同时,对刀效率还直接影响数控加工效率。 换刀:当数控机床加工过程中需要换刀时,在编程时就应考虑选择合适的换刀点。所谓换刀点是指刀架转位换刀的位置,当数控车床确定了工件坐标系后,换刀点可以是某一固定点,也可以是相对工件原点任意的一点。换刀点应设在工件或夹具的外部,以刀架转位换刀时不碰工件及其他部位谓准。 上海市松江丰远是在原松江县骏马五金厂(1995年成立)的基础上成立的,位于国际大都市上海的西郊。工厂是由三线建设大型军工企业回沪人员创建。二十多年来先后成为几十家内外资企业的配套厂家。以合理的价格、可靠的质量多次成为年度先锋供应商。配套产品远销十多个国家和地区。“合作共赢”是我厂宗旨。 我厂主要业务:机械零配件制作,工装夹具制作,铝制吸塑模设计制作,液压阀块制作,橡胶辊制作,工业滚筒制作以及上海地区的机械加工。

相关文档
最新文档