巧用定积分求极限(数学分析)

巧用定积分求极限(数学分析)
巧用定积分求极限(数学分析)

定积分在求极限中的应用

1、知识准备

1.1绪论

微积分学在大学的数学学习中占有相当重要的地位.然而,求极限又是微积分学中常常要面临的问题.因此,积累更多求极限的方法应是每位大学生必备的素养.

求极限的方法层出不穷,最常用的方法有极限的定义和性质,重要极限的结论,洛必达法则以及泰勒公式等.应用极限的定义时,往往是在极限的结果已经比较明显,只需要根据极限的定义把相关式子进行放缩便可得到相应的结果.但是,这种方法一方面叙述上比较麻烦,另一方面也只适用于看上去容易放缩的式子.重要极限的结论形式上要求

非常严格,也只能解决两种形式的极限问题.洛必达法则是用于解决“0

”型的极限和

“∞

”型极限的.泰勒公式适宜于解决求分式极限中分子或分母有加减运算的问题,通过泰勒展式后可以达到某些项抵消效果.但若仔细观察这些方法,其特点不是表达较繁琐就是仅仅应用到微分学知识.事实上,微分学和积分学的关系正如中小学时代学习过的加法与减法,乘法与除法,乘方与开方以及幂运算与取对数运算的关系一样,他们互为逆运算.倘若也能用到积分学知识来解决求极限的问题,那么求极限的方法才算完美.而利用定积分求极限正体现了这一理念. 1.2定积分的概念

下面首先让我们回顾一下定积分以及极限的定义:

定积分:设函数()f x 在闭区间[],a b 上有定义,在闭区间[],a b 内任意插入n-1个分点将

[],a b 分成

n 个区间[,]x i i x x -,记(1,2,

,i i i x x x i n ?=-=),1[,]i i x x ξ-?∈,作乘积

()i i f x ξ?(称为积分元),把这些乘积相加得到和式1

()n

i i i f x ξ=?∑(称为积分形式)设

{}max :1i x i n λ=?≤≤,若0

1

lim ()n

i i i f x λξ→=?∑极限存在唯一且该极限值与区是[],a b 的分法及分点i ξ的取法无关,则称这个唯一的极限值为函数()f x 在[],a b 上的定积分,记作

b a

()f x dx ?,即0

1

()lim ()n

b a

i i i f x dx f x λξ→=?=?∑.否则称()f x 在[],a b 上不可积.

注1:由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号.

注2:若()b a f x dx ?存在,区间[],a b 进行特殊分割,分点i ξ进行特殊的取法得到的和式

极限存在且与定积分的值相等

,但反之不成立,这种思想在考题中经常出现,请读者要真正理解.

注3:定积分是否存在或者值是多少只与被积函数式和积分区间有关与积分变量用

什么字母表示无关,即()()().b b b

a a a f x dx f t dt f u du ?=?=?

仔细观察定积分的定义,我们一定会发现定积分的极限有以下两个特征.第一,定积分是无穷项和式的极限,容易知道一般项在项数趋近于无穷大时极限值必然趋近于零,否则和式极限不存在.第二,定积分与某一连续函数有紧密的关系,它的一般项受到这一连续函数的约束,它是连续函数在某个区间上进行了无穷的分割,各小区间上任意的函数值与区间长度的乘积的累加.

对于极限,大学主要学习了数列的极限和函数的极限.数列的极限是用于解决离散的自然数的相关极限,而函数的极限则主要用于解决连续函数的相关极限.那么就让我们先一一来回忆它们吧! 1.3极限的概念

数列的极限

设{}n a 为数列, a 为实数,若对任给的正数ε,总存在正整数N ,使得当n N >时有

||n a a ε-<, 则称数列{}n a 收敛于a ,实数a 称为数列{}n a 的极限,并记作lim n n a a →∞

=或

()n a a n →→∞.

(读作:当n 趋于无穷大时, n a 的极限等于a 或n a 趋于a ).由于n 限于取正整数,所以在数列极限的记号中把n →+∞写成n →∞,即lim n n a a →∞

=或()n a a n →→∞.

若数列{}n a 没有极限,则称{}n a 不收敛,或称{}n a 为发散数列.

注1:关于ε:①ε的任意性.定义1中的正数ε的作用在于衡量数列通项n a 与常数a 的接近程度,ε越小,表示接近得越好;而正数ε可以任意小,说明n a 与常数a 可以接近到任何程度;②ε的暂时固定性.尽管ε有其任意性,但一经给出,就暂时地被确定下来,以便依靠它来求出N;③ε的多值性.ε既是任意小的正数,那么2,3,2ε

εε等等,同样也是任

意小的正数,因此定义1中的不等式||n a a ε-<中的ε可用

2,3,2

ε

εε等来代替.从而

“||n a a ε-<”可用“||n a a ε-≤”代替;④正由于ε是任意小的正数,我们可以限定ε小于一个确定的正数.

注2:关于N :①相应性,一般地, N 随ε的变小而变大,因此常把N 定义作()N ε来强调

, N 是依赖于ε的;ε一经给定,就可以找到一个N ;②N 多值性N 的相应性并不意味着N 是由ε唯一确定的,因为对给定的ε,若100N =时能使得当n N >时,有

||n a a ε-<,则101N =或更大的数时此不等式自然成立.所以N 不是唯一的.事实上,在

许多场合下,最重要的是N 的存在性,而不是它的值有多大.基于此,在实际使用中的N 也不必限于自然数,只要N 是正数即可;而且把“n N >”改为“n N >”也无妨.

函数的极限

设函数()f x 在点0x 的某一去心邻域内有定义.如果存在常数A ,对于任意给定的正数ε(不论它有多么小),总存在某正数δ,使得当x 满足不等式00x x δ<-<时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A 就叫做函数()f x 当0x x →时的极限,记为0

0lim ()()()x x f x A f x A x x →=→→或当.

可以看出,数列极限与函数极限定义的思想是一致的,都是相应的某个表达上的值无限地接近某个常数值.不同的是数列是离散的,数列中的项在跳跃式地接近,而函数是连续的,函数值在逐渐地接近,但二者都能与相应的常数值以任意程度地接近.

2、定积分与极限

2.1定积分在求极限中应用概述

不难看出,无论是数列的极限还是函数的极限,它们都与定积分的定义存在着千丝万缕的关系,那么就让我们来揭晓它们之间玄机与奥秘吧.

事实上,定积分的定义中蕴含着一列数{()i i f x ξ?}的和,并且只要i x ?充分地小,和式1()n

i i i f x ξ=?∑就可以任意地接近确定的实数J=()b a f x dx ?,这正是极限思想的存在,即

1

lim ()J ()n

b i i a n i f x f x dx ξ→∞

=?==?∑.这就为我们求极限提供了一种独特而有力的方法——利

用定积分求极限.因为在积分学中有大量的积分公式,所以我们运用之解决众多类型的和式极限.

2.2定积分求极限中应用思想的形成

先让我们看一个简单的例子:

例1.求极限111

lim()122n J n n n

→∞++=++….

分析:此极限式的求解,不容易直接用极限的定义解决,因为该法往往是用来一边计算一边证明某个极限结果已经比较明显的问题,因此这里不适合;重要极限的结论显然也在这里没有用武之地,因为形式上根本不同;再考虑洛必达法则,它不是无穷比无穷型

的极限也非零比零

型的极限,也不可能用到此法;那么泰勒公式呢?泰勒公式往往是用来解决连续函数的极限问题,通过泰勒展式往往能把非多项式形式的表达式转化成多项式形式,以简化形式从而求解,看来这里也不适用.那是不是就没有什么合适的办法了呢?答案当然是否定的,事实上,它从形式上与定积分的定义还是有一些相像的,那么就让我们尝试用定积分的办法来解决这个问题吧!

解:把此极限式转化为某个积分形式,从而计算定积分.为此做如下变形:

1

11

lim 1n

n i J i n n

→∞==+∑

.

不难看出,其中的和式是函数1

()1f x x

=

+在区间[]0,1上的一个积分和(这里取得是等量分割,11,[,],1,2,i i i i i

x i n n n n n

ξ-?==∈=…).所以,

J=11001ln(1=ln21dx x x

=++?). 从该例题的解法中可以看出,本题的关键是将极限和转化为积分和,从而利用了定

积分将所求极限迎刃而解.于是,我们可以总结出定积分在求极限中应用的一般方法步骤:

Sept1将和式极限1

lim ()n n i g i →∞=∑经过变形,使其成为积分形式1

lim ()n

i i n i f x ξ→∞

=?∑.这里常取11,[,],1,2,i i i i i x i n n n n n

ξ-?==∈=…;

Sept2确定积分函数的上下限.

a=lim (i n i ξ→∞

取第一个值)lim (i n b i ξ→∞

=取最后一个值)

; Sept3用x 代换i ξ,写出定积分表达式()b

a

f x dx ?,并求出原极限的值.

通过以上的一般方法步骤,我们在面对无穷项和式的极限问题时就有方可依,有法可循了.现在让我们再来看一个例子,并从中仔细体会以上方法步骤.

例2.求极限222222

111

lim (12n n n n n n →∞+++++…+)

. 解:Sept1 化和式极限为积分形式.

原极限=22211

111

lim lim 1(n

n n n i i i n i n n

→∞→∞===++∑∑)

.

显然,这里1,(i i i x n n ξ=?=即是进行N 等分),被积函数可看成()2

1

f x ,1,2,.1+i n x =

=…

Sept2 确定积分函数上下限.

1a lim 0(,1),lim 0(,).i i n n i n i

i b i n n n n ξξ→∞→∞======取取n

Sept3 写出积分表达式并求出积分值.

原极限=11

0201arctan 14

dx x x π==+?. 对于本题,我们是紧紧按照刚刚总结出的方法步骤进行的,并顺利地求出了原题的极限值.这是一个具体的例子,那么我们是否可以总结出更为一般性结论呢?答案自然是肯定的.

3、应用定积分求极限

3.1一般性结论的综述及其应用

至此,我们可以得出如下结论:

结论1如果函数()f x 在区间[],a b 上连续,将区间[],a b 进行n 等分,

1[(()],i i i i b a

b a b a x n n n

ξ--∈--?=),,那么,1lim ()()n b i a n i b a f f x dx n ξ→∞=-=∑?. 事实上,连续函数一定可积,而将区间[],a b 进行n 等分也是分割T 的一种特殊情况.根据定积分的定义,上述结论成立.

当然,并不是所有的用到定积分求极限的问题中都要严格用到上面总结出的三个步骤,我们可视情况灵活处理,比如无需用到某一步骤或者还需用到其他求极限的思想等.下面我们再看一组求极限的习题,以充分感受结论1的用途.

习题组1

1) 1lim (sin +sin +sin );n n n n n

πππ→∞2n-1

2)

n →∞

3) sin

sin

sin

lim[

]11

12n n n n n n n n

π

ππ

→∞+++++2n …. 这组习题都是无穷项式子和的极限问题,都可以把定积分的思想应用到求极限中去.

现在就让我们用结论1来解决这些求极限的问题,并从不同习题中寻找出异同,以加深对结论1的掌握和认识.

解: (1) 分析 原极限显然可以看成()sin f x x π=在[]0,1上的定积分.故

1

110

11lim (sin +sin +sin )lim sin 12sin cos ;n n n i i n n n n n n xdx x ππππππππ

→∞→∞====-=∑?2n-1…

(2)分析 先通过恒等变形,原极限式

=1

1lim n

n i n →∞=,被积函数(

)f x =

,积分区间是[]0,1,于是原极限值

=1

10

22

(13)33x =+=?

; (3)分析 原和式极限的通项是

sin i

n i n n

π

+不可以看成是关于i n 的某一个函数,但是注意到: 2sin

sin

sin

1212(sin sin sin )(sin sin sin ).11112n n n n n n n n n n n n n n n n n n

π

ππ

ππππππ+++<

+++<+++++++

……… 应用结论1,上面不等式左端可以取极限,即

11

1211lim (sin sin sin )lim sin [lim sin ][lim ]1+1+1n

n n n n n i i n n i i n n n n n n n n n n n πππππ→∞→∞→∞→∞==+++=??=?+∑∑…=1

2

[sin ]1xdx ππ

?=

?,上面不等式右端可以取极限,即

1011212

lim (sin sin sin )lim sin sin n n n i n i xdx n n n n n

n ππππππ→∞→∞=+++=?==∑?….

于是,由极限的迫敛性可知原极限值=

2

π

. 这组题均典型地运用了定积分的计算,从而求出了各极限.我们发现,只要找到某个

连续函数()f x ,并能把这个和式极限1

lim ()n

n i g i →∞=∑转化成积分形式1

limf ()n i n n →∞?,我们就只需

计算出f(x)在[0,1]上的积分值,从而确定出原极限值.这三个习题中,例题1的式子无

需再进行恒等变形,因为其形式上已经是lim n →∞f(i n )1

n ?了;习题2与习题3形式上直观上

不是lim n →∞

f(

i n )1

n ?的形式,

因为式子+n →∞与式子

sin

sin

sin

lim[

]1112n n n n n n n n

π

ππ

→∞+++++

2n …都不含i n 的项.为此,我们需要对习题2以及习题3极限的式子进行恒等变形,通过提取公因式等手段使其出现i

n

的因子.当然有的题可能不

容易找到对应的连续函数()f x ,例如习题3,我们可以用极限的一些性质,如极限的迫敛性,从而间接地求出原和式极限的极限值. 3.2一般性结论的深化及推广

接下来,我们对结论1进行适当的推广,以得到更多形式的极限的求法.

推论1如果函数(),(),()()f x g x f x g x ?均在[],a b 上可积,

0111120

1

[,],[,]lim ,max{,,},lim ()()()().

n i i i i x n

b

i i i n i i i a

i a x x x b a b x x x x x x x f g x f x g x dx λξηλξη-→∞

-→==<<<=?=-=????=∑?…为区间的任意划分,小区间上任意两点,…则

证明:首先, (),(),()()f x g x f x g x ?均在[],a b 上可积.

又由于1,,i i i i n n ξη-??

∈????

,0(i x n ?→→∞当),所以,lim lim .i i n n ξη→∞→∞=

于是,0

1

lim ()()n i i i i f g x λξη→=?∑=0

1

lim ()()n

i i i i f g x λξξ→=?∑=()()b

a

f x

g x dx ?.

例3.求极限:

122lim [sin cos()sin cos()sin cos()]222n n n n n n n n n n n n n πππππππππ

→∞-+-++-…. 解:由推论1可知,f(x)=

(1)sin ()cos [0,1],[,],0,1,2,(1).

2i i i i x g x x i n n n n n n

πππππ

ππ-=-∈=-及皆在上可积,且…

lim lim(),1,2,.2n n i i i n n n n

πππ

→∞→∞=-=… 于是,原极限式=1210011

sin cos sin 02

x xdx x ππππ=??=?. 推论2

设1

0ln ()ln ()0,1]lim

.f x dx n f x e →∞

?=在区间[上可积,则

1

0112lim [ln ()ln ()ln ()]ln (),lim

(n n

f f f n n n n

n f x dx

e e →∞++→∞

=?=…事实上对数的性质)(定积分的定义).

4.试求:1

12lim(

)n n n n n n n n n

→∞+++??…. 2解:直接应用推论

1

01

011

ln(1)1[ln(1)ln(1)]12lim()lim (1)4.

n

x dx n

n n n i x x x x n n n n i e n n n n e e

+→∞→∞=+++-+++???=+===∏…

推论3如果函数()f x 在区间[]0,1上可积,且

()1

()11121f x 0,lim[1+()][1+()][1+()]f x dx n n

f f f e n n n n n n

→∞?≥??=则…. 证明:记

A=11121lim[1+()][1+()][1+()]n n f f f n n n n n n →∞??…,则1

1ln lim ln[1+()]n n i i

A f n n →∞==∑

1

0()()11()1011()1111lim ln[1+()]lim ln[1+()]11lim ln lim ()()A .

n i

f i n n n

f n n

n n i i i n

n f n n n i i f x dx

i i

f f n n n n

n n i

e f f x dx

n n

n e ?→∞→∞==→∞→∞======?=?=∑∑∑∑?于是,

例5.计算22212lim(1)(1)(1)333n n n n n

→∞

+

?++…. 解:本题也可以直接运用推论3,

101

1

36

2221

1211lim(1)(1)(1)lim (1).3333xdx

n

n n i n i

e e n n n n n →∞→∞=?+?++=+??==∏…

这三个推论是对结论1的必要补充与完善.形式上我们不仅有无穷项式子和的极限,还衍生出了无穷项式子乘积的极限.它们都是顺着结论1的思路继续进行探索,从形式上丰富了定积分在求极限中应用这一思想,但从本质上讲,它们与结论1是一致的.它们都紧紧抓住了定积分概念的实质,意识到定积分是无穷项和的极限,应用数学的一些基本性质,对各式子进行恒等变形,尽量把不同形式的极限向定积分定义中的和式上去靠拢.最终通过简单明了的定积分公式,求出定积分的值来,以确定出原极限的值.由这三个推论

来看,

11111

1111lim (),lim ()(),,[,],lim [()],lim [1+()]n n n

n

n

i i i i n n n n i i i i i i i i i f f g f f n n n n n n n n ξηξη→∞→∞→∞→∞====-?∈∑∑∏∏对于等形

式的极限,我们都有方可循,用定积分的方法容易求出其极限来.对于任何一种数学方法

,只要我们仔细地观察与推究,都能将其结论或应用范围加以推广,就像结论1.现在让我们来看一组习题,以体会以上诸推论.

现在,我们已经积累了多种求和式极限的方法,它们是今后应用定积分解决极限类问题的最佳模型与范例.那就再让我们来看一组习题,以熟悉与巩固

1111lim (),lim n

n

n n i i i f n n n →∞→∞==∑∑ 等形式的极限吧.

下面这组习题综合用到了以上各结论与推论.

习题组2用定积分的方法计算下列各极限.

(1)222

111

lim [

](1)(2)()

n n n n n n →∞

++++++…; (2)11111212111

lim [()sin(+()sin(++()sin(]232323

n n n n n n n n n n n n n n n n →∞------))…);

(3)lim

n →∞

(4)111lim(1)(1)(1)12n n n n n

→∞+

+++++….

解:分析 以上例题都容易恒等变形,使其满足结论1或者推论1至推论3的条件.于是,

(1)122222*********

lim []();(1)(2)()(1)21n n i n dx i n n n n n x n

→∞=+++===+++++

∑?… (2)11111212111

lim [()sin(+()sin(++()sin(]232323

n n n n n n n n n n n n n n n n →∞------))…)

=11

sin n

i i i n

ξη=?∑,1,[,],1,2,1i i i i i n n n ξη-∈=-…

=1

0sin sin1cos1;x xdx =-?

(3)1

011ln(1)21

lim

lim[(1)]2n x dx n n n i i e

n ππ-+→∞

→∞=?=+?=∏ 22

(1)ln(1)1ππ

=++- ;

(4)1

0111

11111lim(1)(1)(1)(1)2121n dx x n i e i n n n n n n

+→∞=?+++=+?==++++∏….

111

11()(),,[,],lim [()],lim [1+()]

n n

n i i i i n n i i i i i i f g f f n n n n n ξηξη→∞→∞==-?∈∏∏

3.3定积分在求极限中应用思想的转移

至此,我们已经深深的体会到了各种形式的定积分在极限中应用的作用.仅仅于此,我们尚不能满足,我们可以把定积分在求极限中的应用思想借鉴到其他方面.例如,利用这种思想方法来证明一些不等式,或者用之解决一些复杂一点的求极限问题.下面将举例说明.

例 6.证明:若函数

()f x 在[],a b 上连续,且对于[],x a b ?∈,有()0f x >,则

21

()()()

b

b

a

a

f x dx dx b a f x ≥-?

?

. 证明:已知()f x 与()g x 在[],a b 上都可积.将[],a b 进行N 等分,分点是

01n a x x x b =<<=…<.在第K 个区间上取1,k k k k b a

x x x n

ξ--=-=

.由算数平均不小于几何平均,有

121

1

11

(()1(()()n

n

k n

n

k k k k k k k f x f x b a b a f x b a n f x n n n

====--???=-??≥∑∑∑∑))

22

(()b a b a -=-)

21

()()()

b

b

a

a

n f x dx dx b a f x →∞≥-??

当时,有. 体会:本例恰巧反过来,将积分和转化为极限和的形式,并运用了算术平均数不小于几何平均数这一结论,将问题化繁为简.较好地认识与掌握定积分与极限之间的关系是解决本问题的关键.该例题说明,我们应该充分认识到定积分在极限中的作用,并能做到灵活变通,适当情形下,二者可以相互转化,将问题化难为易,从而达到解决问题的目的.

例7.试求极限(21)!!

lim[

](2)!!

n m m →∞

-.

分析:该问题似乎不能直接运用结论1或推论1至推论3来求极限.因为极限的表达式不容易化成以上结论或者推论的情形.但是,该问题的解决就真用不到定积分了吗?答案是否定的.在解决该问题之前,还是先让我们看一下沃利斯公式的由来吧! 沃利斯公式:2(2)!!1lim[

](21)!!212

m m m m π

→∞

?=-+.

证明:令20

sin ,1,2,n n J xdx n π

==?…,则当2n ≥时用分部积分法容易求得

1

222220

22220

sin sin

cos (1)sin cos (1)sin sin (1)(1.

n

n n n

n n n n n J xdx x x

n x xdx n xdx xdx n J n π

π

π

ππ----==-+-=--=---????)J

移项并整理后可得递推公式:21

, 2.n n n J J n n

--=

≥由于 22010

,sin 1,2

J dx J xdx π

π

π

==

==??重复应用上面的递推公式可得

2212123122222()2222

121213m m m m J m m m m J m m π+--?

=

?????

-**?-?

=????+-?……,

又由于

21

22-12

220

sin

sin

sin m m

m xdx xdx xdx π

π

π

+<

??,再将

**()式代入,便可以得到 22(2)!!1(2)!!1

[

][](21)!!212(21)!!2m m m m A B m m m m

π=<<=-+-,因为

2(2)!!110[

]0()(21)!!2(21)22

m m m B A m m m m m π

<-=

lim()0m m m B A →∞

-=.而02

m m m A B A π

<

-<-,故得沃利斯公式

2(2)!!1lim[

](21)!!212m m m m π

→∞

?=

-+.

现在让我们来仔细看看沃利斯公式究竟与定积分有什么关系吧!事实上,在计算定积分

20

sin ,1,2,n n J xdx n π

==?…时,我们巧妙地运用了定积分的递推表达式,这样我们才正

真地寻找到了解决极限问题的金钥匙,看来定积分的运算还是在其中发挥了不可低估的作用.那么就让我们直接运用该公式来探究例8问题吧!

根据沃利斯公式2(2)!!1lim[](21)!!212

m m m m π→∞?=-+,可知1

(21)!!

21lim lim 0(2)!!2

m m m m m π→∞→∞-+==.

从某种程度上讲,我们利用了定积分方法解决了例8中极限的问题.倘若我们采用其方法来求这个极限,恐怕会走一些弯路. 3.4定积分在求极限中应用思想的完善

我们知道反常积分也是定积分在极限下定义出来的.以上的所有求极限问题都是将极限的表达式整体转化成积分形式,从而应用了定积分巧妙地求出了原极限的结果,那么能不能把定积分在求极限中局部应用呢?现在我们再来看一个有趣的问题,以便说明此问题.

8.证明:1112lim 1ln n n n

→∞++=…+. 分析:这个例题不同于前面所有的例题,前面的例题,我们都能迅速地将所求极限的

表达式转化成1

lim ()n

i i n i f x ξ→∞

=?∑,而本例不行,但它形式上与我们讨论的定积分在求极限中

应用的例子非常相像,因为式子中有无穷多项和11

n

i i

=∑,所以我们就尝试用定积分的方法

来求它吧!

把这个极限式子的分子进行适当变形11111

n

n i i i i

n n

===∑∑.如果根据前面的经验,我们知

道101

11

1lim n n i dx i n x n →∞==∑?的.可是现在我们对两个问题有所质疑.第一,我们并没有把原极限

式直接转化成积分形式;第二,即使局部用到了定积分1

01

dx x ?,但我们知道101dx x

=∞?的.

事实上,原式经变形后,我们会发现分子与分母中的无穷大量是等价的.即

11

0001111111lim(ln )lim(ln )ln 2lim lim lim 1ln ln lim ln lim ln lim ln ln n i x x n n x x x x i n dx x x n n x x n n x x x x

++

=→→→∞→∞→+∞→+∞

→+∞

→+∞

++-======∑?…+(这里我们统一了分子分母中的变量,统一用变量x,这里已经表示变量x 是逐步趋近,由数学分析中归结原理”,这个手段是不影响极限结果的).

最后我们求得其结果,11

12lim 1ln n n n

→∞++=…+. 由此可以看到,在求极限的问题中,定积分的思想不仅可以对表达式整体使用,也可以对其进行局部使用.总之,只要我们善于思考书本上的一些概念以及分析它们之间联系,我们就往往能够游刃有余地把一种数学思想用于解决其他数学问题上.

最后,让我们再来总结一下,定积分在求极限中应用时所应该注意的几个问题. 第一,极限必须是无穷项和的极限,并且这些和的极限经过适当的恒等变形之后能

转化为定

求极限的方法总结

学号:0 学年论文 求极限的方法总结 Method of Limit 学院理学院专业班级 学生指导教师(职称) 完成时间年月日至年月日

摘要 极限的概念是高等数学中最重要、最基本的概念之一。许多重要的概念如连续、导数、定积分、无穷级数的和及广义积分等都是用极限来定义的。因此掌握好求极限的方法对学好高等数学是十分重要的。但求极限的方法因题而异,变化多端,有时甚至感到变幻莫测无从下手,通过通过归纳和总结,我们罗列出一些常用的求法。本文主要对了数学分析中求极限的方法进行一定的总结,以供参考。 关键词:极限洛必达法则泰勒展开式定积分无穷小量微分中值定理

Abstract The concept of limit is the most important mathematics,one of the most basic important concepts such as continuity,derivative,definite integral,infinite series and generalized integrals and are defined by the mater the methods the Limit learn mathematics integrals and are defined by the limit varies by title,varied,anf sometimes even impossible to start very unpredictable,and summarized through the adoption,we set out the requirements of some commonly used this paper,the mathematical analysis of the method of seeking a certain limit a summary for reference. Keyword:Limit Hospital's Rule Taylor expansion Definite integral Infinitesimal Mean Value Theorem

微积分-求极限的方法

求极限方法一:直接代入法 例一:()=24 例二:()= 类似这种你直接把x趋近的值代入到函数里面,就可以直接得到函数的极限了。 知识点1:当x趋近值代入后,分子为0,分母不为0时,函数极限等于0 知识点2:当x趋近值代入后,分子不为0,分母为0时,函数极限等于 方法二:因式分解法(一般是平方差,完全平方,十字相乘) 普通的就是分子分母约去相同的项,因为x是趋近值,所以上下是可以约去的,不用考虑0的问题。类似=() 下面讲个例 知识点3:=(x-y)() 例三:== 方法三:分母有理化(用于分母有根式,分子无根式) 例四:= 方法四:分子有理化(用于分子有根式,分母无根式) 例五:==1 方法五:分子分母同时有理化(用于分子有根式,分母有根式) 例六:

知识点4:(使用这个知识点时,必须注意只能在x趋近于无穷时使用,且使用时只用看各项的最高次数,不用管其他) 例七:()=(分子的最高次是两次,大于分母最高次一次,所以直接得出极限为无穷大) 例八:=0 (分子的最高次是一次,小于分母最高次两次,所以直接得出极限为零) ) 例九:(分子的最高次是一次,等于分母最高次一次,所以直接得出极限为分子最高次数项系数 分母最高次数项系数 方法六:通分法(若函数为两个分数相加减时,通常先同分再做处理,一般情况下同分后都要进行因式分解,然后分子分母约去相同的多项式) 例十:- 知识点5:当一个无穷小的函数乘以一个有界函数时,新函数的极限仍为无穷小。(有限个无穷小仍为无穷小=常量与无穷小量的乘积仍是无穷小量) 例十一:()=0 函数左边用知识点4得出是无穷小,右边3+cosx是有界函数,所以新函数极限为无穷小,即0 所有求极限的题中,代入x趋近值后,若出现或,都可以使用洛必达法则求解极限。

基本积分公式

§5.3基本积分公式 重点与难点提示 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式. (1) ( 5.6 ) (2) ( 5.7 ) (3) ( 5.8 ) (4) ( 5.9 ) (5) ( 5.10 ) (6) ( 5.11 ) (7) ( 5.12 ) (8) ( 5.13 ) (9) ( 5.14 )

(10) ( 5.15 ) (11) ( 5.16 ) 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有.

是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数)

数学分析不定积分

第八5章不定积分 教学要求: 1.积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 2.换元积分公式与分部积分公式在本章中处于十分重要的地位。要求学生:牢记换元积分公式和选取替换函数(或凑微分)的原则,并能恰当地选取替换函数(或凑微分),熟练地应用换元积分公式;牢记分部积分公式,知道求哪些函数的不定积分运用分部积分公式,并能恰当地将被积表达式分成两部分的乘积,熟练地应用分部积分公式;独立地完成一定数量的不定积分练习题,从而逐步达到快而准的求出不定积分。 3.有理函数的不定积分是求无理函数和三角函数有理式不定积分的基础。要求学生:掌握化有理函数为分项分式的方法;会求四种有理最简真分式的不定积分,知道有理函数的不定积分(原函数)还是初等函数;学会求某些有理函数的不定积分的技巧;掌握求某些简单无理函数和三角函数有理式不定积分的方法,从理论上认识到这些函数的不定积分都能用初等函数表示出来。 教学重点:深刻理解不定积分的概念;熟练地应用换元积分公式;熟练地应用分部积分公式; 教学时数:18学时

§ 1 不定积分概念与基本公式(4学时)教学要求:积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 教学重点:深刻理解不定积分的概念。 一、新课引入:微分问题的反问题,运算的反运算. 二、讲授新课: (一)不定积分的定义: 1.原函数: 例1填空: ; ( ; ; ; ; . 定义. 注意是的一个原函数. 原函数问题的基本内容:存在性,个数,求法. 原函数的个数: Th 若是在区间上的一个原函数, 则对,都是在区间上的原函数;若也是在区间上的原函数,则必有. ( 证)

数学分析中求极限的方法总结

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理1.1: (1 (2(3)若B ≠ ((5)[] 0lim ()lim () n n n x x x x f x f x →→??==A ???? (n 为自然数) i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商. 例1。 求225 lim 3 x x x →+-的极限 解:由定理中的第三式可以知道 ()()22222 lim 55lim 3lim 3x x x x x x x →→→++=-- 22 2 2 2 lim lim5 lim lim3x x x x x x →→→→+= + 2259 23+ ==-- 例2. 求3 x →

33 22 x x →→ = 3 x→ = 1 4 = 式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可例3。已知() 111 1223 1 n x n n =+++ ??-?, 解:观察 11 =1 122 - ? 111 = 2323 - ? 因此得到() 111 12231 n x n n =+++ ??-? 1111111 1 22 11 n n n =-+-+-+- -- 所以 1 lim lim11 n n n x n →∞→∞ ?? =-= ? ?? 2 利用导数的定义求极限 导数的定义:函数f(x) 如果 ()( ) 00 lim lim x x f x x f x y x x ?→?→ +?- ? = ?? 存在, 则此极限值就称函数f(x) () 'f x。 即

专题利用定积分定义求极限

专题1——利用定积分定义求极限 对于满足如下条件的极限,可以考虑采用利用定积分定义求极限的方法: ① 是n →∞时的极限 ② 极限运算中含有连加符号1n i =∑ 在定积分的定义中,我们把区间[,]a b 平均分成n 个小区间(定积分的定义中是任意分割区间[,]a b , 我们当然可以平均分割),那么每个小区间的长度为 b a n -(即定义中的i x ?),这n 个小区间分别为[,]b a a a n -+,[,2]b a b a a a n n --++,[2,3]b a b a a a n n --++,……,[(2),(1)]b a b a a n a n n n --+-+-,[(1),]b a a n b n -+-,在定义中每个小区间上任意取的i ξ我们一致取为每个小区间的右端点i b a a i n ξ-=+(也可以取左端点(1)i b a a i n ξ-=+-),那么定义中的1()n i i i f x ξ=?∑就变为1()n i b a b a f a i n n =--+∑,那么1 lim ()()n b a n i b a b a f a i f x dx n n →∞=--+=∑?。(取左端点时1lim ((1))()n b a n i b a b a f a i f x dx n n →∞=--+-=∑?) 注意:定积分的定义中0λ→表示的意思是把区间分割为无线个小区间(n →∞也表示把区间分割成无数个小区间,但是在任意分割的前提下,不能用n →∞来表示把区间分割成无数个小区间,这里的原因我是理解的,但是不好表述,你清楚结论就行了),当分割方式为均等分割时,n →∞就表示把区间分割成无数个小区间,所以这里是1 lim ()()n b a n i b a b a f a i f x dx n n →∞=--+=∑?,而不是01 lim ()()n b a i b a b a f a i f x dx n n λ→=--+=∑?。 如()f x 在区间[0,1]上的积分可以表示为1 01 1()lim ()n n i i f x dx f n n →∞==∑?——i ξ取每个小区间的右端点,或者1 01 11()lim ()n n i i f x dx f n n →∞=-=∑?——i ξ取每个小区间的左端点。 举例:求3 41lim n n i i n →∞=∑

数学分析9.1定积分概念

第九章 不定积分 1 定积分概念 一、问题提出 1、曲边梯形的面积:设f 为[a,b]上的连续函数,且f(x)≥0,由曲线y=f(x),直线x=a ,x=b 以及x 轴所围成的平面图形,称为曲边梯形. 在[a,b]内任取n-1个分点,依次为:a=x 0

作的功就近似等于F(ξi )△x i , 从而W ≈∑=n 1 i F (ξi )△x i (△x i =x i -x i-1). 对[a,b]作无限细分时,和式与某一常数无限接近,则把此常数定义为变力所作的功W. 注:解决这类问题的思想方法概括为“分割,近似求和,取极限”. 二、定积分的定义 定义1:设闭区间[a,b]内有n-1个点,依次为:a=x 0

数学分析求极限的方法

求极限的方法 具体方法 ⒈利用函数极限的四则运算法则来求极限 定理1①:若极限)(lim 0 x f x x →和)(lim x g x x →都存在,则函数)(x f ±)(x g ,)()(x g x f ? 当0x x →时也存在且 ①[])()()()(lim lim lim 0 .0 x g x f x g x f x x x x x →→→±=± ②[])()()()(lim lim lim 0 x g x f x g x f x x x x x x →→→?=? 又若0)(lim 0 ≠→x g x x ,则 ) () (x g x f 在0x x →时也存在,且有 )()()() (lim lim lim 0 x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如 ∞ ∞、00 等情况,都不能直接用四则运算法则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。 " 例1:求24 22 lim ---→x x x 解:原式=()()()022 22lim lim 22 =+= -+-- - →→x x x x x x ⒉用两个重要的极限来求函数的极限 ①利用1sin lim =→x x x 来求极限 1sin lim 0 =→x x x 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有

()()1sin lim 0=→x g x g x x 或()()1sin lim =∞ →x g x g x 例2:x x x -→ππ sin lim 解:令t=x -π.则sinx=sin(-π t)=sint, 且当π→x 时0→t 故 1sin sin lim lim 0 ==-→→t t x x t x ππ ~ 例3:求() 11 sin 21 lim --→x x x 解:原式=()()()()()()()211sin 1111sin 1221 21lim lim =--?+=-+-+→→x x x x x x x x x ②利用e x x =+∞→)1 1(lim 来求极限 e x x =+∞ →)1 1(lim 的另一种形式为e =+→α α α1 )1(lim .事实上,令 .1 x =α∞→x .0→?α所以=+=∞ →x x x e )11(lim e =+→ααα1 0)1(lim 例4: 求x x x 1 )21(lim +→的极限 解:原式=221 210)21()21(lim e x x x x x =?? ?+????+→ 利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。一般常用的方法是换元法和配指数法。 ⒊利用等价无穷小量代换来求极限 所谓等价无穷小量即.1) () (lim =→x g x f x x 称)(x f 与)(x g 是0x x →时的等价无穷小量,记作)(x f )(~x g .)(0x x →.

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

定积分的基本公式

第三讲 定积分的基本公式 【教学内容】 1.变上限积分函数 2.牛顿-莱布尼兹公式 【教学目标】 1.掌握变上限积分函数 2.掌握牛顿-莱布尼兹公式 【教学重点与难点】 牛顿-莱布尼兹公式 【教学过程】 一、引例 一物体作变速直线运动时,其速度)(t v v =,则它从时刻a t =到时刻b t =所经过的路程S : dt t v S b a ? = )( 另一方面,如果物体运动时的路程函数)(t S S =,则它从时刻a t =到时刻b t =所经过的路程 S 等于函数)(t S S =在],[b a 上的增量 )()(a S b S - 同一物理量(路程)的两种不同数学表达式应该是相等的, ∴ dt t v S b a ? = )()()(a S b S -= ∵ )()(/ t v t S = ∴ ? ? = = b a b a dt t S dt t v S )()(/)()(a S b S -= 二、变上限积分函数 1.定义:如果函数)(x f 在区间],[b a 上连续,那么对于区间],[b a 上的任一点x 来说,)(x f 在区间],[x a 上仍连续,所以函数)(x f 在],[x a 上的定积分 ? x a dx x f )( 存在。也就是说,对于每一个确定的x 值,这个积分将有一个确定的值与之对应,因此它是积分上限x 的函数,此函数定义在区间],[b a 上,把它叫做变上限积分函数,记为)(x Φ。即 )()()()(b x a dt t f dx x f x x a x a ≤≤==Φ?? 2.定理1 如果函数)(x f y =在区间],[b a 上连续,则变上限积分函数 )()()(b x a dt t f x x a ≤≤=Φ? 是函数)(x f y =的原函数,即

数学分析中求极限的方法总结

数学分析中求极限的方 法总结 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

数学分析中求极限的方法总 结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5) [] 0lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 2 lim 3x x →-的极限 式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11 =112 2- ? 111=2323-?

因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点0 x 的导数。 例4. 3 利用两个重要极限公式求极限 两个极限公式: (1 (2)1lim 1x x e x →∞ ?? += ??? 但我们经常使用的是它们的变形: (1,

巧用定积分求极限(数学分析)

定积分在求极限中的应用 1、知识准备 1.1绪论 微积分学在大学的数学学习中占有相当重要的地位.然而,求极限又是微积分学中常常要面临的问题.因此,积累更多求极限的方法应是每位大学生必备的素养. 求极限的方法层出不穷,最常用的方法有极限的定义和性质,重要极限的结论,洛必达法则以及泰勒公式等.应用极限的定义时,往往是在极限的结果已经比较明显,只需要根据极限的定义把相关式子进行放缩便可得到相应的结果.但是,这种方法一方面叙述上比较麻烦,另一方面也只适用于看上去容易放缩的式子.重要极限的结论形式上要求非常严格, 也只能解决两种形式的极限问题.洛必达法则是用于解决“00”型的极限和“∞ ∞ ”型极限的. 泰勒公式适宜于解决求分式极限中分子或分母有加减运算的问题,通过泰勒展式后可以达到某些项抵消效果.但若仔细观察这些方法,其特点不是表达较繁琐就是仅仅应用到微分学知识.事实上,微分学和积分学的关系正如中小学时代学习过的加法与减法,乘法与除法,乘方与开方以及幂运算与取对数运算的关系一样,他们互为逆运算.倘若也能用到积分学知识来解决求极限的问题,那么求极限的方法才算完美.而利用定积分求极限正体现了这一理念. 1.2定积分的概念 下面首先让我们回顾一下定积分以及极限的定义: 定积分:设函数()f x 在闭区间[],a b 上有定义,在闭区间[],a b 内任意插入 n-1个分点将 [],a b 分成 n 个区间[,]x i i x x -,记(1,2,,i i i x x x i n ?=-=),1[,]i i x x ξ-?∈,作乘积()i i f x ξ?(称 为积分元),把这些乘积相加得到和式 1 ()n i i i f x ξ=?∑(称为积分形式)设 {}max :1i x i n λ=?≤≤,若0 1 lim ()n i i i f x λξ→=?∑极限存在唯一且该极限值与区是[],a b 的分法 及分点i ξ的取法无关,则称这个唯一的极限值为函数()f x 在[],a b 上的定积分,记作 b a ()f x dx ?,即0 1 ()lim ()n b a i i i f x dx f x λξ→=?=?∑.否则称()f x 在[],a b 上不可积. 注1:由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号. 注2:若()b a f x dx ?存在,区间[],a b 进行特殊分割,分点i ξ进行特殊的取法得到的和式极限存在且与定积分的值相等,但反之不成立,这种思想在考题中经常出现,请读者要真正理

定积分基本公式

定积分基本公式 定积分是高等数学中一个重要的基本概念,在几何、物理、经济学等各个领域中都有广泛的应用.本章将由典型实例引入定积分概念,讨论定积分性质和计算方法,举例说明定积分在实际问题中的具体运用等. 第二节 微积分基本公式 一、变上限的定积分 设函数()f x 在[[,]a b ] 上连续,x ∈[,]a b ,于是积分()d x a f x x ?是一个定数, 这种写法有一个不方便之处,就是 x 既表示积分上限,又表示积分变量.为避免 t ,于是这个积分就写成了 ()d x a f t t ? . x 值,积分()d x a f t t ?就有一个确定的的一个函数,记作 ()Φx =()d x a f t t ? ( a ≤x ≤ b )通常称函数 ()Φx 为变上限积分函数或变上限积分,其几何意义如图所示. 定理1 如果函数()f x 在区间[,]a b 上连续,则变上限积分 ()Φx =()d x a f t t ?在[,]a b 上可导,且其导数是 d ()()d ()d x a Φx f t t f x x '= =?( a ≤x ≤ b ). 推论 连续函数的原函数一定存在. 且函数()Φx =()d x a f t t ?即为其原函数.

例1 计算()Φx =2 0sin d x t t ?在x =0 ,处的导数. 解 因为2 d sin d d x t t x ?=2sin x ,故 2 (0)sin 00Φ'==; πsin 242Φ'==. 例2 求下列函数的导数: (1) e ln ()d (0)x a t Φx t a t =>? ; 解 这里()Φx 是x 的复合函数,其中中间变量e x u =,所以按复合函数求导 法则,有 d d ln d(e )ln e (d )e d d d e x x u x x a Φt t x x u t x ===?. (2) 2 1()(0) x Φx x θ=>? . 解 21d d d d x Φx x θ=-?2 2()x x ='=2sin 2sin 2x x x x x =- ?=-. 二、牛顿-莱布尼茨(Newton-Leibniz )公式 定理2 设函数()f x 在闭区间[,]a b 上连续,又 ()F x 是()f x 的任一个原函数,则有()d ()() b a f x x F b F a =-? . 证 由定理1知,变上限积分 ()()d x a Φx f t t =?也是()f x 的一个原函数,于 是知0()()Φx F x C -=, 0C 为一常数, 即 0 ()d ()x a f t t F x C =+?.

巧用定积分求极限(数学分析)

定积分在求极限中的应用 欧阳学文 1、知识准备 1.1绪论 微积分学在大学的数学学习中占有相当重要的地位.然而,求极限又是微积分学中常常要面临的问题.因此,积累更多求极限的方法应是每位大学生必备的素养. 求极限的方法层出不穷,最常用的方法有极限的定义和性质,重要极限的结论,洛必达法则以及泰勒公式等.应用极限的定义时,往往是在极限的结果已经比较明显,只需要根据极限的定义把相关式子进行放缩便可得到相应的结果.但是,这种方法一方面叙述上比较麻烦,另一方面也只适用于看上去容易放缩的式子.重要极限的结论形式上要求非常严格,也只能解决两种形式的极限问题.洛必达法则是用于解决“”型的极限和“”型极限的.泰勒公式适宜于解决求分式极限中分子或分母有加减运算的问题,通过泰勒展式后可以达到某些项抵消效果.但若仔细观察这些方法,其特点不是表达较繁琐就是仅仅应用到微分学知识.事实上,微分学和积分学的

关系正如中小学时代学习过的加法与减法,乘法与除法,乘方与开方以及幂运算与取对数运算的关系一样,他们互为逆运算.倘若也能用到积分学知识来解决求极限的问题,那么求极限的方法才算完美.而利用定积分求极限正体现了这一理念. 1.2定积分的概念 下面首先让我们回顾一下定积分以及极限的定义: 定积分:设函数在闭区间上有定义,在闭区间内任意插入n1个分点将分成n个区间,记 ,,作乘积(称为积分元),把这些乘积相加得到和式(称为积分形式)设 ,若极限存在唯一且该极限值与区是的分法及分点的取法无关,则称这个唯一的极限值为函数在上的定积分,记作,即 .否则称在上不可积. 注1:由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号. 注2:若存在,区间进行特殊分割,分点进行特

专题1——利用定积分定义求极限(1)

专题1 ---- 利用定积分定义求极限 对于满足如下条件的极限,可以考虑采用利用定积分定义求极限的方法: ①是n 时的极限 n ②极限运算中含有连加符号 i 1 在定积分的定义中,我们把区间[a,b]平均分成n个小区间 b a 我们当然可以平均分割),那么每个小区间的长度为—a 成无数个小区间,但是在任意分割的前提下,不能用n 来表示把区间分割成无数个小区间,这里的原因我是理解的,但是不好表述,你清楚结论就行了) n lim0 f(a .b a、b a i )- n n 表示把区间分割成无数个小区间,所以这里是 n lim f (a n i 1 baba i )- n n b f (x) dx , a 而不是 (定积分的定义中是任意分割区间[a,b], (即定义中的x),这n个小区间分别为 r b a、「b a b a n r [a, a ] , [a ,a 2 ] , [a n n n b a b a _ [a (n 2) ,a (n 1) ], n n [a (n n _ b a 2 ,a n b a 3山],…, n 1),b],在定义中每个小区间上任意取的i我们n 致取为每个小区间的右端点i a(也可以取左端点i a (i 1)),那么定义中 左端点时i) x i就变为 f (a i- a) b a n n ,那么lim n n f(a i 1 b a f (X)dX。 n lim f (a n i 1 (i baba b 忖匚a?) 注意:定积分的定义中0表示的意思是把区间分割为无线个小区间(n也表示把区间分割 ,当分割方式为均等分割时,n 就 f (x)dx。

定积分常用公式

定积分常用公式 二、基本积分表(188页1—15,205页16—24) (1) (k是常数) kdxkxC,,, ,,1x,(2) xdxC,,,(1)u,,,,,1 1(3) dxxC,,ln||,x dx(4) ,,arlxCtan2,1,x dx(5) ,,arcsinxC,21,x (6)cossinxdxxC,, , (7)sincosxdxxC,,, , 1(8) dxxC,,tan2,cosx 1(9) dxxC,,,cot2,sinx sectansecxxdxxC,,(10) , csccotcscxxdxxC,,,(11) , xxedxeC,,(12) , xax(13), (0,1)aa,,且adxC,,,lna shxdxchxC,,(14) , chxdxshxC,,(15) , 11x(16) dxarcC,,tan22,axaa, 1 11xa,(17) dxC,,ln||22,xaaxa,,2 1x(18) dxarcC,,sin,22aax, 122(19) dxxaxC,,,,ln(),22ax, dx22(20) ,,,,ln||xxaC,22xa,

(21)tanln|cos|xdxxC,,, , (22)cotln|sin|xdxxC,, , )secln|sectan|xdxxxC,,, (23, cscln|csccot|xdxxxC,,,(24) , 注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。 2、以上公式把换成仍成立,是以为自变量的函数。 xuux 3、复习三角函数公式: 1cos2,x22222, sincos1,tan1sec,sin22sincos,xxxxxxx,,,,,cosx,2 1cos2,x2。 sinx,2 fxxdxfxdx[()]'()[()](),,,,,注:由,此步为凑微分过程,所以第一,, 类换元法也叫凑微分法。此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。 2 小结: 1常用凑微分公式 积分类型换元公式11.f(ax,b)dx,f(ax,b)d(ax,b)(a,0)u,ax,b,,a u,x11,2.f(x)xdx,f(x)d(x)(,0),,,,,,,,,1u,lnx3.f(lnx),dx,f(lnx)d(lnx), ,x 4..f(e),edx,f(e)dexxxxu,ex,,第 1一5.f(a),adx,f(a)daxxxx,,lnau,ax换 6.f(sinx),cosxdx,f(sinx)dsinxu,sinx元,, u,cosx积7.f(cosx),sinxdx,,f(cosx)dcosx,,分 28.f(tanx)secxdx,f(tanx)dtanxu,tanx,,法 u,cotx29.f(cotx)cscxdx,,f(cotx)dcotx,,

数学分析中求极限的方法总结

数学分析中求极限的方法 总结 This model paper was revised by the Standardization Office on December 10, 2020

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5)[]00lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 x →的极限

式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11=112 2-? 111=2323- ?因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点 x 的导数。

(完整版)关于利用定积分定义去解决数列极限问题总结

关于利用定积分定义去解决数列极限问题总结 ()()()()()()b 1 1 b n 0 首先研究一下定积分的定义函数f 如果对a,上一切分割及相应的一切积分和,只要分割的细度趋于0,就有一确定的极限,则称该极限为f 在a,上定积分,记为lim 在求部分数列极限问题中,经常会利用定积分的定义去解决,下面我跟大家讲解的再详细具体实用点,在求解过程中方法1:lim 这种做法是从左端n i i a T i n i i a k :x b x b f x dx f x f x dx f x ξξ→=-→∞ =??????=???=?∑?∑?()()()()()()()()()b n 1 11b n n 00b 点开始取函数值方法2:lim 这种做法是从右端点收尾取函数值一般在数列极限问题中我们通常是从右边往左边推,但是我发现在考研真题中上面两个等式 还是不实用,因为考试中通常是对区间取等分间隔=,也就是比如 n 方法1:lim =lim 方法2:n i i a k i n n i i a k k a f x dx f x b a x k b a b a f x dx f x f a n n f x ξξ→∞ =--→∞→∞===?-???--=?+ ? ??? ∑?∑∑?()()()()()()()n n 111b n 0lim =lim 易错点:我可以保证基本每个人都错过,就是在解决具体的真题时候,经常忘了乘错误示范:=lim ?具体求数列极限问题中一般是写成右边这个形式,然后去推测相应的f ,和a,具体数值也就是说要推测三个n n i i k k n a k k b a b a dx f x f a n n b a n k b a f x dx f a n x b ξ→∞→∞==-→∞=??--=?+ ? ?????- ? ? ???- ?+ ? ? ?????∑∑?∑?()()()()1 1 100n n 0量,我感觉有点难,所以我想把这个问题变得再详细具体实用点,我发现在具体应用中不管怎么出,我都可以把a=0,b=1去研究 我是有理由的,大家可以思考下为什么我可以敢这样说,这样做题有一个好处就是只需要推测f 这一个量就可以了, 此时把上面两种方法再修改一下:令a=0,b=1 1 方法1:=lim ,方法2:=lim n k k x k k f x dx f f x dx f n n n -→∞→∞==???? ? ??? ??∑??11 现在问题又来了,在考试的时候涉及到关于数列极限的问题时,怎么才能想到是利用 定积分的定义去求呢? 带着这个疑问,我们再研究一下上面两种方法划横线部分的形式n n ∑

定积分公式

二、基本积分表(188页1—15,205页16—24) (1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+=++? (1)u ≠- (3)1ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+? (6)cos sin xdx x C =+? (7)sin cos xdx x C =-+? (8)2 1 tan cos dx x C x =+? (9)2 1 cot sin dx x C x =-+? (10)sec tan sec x xdx x C =+? (11)csc cot csc x xdx x C =-+? (12)x x e dx e C =+? (13)ln x x a a dx C a = +?,(0,1)a a >≠且 (14)shxdx chx C =+? (15)chxdx shx C =+? (16)2 2 11tan x dx arc C a x a a = ++?

(17)2 2 11ln | |2x a dx C x a a x a -= +-+? (18) sin x arc C a =+? (19) ln(x C =++? (20) ln |x C =++? (21)tan ln |cos |xdx x C =-+? (22)cot ln |sin |xdx x C =+? (23)sec ln |sec tan |xdx x x C =++? (24)csc ln |csc cot |xdx x x C =-+? 注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。 2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。 3、复习三角函数公式: 2 2 2 2 sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==2 1cos 2cos 2 x x += , 2 1cos 2sin 2 x x -= 。 注:由[()]'()[()]() f x x dx f x d x ????= ?? ,此步为凑微分过程,所以第一 类换元法也叫凑微分法。此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。

相关文档
最新文档