尺寸链分析与应用.

合集下载

基于6西格玛的乘用车尺寸链质量控制方法与应用

基于6西格玛的乘用车尺寸链质量控制方法与应用

《装备维修技术》2021年第14期33基于6西格玛的乘用车尺寸链质量控制方法与应用何剑(恒大新能源汽车全球研究总院,上海201616)摘要:6西格玛理论是一套符合统计学原理且实用的质量控制理论,本文基于该理论,推导了不同尺寸链计算方法并比较其在最终质量控制中的优劣,并选择其中的均方值法作为实际乘用车尺寸链控制的基本算法,并以此指导实际工作。

关键词:六西格玛、尺寸链、极差法、均方值法、质量控制一、6西格玛理论介绍6西格玛:一种衡量质量水平的方法。

如果被评价为6个西格玛,则指3.4ppm 的缺陷率(约6个标准偏差)。

USL (Upper Specification Limit):公差值上限。

LSL (Lower specification Limit):公差值下限。

Cp:制造过程精密度,6西格玛质量体系的特定代号,是制造过程变化的范围与设计公差范围差异的情况,代表制作过程一致性能力的水平,其值越大则代表制造结果的落点越集中,而值越小则代表其落点越分散。

Cp 值越高,代表在一定的技术要求条件下,加工过程能力越强,精密度越高越高,如表1所示。

其中σ是标准偏差,标准偏差具体方法可以参考论文《统计公差分析方法概述》。

(公式1)表1等级Cp 值处理原则公差范围A+Cp≥1.67无缺点。

可考虑降低成本。

T=10σA 1.33≤Cp≤1.67制造能力非常棒,需要保持。

T=8~10σB 1.00≤Cp≤1.33制造能力需要提升。

T=6~8σC 0.67≤Cp≤1.00制造能力不足,亟需提升能力。

T=4~6σDCp≤0.67制造能力太差,全部重新设计。

T=2~4σCa:制造过程准确度,6西格玛质量体系的特定代号,是衡量制造过程落点与设计状态的偏差,偏差越明细,产品不良率就越大,如表2所示。

(公式2)表2等级Ca 值处理原则A |Ca|≤12.5%满足设计偏差要求,需要维持此制造水平。

B 12.5%≤|Ca|≤25%水平略有不足,需要改进。

尺寸链计算及公差分析(简体)-全面

尺寸链计算及公差分析(简体)-全面

(二) 尺寸链的解读 尺寸链的定义: 互相联系的尺寸按一定顺序 首尾相接形成封闭的尺寸组.(如 右图)
尺寸链的特征:
1.封闭性---尺寸链中各尺寸必 须首尾相接构成封闭形式.
2.关联性---尺寸链中间接保证 的尺寸的大小和变化,受到直接获得 的尺寸的精度所支配.
机械工程师联盟
机械工程师联盟
(二)尺寸链的解读
1)、直线尺寸链:是全部组成环平行于封 闭环的尺寸链,如图(1),(2),(3)
2)、平面尺寸链:全部组成环位于一个或 几个平行平面内,但某些组成环不平行于 封闭环的尺寸链,如图(四)所示,两孔之 间的尺寸构成了一平面尺寸链
机械工程师联盟
零件简图
零件尺寸链
图(一)
装配简图 尺寸链简图 图(二)
电镀工艺简图 尺寸链简图 图(三)
所谓之工步指: 相同加工工具对同一 工件在相同加工条件下所连续完成的那 一部分工序.(如联机机作业中的折沿边料 作业)
(二)工艺过程的组成
机械工程师联盟
所谓之工作行程指: 加工工具在工件 上一次所完成的工步部分.(如折沿边料过 程中的一个来回)
如果工艺过程中只有一道工序,工序 中又只有一步工步,工步由一个工作行程 组成,那么它们实际是相当.
(三) 尺寸链图的制作步骤
机械工程师联盟
应注意事项:
1. 工艺尺寸链的构成,取决于工艺方 案和具体的加工方法.
2.正确封闭环的选取是解尺寸链的关 键.
3. 一个尺寸链只能解一个封闭环.
(四) 尺寸链的计算
机械工程师联盟
1. 计算工艺尺寸链的方法
a. 极值法---一般生产中应用
b. 概率法---应用于生产批量大的 自动化及半自动化生产方面,或 尺寸链的环数较多的场合.

尺寸链在机械精度设计中的应用研究

尺寸链在机械精度设计中的应用研究

研究意义
尺寸链是机械制造和设备设计中的重要环节,对其应用进行深入研究,有助于提高我国机械制造水平,促进机械制造业的发展。
目的和背景
研究现状
发展动态
发展趋势
研究现状和发展动态
02
尺寸链基本理论
尺寸链是在产品或部件的设计和制造过程中,由相互关联的尺寸组成的封闭链,其中每一个尺寸都对产品的功能和性能产生影响。
进一步加强尺寸链分析与机器工作性能之间的关系研究,将有助于更好地理解机器精度的实质,从而优化设计。
未来需要加强尺寸链分析软件的开发和推广,提高尺寸链分析的效率和精度,以更好地服务于机械精度设计领域。
目前,尺寸链分析主要关注静态精度,对动态精度和机器工作过程中的精度研究不足,未来需要加强这方面的研究。
尺寸链的计算方法
CAD技术
CAD技术是机械精度设计中常用的计算机辅助技术,可以通过三维建模和仿真技术对产品或部件进行精确的建模和模拟,提高尺寸链计算的准确性和效率。
尺寸链的计算机辅助技术
CAM技术
CAM技术是将CAD模型转换为实际制造过程中的数字化指导,通过CAM技术可以实现自动化制造和检测,进一步提高了尺寸链的制造精度和效率。
轴承精度的重要性
轴承尺寸链的设计是轴承精度的基础,通过合理地设计尺寸链,可以保证轴承的精度和质量。
轴承尺寸链的设计
利用计算机辅助设计软件,可以对轴承进行精确的模拟和优化设计,提高轴承的精度和质量。
轴承精度的计算机辅助设计
案例三:尺寸链在轴承精度设计中的应用
05
结论与展望
1
研究结论
2
3
尺寸链分析在机械精度设计中具有重要应用价值,可有效提高机器的精度和稳定性。
检测数据处理

尺寸链原理及应用

尺寸链原理及应用

第五章尺寸链原理及应用在机械产品设计过程中,设计人员根据某一部件或总的使用性能,规定了必要的装配精度(技术要求),这些装配精度,在零件制造和装配过程中是如何经济可靠地保证的,装配精度和零件精度有何关系,零件的尺寸公差和形位公差又是怎样制定出来的。

所有这些问题都需要借助于尺寸链原理来解决。

因此对产品设计人员来说尺寸链原理是必须掌握的重要工艺理论之一。

§5-1 概述教学目的:①尺寸链的基本概念,组成、分类;②尺寸链的建立与分析;③尺寸链的计算教学重点:掌握工艺尺寸链的基本概念;尺寸链组成及分类教学难点:尺寸链的作图一、尺寸链的定义及其组成1. 尺寸链的定义由若干相互有联系的尺寸按一定顺序首尾相接形成的尺寸封闭图形定义为尺寸链。

在零件加工过程中,由同一零件有关工序尺寸所形成的尺寸链,称为工艺尺寸链,如图5-1所示。

在机器设计和装配过程中,由有关零件设计尺寸形成的尺寸链,称为装配尺寸链,如图5-2所示。

图5-1 工艺尺寸链示例图5-1是工艺尺寸链的一个示例。

工件上尺寸A1已加工好,现以底面A定位,用调整法加工台阶面B,直接保证尺寸A2。

显然,尺寸A1和A2确定以后,在加工中未予直接保证的尺寸A0也就随之确定。

尺寸A0、A1和A2构成了一个尺寸封闭图形,即工艺尺寸链,如图5-1b所示。

图5-2 装配尺寸链图由上述可知,尺寸链具有以下三个特征1)具有尺寸封闭性,尺寸链必是一组有关尺寸首尾相接所形成的尺寸封闭图。

其中应包含一个间接保证的尺寸和若干个对此有影响的直接获得的尺寸。

2)尺寸关联性,尺寸链中间接保证的尺寸受精度直接保证的尺寸精度支配,且间接保证的尺寸精度必然低于直接获得的尺寸精度。

3)尺寸链至少是由三个尺寸(或角度量)构成的。

在分析和计算尺寸链时,为简便起见,可以不画零件或装配单元的具体结构。

知依次绘出各个尺寸,即将在装配单元或零件上确定的尺寸链独立出来,如图5-1b),这就是尺寸链图。

尺寸链图中,各个尺寸不必严格按比例绘制,但应保持各尺寸原有的连接关系。

产品装配的尺寸链公差分析报告

产品装配的尺寸链公差分析报告
端开始起画单向箭头,顺着整个尺寸链一直画下去,包括关键尺寸,直 到最后一个形成闭合回路,然后按照箭头方向进行判断,凡是箭头方向 与关键尺寸箭头同向的尺寸为负(-),反向的为正(+)
dGap = - 10.00 - 15.00 - 20.00 + 46.00 = 1.00
东莞意佳金属制品有限公司
工程部
n
计算公式: Ttot
Ti 2
i1
Ttot = 最大的预期间隙变量(对称公差) . N = 独立尺寸的堆叠数量. Ti = 第i个尺寸对称公差.
• 它的假设是每个尺寸的 Ppk 指标是1.33并且制程是在中心。
东莞意佳金属制品有限公司
工程部
Page 9
1. 确定组装要求
2. 建立封闭尺寸链图 3. 转换名义尺寸,将公差 转成对称公差 4. 按要求计算名义尺寸
n
Ttot Ti i 1
Ttot = 0.15 + 0.25 + 0.30 + 0.40 = 1.10
最小间隙 Xmin = dGap – Ttot = 1.00 – 1.10 = – 0.10 最大间隙 Xmax = dGap + Ttot = 1.00 + 1.10 = 2.10
[ 2] 吴巍, 袁洪印, 吴明 , 潘凤芝, 尺寸链在公差原则分析中的应用 . 《吉林 农业大学学报》 1999年S1期
[ 3] 杜官将, 薛小强, 尺寸链中形位公差的判别与解算 . 《机械工程与自动化》 2008( 6) : 164-168.
[ 4] 李仲辉, 鲁世红 , 考虑形位公差的装配公差分析 . 《机械工程与自动化》 2010 (3)105-107.
增加 0.10 达到最小间隙的要求 (dGap >0).

尺寸链计算及公差分析

尺寸链计算及公差分析

尺寸链计算及公差分析一、尺寸链计算1.确定基准尺寸:首先需要确定产品的基准尺寸,这是其他尺寸的参考值。

2.确定功能尺寸:根据产品的功能要求,确定与之相关的尺寸。

例如,一个机械零件的功能要求是与其他组件配合,那么相关的尺寸即为功能尺寸。

3.确定辅助尺寸:辅助尺寸是与功能尺寸无关的尺寸,通常用于产品的加工和装配。

例如,孔的直径和深度就是辅助尺寸。

4.确定公差:在确定各个尺寸之后,需要为它们设置公差。

公差是指允许的尺寸变化范围,它的大小取决于产品的制造工艺和功能要求。

5.进行尺寸链计算:根据产品的功能和制造要求,依次计算各个尺寸的数值。

计算时需要考虑公差的影响,确保产品在允许的范围内可以正常工作。

二、公差分析公差分析是确定产品尺寸的变化范围,即各个尺寸的上下限。

公差分析可以帮助工程师评估产品的质量,确定工艺参数,并优化产品设计。

1.确定公差类型:公差分为基本公差和几何公差两种类型。

基本公差是根据工艺要求和产品功能确定的,例如直径公差、平行度公差等;几何公差是根据产品的形状和配合要求确定的,例如圆度公差、轴线位置公差等。

2.进行公差叠加:公差叠加是将各个尺寸的公差叠加在一起,得到产品整体的公差。

这可以通过数学模型或专业软件进行计算。

3.进行公差分析:在确定产品整体的公差后,可以进行公差分析。

公差分析可以通过模拟或实验的方式进行,用于评估产品在实际使用中尺寸变化的影响。

4.优化设计:通过公差分析可以了解产品尺寸变化的情况,如果发现一些尺寸变化太大,可能会导致产品的功能受到影响,需要对设计进行优化。

优化设计可以包括调整公差、改变加工工艺等。

总结起来,尺寸链计算及公差分析是确定产品尺寸和形状的重要方法,它可以帮助工程师评估产品的质量和性能,指导产品的制造和装配。

在实际应用中,需要充分考虑产品的功能要求、制造工艺和使用环境等因素,合理确定尺寸链和公差,以确保产品的质量和性能达到要求。

尺寸链及公差叠加分析

尺寸链及公差叠加分析

尺寸链及公差叠加分析一、尺寸链分析1.尺寸链的定义尺寸链是指从设计图纸上的一个尺寸到最终产品尺寸之间的所有加工步骤和测量环节所涉及到的线性关系。

2.尺寸链分析的目的尺寸链分析的目的是通过对产品加工和测量过程中的尺寸关系进行分析,确定各个环节对最终产品尺寸的影响程度,从而指导产品设计和制造。

3.尺寸链分析的方法尺寸链分析的方法可以分为数学模型与仿真模型两种。

数学模型是通过建立各个环节的几何学关系和物理学模型,对尺寸链进行数学求解和计算。

仿真模型则是通过计算机软件模拟各个环节的尺寸变化和公差叠加,预测最终产品尺寸的变化情况。

4.尺寸链分析的应用尺寸链分析可以应用于各行业的产品设计和制造过程中,特别适用于高精度和高要求的产品。

通过尺寸链分析,可以找出制约产品尺寸稳定性和精度的关键环节,优化设计和加工工艺,提高产品质量和性能。

1.公差的定义公差是指设计标准中规定的准确尺寸值和允许偏差之间的差值。

在产品设计和制造过程中,由于各种因素的存在,产品的实际尺寸可能会有一定的偏差。

公差的作用就是规定产品的尺寸变化范围,确保产品在设计要求范围内。

2.公差叠加的定义公差叠加是指产品加工和装配过程中的各个部件的公差在装配后的累积效应。

当多个零件装配在一起时,每个零件的公差都会对最终产品尺寸产生影响,这些影响会叠加在一起,导致最终产品的尺寸变化。

3.公差叠加分析的方法公差叠加分析的方法可以分为几何方法和统计方法两种。

几何方法是基于几何学原理,通过计算公差区间的重叠情况,确定最终产品尺寸的变化范围。

统计方法则是通过数学统计的方法,分析各个公差的概率分布和随机变化规律,预测最终产品的尺寸分布情况。

4.公差叠加分析的应用公差叠加分析可以应用于各个行业的产品装配和检测过程中,特别适用于复杂零部件的装配和高精度产品的制造。

通过公差叠加分析,可以评估产品的装配质量和稳定性,优化装配工艺,降低不良品率和维修成本。

三、尺寸链与公差叠加的结合尺寸链分析和公差叠加分析是两个相互关联的工程实践。

尺寸链的分析计算

尺寸链的分析计算

尺寸链的分析计算尺寸链分析是一种用于确定企业提高竞争力的方法,通过与供应链合作伙伴共享信息、资源和能力,以减少成本、提高效率和优化客户满意度。

在尺寸链中,产品的规模、品种和市场需求等因素被称为尺寸。

1.收集数据:收集有关尺寸链中每个组成部分的数据,包括供应商、制造商、分销商和零售商的数量、位置、能力和资源等信息。

2.评估效率:评估尺寸链中每个组成部分的效率,包括生产效率、交付效率和响应效率。

通过分析数据,确定每个组成部分的瓶颈和短板,找出导致效率低下的原因。

3.计算成本:计算尺寸链中每个组成部分的成本,包括采购成本、生产成本、运输成本和库存成本等。

通过分析数据,确定尺寸链中成本较高的环节,找出成本降低的潜在机会。

4.分析风险:分析尺寸链中存在的风险和不确定性,包括供应风险、质量风险和市场风险等。

通过分析数据,确定风险较高的环节,制定相应的风险管理措施。

5.优化尺寸链:根据分析的结果,制定相应的战略和计划,优化尺寸链的运作。

包括优化供应商选择和合作、优化流程和操作、优化库存管理和物流等。

通过尺寸链的分析计算,企业可以获得以下几点优势:1.降低成本:通过识别和解决尺寸链中的问题,可以降低采购成本、生产成本、运输成本和库存成本等,提高企业的盈利能力。

2.提高效率:通过优化尺寸链的运作,可以提高生产效率、交付效率和响应效率,提高企业的竞争力和市场占有率。

3.增加灵活性:通过与供应链合作伙伴共享信息、资源和能力,可以提高企业的灵活性,适应市场变化和客户需求的快速变化。

4.提高客户满意度:通过优化尺寸链的运作,可以提高产品的质量和交付的及时性,提高客户满意度,增加客户忠诚度。

尺寸链的分析计算是一个复杂的过程,需要收集大量的数据和进行详细的分析。

同时,也需要考虑尺寸链中的各种因素和相互关系。

因此,企业在进行尺寸链的分析计算时,需要充分考虑自身的实际情况和目标,制定相应的策略和计划,以实现持续的改进和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

使封闭环达到规定的要求,该组成环称为补偿环。
二、尺寸链计算
1、确定封闭环 ① 查环:从封闭环开始,依次找出与其有关的尺寸,各尺寸首尾相 连,形成一个封闭的尺寸组。且要求所构成的尺寸链环数最少。 ② 画尺寸链图:从封闭环开始,按照相关尺寸在零件中标注的位置 逐个画出,最后回到封闭环。
2、尺寸链计算
1)设计计算 a) 反计算:已知封闭环的基本尺寸和上下偏差,以及各组成 环的基本尺寸,求各组成环的公差和上下偏差。
5)调整法 将尺寸链各组成环按经济公差制造,由于组成环尺寸公差放大而使封闭环上 产生的累积误差,可在装配时采用调整补偿环的尺寸或位置来补偿。 1)固定补偿环:在尺寸链中选择一个合适的组成环作为补偿环(如垫片、 垫圈或轴套等。补偿环可根据需要按尺寸大小分为若干组,装配时选取)。 2)可动补偿环:装配时调整补偿环的位置以达到封闭环的精度要求。
b) 中间计算:已知封闭环及某些组成环的基本尺寸及上下偏 差,求某一组成环的基本尺寸及上下偏差。
2)校核计算: 已知组成环的基本尺寸及上下偏差,求封闭环的基本尺寸及 上下偏差,校核计算又称为正计算。
3、尺寸链计算方法

完全互换法(极值法) 大数互换法 分组互换法 修配法 调整法
1)完全互换法(极值法)------尺寸链计算中最基本的方法
4)修配法 根据零件加工的可能性,对各组成环规定经济可行的制造公差,装配时
通过修配方法改变尺寸链中预先规定的某组成环的尺寸(补偿环),以
满足装配精度要求。 补偿环切莫选择各尺寸链的公共环,心免因修配而影响其他尺寸链的封
闭环精度。
优点是既扩大了组成环的制造公差,又能得到较高的装配精度。
选面积最小、重 量最轻的尾架底 座A2为补偿环。
尺寸的支配,彼此间有确定的函数关系。
3、基本概念 ① 尺寸链:在零件加工或机器装配过程中,由互相联系的尺寸按一定顺序
首尾相接排列而成的封闭尺寸组。
② 环:列入尺寸链中的每一个尺寸称为环。 ③ 封闭环:尺寸链中在装配过程或加工过程后自然形成的一环,或在装配 或加工过程最终被间接保证精度的尺寸称为封闭环。 ④ 组成环:尺寸链中对封闭环有影响的全部环。 ⑤ 增环:若其他尺寸不变,那些本身增大而封闭环也增大的尺寸称为增环。 ⑥ 减环:那些本身增大而封闭环减小的尺寸则称为减环。 ⑦ 补偿环——尺寸链中预先选定某一组成环,可以通过改变其大小或位置,
2、应用实例 1)测量基准与设计基准不重合
2)定位基准与设计基准不重合
3)以DK291发热盘组件/五金壶身/底盖装配尺寸 T=0.5
Φ126.4(与发热盘组件实配)
3、提问、答疑及讨论
谢谢大家!
四、尺寸链计算分析与应用
1、尺寸链计算的目的: 通过计算,正确合理地确定尺寸链中封闭环与各组成环的基本尺寸、公 差、极限偏差之间的关系。 分析确定零件的尺寸精度,保证加工精度和装配精度。 通常用零件尺寸链、装配尺寸链来分析计算零件或机器内部各尺寸及其 公差之间的关系,用工艺尺寸链来分析工艺过程各工序尺寸及其公差之 间的关系。
尺寸链计算分析与应用
分享提要: 一、尺寸链基本概念 二、尺寸链计算
三、第8周技术PK题目解析
四、尺寸链计算分析与应用
一、尺寸链基本概念
1、按其用途可分为:

零件尺寸链
工艺尺寸链 (工序尺寸链)
装配尺寸链
2、尺寸链的主要特征

封闭性,由有关尺寸首尾相接而形成;

关联性,有一个间接保证精度的尺寸,受其他直接保证精度
从尺寸链各环的最大与最小极限尺寸出发进行尺寸链计算,不考虑各
环实际尺寸的分布情况。 按此法计算出来的尺寸加工各组成环,装配时各组成环不需挑选或辅 助加工,装配后即能满足封闭环的公差要求,即可实现完全互换。
2)大数互换法 以保证大数互换为出发点。
在量产且工艺过程稳定的情况下,各组成环的实际尺寸趋近,不是在全部产品中,而是在绝大多数产品中,装配时不 需要挑选或修配,就能满足封闭环的公差要求,即保证大数互换。
3)分组互换法 把组成环的公差扩大N倍,使之达到经济加工精度要求,然后按零件实
际尺寸分成N组,装配时根据大配大、小配小的原则,按对应组进行装
配,以满足封闭环要求。 分组互换法仅组内零件可以互换。 例: 下图孔/轴配合 间隙要求为 X=3—8um。
优点是:加大组成环的制造公差, 使制造容易,同时可得到很高的装 配精度;装配时不需修配;使用过 程中可以调整补偿环的位置或更换
补偿环,以恢复机器原有精度。
缺点是:有时需要额外增加尺寸链 零件数(补偿环),使结构复杂, 制造费用增加,降低结构的刚性。
三、第8周技术PK题目解析
1、题目讲解(见附件) 2、各组PK结果回顾及点评(见附件) 3、正确答案解析
相关文档
最新文档