鲁棒优化的方法与应用

合集下载

鲁棒性优化的原理、评估方法及应用-放射医学论文-基础医学论文-医学

鲁棒性优化的原理、评估方法及应用-放射医学论文-基础医学论文-医学

鲁棒性优化的原理、评估方法及应用-放射医学论文-基础医学论文-医学鲁棒性优化的原理、评估方法及应用放射医学论文基础医学论文医学放射医学作为一门重要的医学分支,应用广泛且发展迅猛。

在放射医学的实践中,为了保证诊断结果的准确性和稳定性,提高影像质量和疾病诊断的可信度,鲁棒性优化成为一种重要的手段。

本论文将着重探讨鲁棒性优化的原理、评估方法以及其在放射医学中的应用。

一、鲁棒性优化原理鲁棒性优化是指在实际应用中,通过在系统中引入一定程度的冗余,使得系统对各种干扰因素和不确定性具有强健性。

在放射医学领域中,鲁棒性优化的原理主要包括以下几个方面。

1. 信号处理技术鲁棒性优化中的信号处理技术主要针对图像数据的处理。

比如在辐射剂量计算中,为了减小各种因素对剂量计算结果的影响,可以基于模型订正或者增加剂量分配的冗余,提高系统的鲁棒性。

2. 特征提取与选择特征提取与选择是鲁棒性优化的关键环节。

通过合理选择影像中的关键特征,可以减少噪声和其他干扰因素对诊断结果的影响。

比如在肿瘤检测中,可以通过计算形状特征、纹理特征等来提高肿瘤检测的准确性和鲁棒性。

3. 算法优化算法优化是鲁棒性优化的重要手段。

通过改进或设计新的算法,可以提高系统对各种噪声和变化的适应能力。

例如,对于放射源和探测器位置的微小变化,可以采用基于机器学习的方法来优化图像重建算法,从而提高图像质量和诊断准确性。

二、鲁棒性优化的评估方法为了评估鲁棒性优化的效果,我们需要选择合适的评估方法和指标。

以下是几种常用的评估方法。

1. 灵敏度分析灵敏度分析是评估系统对输入参数变化的鲁棒性的一种方法。

通过改变系统参数或输入数据的扰动幅度,观察输出结果的变化情况,可以评估系统在不同干扰因素下的鲁棒性。

2. 参数估计参数估计是通过对输入参数进行统计分析,估计系统对参数变化的鲁棒性。

通过观察参数估计结果的方差、置信区间等指标,可以评估系统在不同干扰条件下对参数的稳定性和可信度。

分布鲁棒优化求解算法

分布鲁棒优化求解算法

分布鲁棒优化是指在考虑不确定性的条件下,寻找一个能够在各种情况下都表现良好的解的优化问题。

以下是一些常见的分布鲁棒优化求解算法:
1.随机优化:随机优化方法使用随机采样的方式来搜索解空间,在优化过程中可以通过多
次采样来减少不确定性的影响。

2.遗传算法:遗传算法基于生物进化理论,通过模拟基因遗传、交叉和变异等操作来搜索
解空间,并通过选择优秀个体进行繁殖,以逐步改进解的质量。

3.模拟退火算法:模拟退火算法模拟固体退火的过程,通过接受劣质解的概率逐渐降低,
以增加全局搜索的能力,并最终达到近似最优解。

4.置换算法:置换算法主要用于处理离散优化问题,通过生成候选解并逐步替换当前解来
进行搜索。

常用的置换算法包括领域搜索、模拟退火和遗传算法。

5.非线性规划:非线性规划方法可以应用于分布鲁棒优化问题,通过建立数学模型和约束
条件,利用优化算法求解最优解。

常见的非线性规划算法包括牛顿法、拟牛顿法和序列二次规划等。

6.鲁棒优化:鲁棒优化方法通过生成针对不确定性情况下的最坏情况的模型,以最小化规
划目标函数在这些情况下的损失。

鲁棒优化方法可以应用于各种优化问题,并提供了对不确定性的鲁棒性能保证。

需要根据具体的问题和要求选择合适的分布鲁棒优化求解算法。

同时,结合实际情况和经验,可能需要对算法进行调整和改进以获得更好的解决方案。

鲁棒优化算法在机器学习中的应用研究

鲁棒优化算法在机器学习中的应用研究

鲁棒优化算法在机器学习中的应用研究随着大数据和人工智能的迅速发展,机器学习逐渐成为了一种流行的数据分析方法。

然而,机器学习也常常面临一些挑战,例如训练数据的质量、过拟合、噪声干扰等问题。

为了解决这些问题,研究人员一直在开发新的算法。

鲁棒优化算法便是其中之一,它可以提高机器学习的稳健性和泛化能力。

本文将介绍鲁棒优化算法的实现原理、实验结果和其他相关应用。

一、鲁棒优化算法的实现原理鲁棒优化算法是一种特殊的优化算法,能够对输入数据的异常值和噪声干扰具有较高的鲁棒性。

该算法的实现原理与标准优化算法有所不同,主要包括以下几个步骤:1.选择一个合适的损失函数在使用鲁棒优化算法时,需要选择一个合适的损失函数,以反映算法对异常值和噪声干扰的鲁棒性。

例如,可以使用Huber损失函数,它在小误差情况下使用的是L2范数,而在大误差情况下使用的是L1范数。

2.对数据进行预处理在运行鲁棒优化算法之前,需要对数据进行预处理,以排除可能存在的噪声和异常值。

例如,可以使用中位数滤波器或截断均值去除器等技术,这些技术可以将数据中不稳定的部分隔离开来。

3.使用特定的优化算法在实现鲁棒优化算法时,可以选择使用适合的优化算法。

由于对异常值和干扰的鲁棒性要求较高,因此通常使用鲁棒的优化算法,例如鲁棒线性规划算法或鲁棒拟合算法。

4.重复训练和测试为了提高鲁棒优化算法的性能,需要多次训练和测试,以确保算法处理异常值的效果仍然良好。

例如,可以使用交叉验证的技术来验证算法的性能。

二、鲁棒优化算法在实验中的结果许多研究人员已经使用鲁棒优化算法在机器学习中取得了很好的效果。

例如,在使用支持向量机(SVM)分类器时,鲁棒SVM算法可以大大减少噪声和异常值对训练结果的影响。

在使用线性回归模型时,鲁棒线性回归算法可以更好地适应噪声和异常值的情况。

此外,鲁棒最小二乘线性回归算法非常适合处理具有复杂误差分布的数据。

三、鲁棒优化算法的其他应用除了在机器学习中使用鲁棒优化算法,还可以将其应用于其他领域。

控制系统的鲁棒优化控制方法

控制系统的鲁棒优化控制方法

控制系统的鲁棒优化控制方法在现代工业领域中,控制系统起着至关重要的作用,用于实现对工艺过程的自动化控制和优化。

然而,由于工艺过程本身的复杂性和不确定性,传统的控制方法常常无法满足系统的要求。

因此,鲁棒优化控制方法应运而生,旨在提高系统的控制性能和稳定性。

本文将介绍控制系统的鲁棒优化控制方法及其应用。

一、鲁棒优化控制的基本概念鲁棒优化控制是一种针对不确定系统的自适应控制方法,其目标是在面对参数变化、环境扰动和不确定模型时,仍能实现系统的稳定性和优化性能。

鲁棒优化控制方法通过在控制器中引入鲁棒性设计和优化算法,以提高系统对不确定性的适应能力,并优化系统的控制性能。

二、鲁棒优化控制方法的原理及应用1. 鲁棒性设计鲁棒性设计是控制器设计中的关键环节,通过引入鲁棒性方法来抵抗系统模型不确定性。

鲁棒性设计常采用H∞控制理论、μ合成等方法,以提高系统的稳定性和鲁棒性能。

通过这些方法,控制器能够对参数扰动和未建模动态进行补偿,从而使系统具有良好的鲁棒性。

2. 优化算法优化算法在鲁棒优化控制中起到了重要的作用。

常用的优化算法包括PID控制器参数整定、遗传算法、模糊控制等。

通过这些算法的应用,可以使系统的控制性能得到改善,并且能够灵活应对不同的工况变化。

3. 应用领域鲁棒优化控制方法在许多领域都有广泛的应用,例如电力系统、化工过程、机械控制等。

以电力系统为例,由于电力系统的复杂性和不确定性,传统的控制方法往往无法满足实际需求。

而鲁棒优化控制方法通过引入鲁棒性设计和优化算法,能够实现对电力系统的稳定控制和优化运行。

三、鲁棒优化控制方法的优势与挑战1. 优势鲁棒优化控制方法能够有效应对系统的不确定性和复杂性,具有良好的鲁棒性和适应性。

通过引入鲁棒性设计和优化算法,能够提高系统的控制性能和稳定性。

2. 挑战鲁棒优化控制方法的应用还面临着一些挑战。

首先,鲁棒优化控制方法需要对系统进行建模和参数估计,这对于复杂系统来说是一项困难的任务。

鲁棒性优化的原理、评估方法及应用-放射医学论文-基础医学论文-医学论文

鲁棒性优化的原理、评估方法及应用-放射医学论文-基础医学论文-医学论文

鲁棒性优化的原理、评估方法及应用-放射医学论文-基础医学论文-医学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:质子治疗过程容易受射程偏差、摆位偏差、患者解剖结构改变等不确定因素的影响,质子调强放疗的鲁棒性优化是将这些不确定因素考虑进计划的制定过程中,增加治疗计划鲁棒性的一种方法,在临床中有广泛的应用。

鲁棒性优化的方法主要有4种:(1)概率法;(2)最差剂量法;(3)添加约束项;(4)多CT优化。

本文综述了这4种方法的原理、优缺点和临床应用情况。

同时,还介绍了治疗计划鲁棒性的评估方法。

虽然目前剂量体积直方图束是最常用的评估治疗计划鲁棒性的方法,但是,剂量体积直方图束不能反映质子调强放疗计划对解剖结构改变的鲁棒性,因此,还急需建立一个简单易用并能被广泛接受的鲁棒性评估方法,方便质子调强放疗计划的对比和评估。

关键词:质子调强放射治疗; 鲁棒性优化; 鲁棒性评估; 综述;Abstract:The intensity modulated proton therapy(IMPT)process is susceptible to factors such as range uncertainties, setup uncertainties and anatomical changes. The robust optimization of IMPT is a method to increase the robustness of treatment plan by taking these uncertainties into consideration in the process of optimization, which is widely used in clinical practice.There are four methods for robust optimization:(1)probability method;(2)worst dose method;(3)adding constraints;(4)multiple CT optimization. This paper reviews the principles, advantages and disadvantages of these four methods and their clinical application, and it also introduces the evaluation methods for robustness. Although the dose volume histogram(DVH)bands is the most commonly used method to evaluate the plan robustness, DVH bands cannot reflect the robustness of IMPT plan with anatomical changes. Therefore, it is urgent to establish a simple and widely accepted robustness evaluation method to facilitate the comparison and evaluation of IMPT plans.Keyword:intensity modulated proton therapy; robust optimization; robustness evaluation; review;前言质子调强放疗(Intensity Modulated Proton Therapy,IMPT)相比于传统的光子调强放疗(Intensity Modulated Radiation Therapy,IMRT)有剂量上的优势[1,2,3,4],但是,IMPT的剂量线梯度大,容易受不确定因素的影响[5]。

机械系统的鲁棒控制与鲁棒优化设计

机械系统的鲁棒控制与鲁棒优化设计

机械系统的鲁棒控制与鲁棒优化设计鲁棒控制与鲁棒优化设计是机械系统中关键的技术手段,能够在不确定性和变动性环境下实现稳定可靠的控制。

本文将探讨机械系统鲁棒控制与鲁棒优化设计的原理、方法和应用。

一、机械系统的鲁棒控制机械系统的鲁棒控制是指在存在参数不确定性、外部扰动和模型误差的情况下,仍能确保系统稳定性和性能的控制方法。

鲁棒控制能够应对系统的不确定性和变动性,提高系统的稳定性和鲁棒性。

鲁棒控制的关键是设计具有鲁棒性的控制器。

鲁棒控制常用的方法包括H∞控制、μ合成控制和自适应控制等。

其中,H∞控制是一种基于最优控制理论的方法,能够优化系统的鲁棒性能。

μ合成控制通过寻找闭环系统的最小鲁棒性能函数,设计出鲁棒控制器。

自适应控制则通过根据系统的环境变化和参数变动调整控制器的参数,以提高系统的鲁棒性。

二、机械系统的鲁棒优化设计除了鲁棒控制外,鲁棒优化设计也是提高机械系统性能的重要手段。

鲁棒优化设计是指在系统参数不确定和模型偏差的情况下,优化系统的性能指标。

通过鲁棒优化设计,可以使系统具备更好的控制性能,减小外部扰动的影响。

常用的鲁棒优化设计方法包括基于最优化理论的方法和基于神经网络的方法。

基于最优化理论的方法可以采用数学优化模型,将优化问题转化为求解最值的问题。

基于神经网络的方法则通过训练神经网络,得到系统的非线性映射关系,从而实现优化设计。

在鲁棒优化设计中,还需要考虑不确定性和变动性因素的影响。

例如,对于机械系统中存在的参数不确定性,可以采用模糊控制方法进行建模和设计。

模糊控制能够处理参数模糊和模糊逻辑关系,提高系统的鲁棒性。

三、机械系统鲁棒控制与鲁棒优化设计的应用机械系统鲁棒控制与鲁棒优化设计在工程实践中得到了广泛应用。

例如,在工业自动化领域,机械系统的鲁棒控制和鲁棒优化设计可以提高生产过程的稳定性和效率。

在航空航天领域,鲁棒控制技术可以提高航空器的操纵性和安全性。

此外,机械系统鲁棒控制与鲁棒优化设计还在智能机器人、医疗设备和交通系统等领域中有重要应用。

机械结构设计的鲁棒优化研究

机械结构设计的鲁棒优化研究

机械结构设计的鲁棒优化研究一、引言随着技术的进步和创新的需求,机械结构设计的重要性日益凸显。

在设计过程中,我们常常面临的一个挑战是如何使机械结构在不同的环境和工况下具有鲁棒的性能。

本文旨在探讨机械结构设计的鲁棒优化方法和技术,并为相关领域的研究提供参考。

二、机械结构设计的鲁棒性分析1. 鲁棒性的定义在机械结构设计中,鲁棒性是指设计在不确定因素和变化因素的影响下,仍然能够保持稳定和正确性的特性。

鲁棒性分析是通过评估设计和制造过程中的不确定性来确定工程系统在各种情况下的性能。

2. 鲁棒性分析的重要性鲁棒性分析在机械结构设计中尤为重要,原因如下:首先,机械结构的使用环境和工况常常复杂多变,例如温度、湿度、振动等因素的变化都可能对结构的性能产生影响。

鲁棒性分析可以帮助设计师预测结构在不同工况下的性能表现,从而指导设计决策。

其次,鲁棒性分析可以有效地降低设计过程中的风险和不确定性。

通过对不同参数的敏感性分析,设计师可以找到结构的关键参数,并对这些参数进行优化,从而提高结构的鲁棒性,减少设计的失误和成本。

最后,鲁棒性分析有助于提高机械结构的可靠性和寿命。

通过对不同环境和工况下结构的性能进行评估和优化,设计师可以有效地提高结构的可靠性和寿命,从而减少维护和保养的成本。

三、机械结构设计的鲁棒优化方法1. 参数设计的鲁棒优化参数设计是机械结构设计的关键环节之一。

在进行参数设计时,我们需要考虑不确定因素对结构性能的影响,并寻找一种能够在不同情况下保持稳定性能的最优参数。

一种常用的参数设计方法是基于仿真模型的优化。

通过建立数学模型,并利用数值仿真方法对不同参数进行模拟和分析,可以评估参数对结构性能的影响,并找到最优参数组合。

另一种参数设计方法是基于试验的优化。

通过设计不同参数组合的实验,测量和分析实验数据,可以找到最优参数组合,并进一步对参数进行优化。

这种方法不仅可以考虑不确定因素的影响,还可以考虑制造误差和装配误差等因素对结构性能的影响。

两阶段鲁棒优化方法

两阶段鲁棒优化方法

两阶段鲁棒优化方法引言:在机器学习和优化问题中,鲁棒性是指模型对输入数据的扰动具有一定的容忍度。

鲁棒优化方法旨在通过考虑输入数据的扰动,使得优化算法能够在面对噪声或异常数据时仍能得到稳定和可靠的结果。

而两阶段鲁棒优化方法则是一种常用的解决方案,本文将对其进行详细介绍。

第一阶段:预处理在进行鲁棒优化之前,我们需要对输入数据进行预处理。

预处理的目的是通过消除或减小数据中的噪声和异常值,提高优化算法的鲁棒性。

常用的预处理方法包括数据平滑、异常值检测和处理、特征选择和降维等。

数据平滑是一种常见的预处理方法,它通过对数据进行滤波或平均化处理,降低数据中的噪声干扰。

常用的数据平滑方法包括移动平均、指数加权平均和中值滤波等。

这些方法能够减小数据中的噪声,提高优化算法的稳定性。

异常值检测和处理也是一种常见的预处理方法。

异常值是指与大多数数据明显偏离的数值,它们可能是由于测量误差、数据录入错误或数据采集问题等原因引起的。

对于异常值的检测,可以使用统计方法、聚类方法或机器学习方法。

一旦异常值被检测出来,可以选择删除、替换或修复这些异常值,以提高数据的准确性和一致性。

特征选择和降维也是预处理阶段的重要步骤。

特征选择的目的是从原始数据中选择出对问题解决有用的特征,减少冗余和噪声特征的影响。

常用的特征选择方法包括过滤式、包裹式和嵌入式等。

降维的目的是通过将高维数据投影到低维空间,减少数据维度和复杂度,提高计算效率和模型鲁棒性。

常用的降维方法包括主成分分析、线性判别分析和非负矩阵分解等。

第二阶段:优化算法在预处理阶段完成后,我们可以使用优化算法对预处理后的数据进行建模和优化。

优化算法的选择与具体问题有关,常用的优化算法包括遗传算法、模拟退火算法、粒子群算法和差分进化算法等。

在应用优化算法之前,我们需要确定合适的目标函数和约束条件。

目标函数是我们希望优化的目标,约束条件是问题的限制条件。

通过定义合适的目标函数和约束条件,我们可以将优化问题转化为数学模型,并使用优化算法进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鲁棒优化的方法及应用威在实际的优化中决策过程中,我们经常遇到这样的情形,数据是不确定的或者是非精确的;最优解不易计算,即使计算的非常精确,但是很难准确的实施;对于数据的一个小的扰动可能导致解是不可行。

鲁棒优化是一个建模技术,可以处理数据不确定但属于一个不确定集合的优化问题。

早在19世纪70年代,Soyster 就是最早开始研究鲁棒优化问题的学者之一,他的文章给出了当约束矩阵的列向量属于一个椭球形不确定的集合时的鲁棒线性优化问题。

几年以后Falk 沿着这条思路做了非精确的线性规划。

在以后的很长的一段时间里,鲁棒优化方面都没有新的成果出现。

直到19世纪末,Ben-Tal,Nemirovski 的工作以及这时计算技术的发展,尤其是对于半定优化和凸优化点算法的发展,使得鲁棒优化又成为一个研究的热点。

一个一般的数学规划的形式为0000,min {:(,)0,(,)0,1,...,}ni x R x R x f x x f x i m ξξ∈∈-≤≤=其中x 为设计向量,0f 为目标函数,12,,...,m f f f 是问题的结构元素。

ξ表示属于特定问题的数据。

U 是数据空间中的某个不确定的集合。

对于一个不确定问题的相应的鲁棒问题为0000,min {:(,)0,(,)0,1,...,,}n i x R x Rx f x x f x i m U ξξξ∈∈-≤≤=∀∈这个问题的可行解和最优解分别称为不确定问题的鲁棒可行和鲁棒最优解。

这篇文章主要回顾了鲁棒优化的基本算法,目前的最新的研究结果及在经济上的应用。

1 鲁棒优化的基本方法1.1鲁棒线性规划一个不确定线性规划{min{:}(,,)}Tnm nm xc x Ax b c A b U R RR ⨯≥∈⊂⨯⨯所对应的鲁棒优化问题为min{:,,(,,)}Txt t c x Ax b c A b U ≥≥∈,如果不确定的集合是一个计算上易处理的问题,则这个线性规划也是一个计算上易处理的问题。

并且有下列的结论: 假设不确定的集合由一个有界的集合{}NZ R ξ=⊂的仿射像给出,如果Z 是1线性不等式约束系统构成P p ξ≤,则不确定线性规划的鲁棒规划等价于一个线性规划问题。

2由锥二次不等式系统给出2,1,...,Ti i i i P p q r i M ξξ-≤-=,则不确定线性规划的鲁棒规划等价于一个锥二次的问题。

3 由线性矩阵不等式系统给出dim 010i i i P P ξξ=+≥∑,则所导致的问题为一个半定规划问题。

1.2鲁棒二次规划考虑一个不确定的凸二次约束问题1{min{:2,1,...,}(,,)}T T T m i i i i i i i xc x x A x b x c i m A b c U =≤+=∈对于这样的一个问题,即使不确定集合的结够很简单,也会导致NP 难的问题,所以对于这种问题的处理通常是采用它的近似的鲁棒规划问题。

考虑一个不确定的优化问题{min{:(,)0}}TxP c x F x U ξξ=≤∈,假设不确定集合为n U V ξ=+,而n ξ表示名义的数据,而V 表示一个扰动的集合,假设V 是一个包含原点的凸紧集。

不确定问题P 可以看成是一个不确定问题的参数族{min{:(,)0}}T n xP c x F x U V ρρξξξρ=≤∈=+,0ρ≥表示不确定的水平。

具有椭圆不确定性的不确定的凸二次规划问题的近似鲁棒问题11{{(,,)(,,)(,,)}1,1,...,}Lnn n l l l m Ti i i iiil i i i i j l U c A b c A b c A b Q j k ξξξ====+≤=∑其中10,0kj jj Q Q=≥∑则问题可一转化为一个半定规划问题11111111min 2...[]22[]2..0,1,...,[]2T L kT n n T T L n T i i i i iji i i j T i T i i kij ij L L TT Li i in L i i i c xc c x b c x b x b A x c x b A x s t Qi m c A x x b A x A x A xI λλ==⎛⎫+-++ ⎪⎪ ⎪+⎪⎪⎪≥=⎪ ⎪+ ⎪⎪⎪⎪⎝⎭∑∑具有椭圆不确定集合的不确定锥二次问题的近似鲁棒规划 考虑不确定锥二次规划12{min{:,1,...,}{(,,,)}}T T m i ii i i i i i i xc x A x b x i m A b U αβαβ=+≤+=∈它的约束为逐侧的不确定111{,}(,,,)}{,}m leftm i i i i i i i i m right i i i A b U U A b U αβαβ===⎧⎫∈⎪⎪=⎨⎬∈⎪⎪⎩⎭ 它的左侧的不确定的集合是一个椭圆11{{(,)(,)(,)}1,1,...,}Lleftnn l l m T i i iil i i i j l UA b A b A b Q j k ξξξ====+≤=∑其中10,0kj jj Q Q=≥∑右侧的不确定集合是有界的,它的半定表示为11{{(,)(,)(,)}}Rrightnn r r m i i iir i i i r UV αβαβηαβη====+∈∑{:()()0}V u P Q u R ηη=∃+-≥,(),()P Q u η为线性映射。

则半定规划为11111min [][]..0,1,...,[]T kn n T iji i j T i i kijij L L T i i n n L i i i i i c xA x b A x b s t Qi m A x b A x b A x A xIτλλτ==⎛⎫-+ ⎪⎪⎪+ ⎪≥= ⎪ ⎪+⎪⎪+ ⎪ ⎪⎝⎭∑∑其中11**0,1,...,,1,...,(),1,...,(),1,...,()0,1,...,0,1,...,ij T n n i i i i T i i i T R R i i i i i m j k x Tr RV i mx P V i mx Q V i mV i mλταβαβαβ≥===++=⎛⎫+ ⎪== ⎪ ⎪+⎝⎭==≥=1.3鲁棒半定规划一个不确定的半定规划的鲁棒规划为0011{min{:0}{(,...,)}}nTm i i n i xi c x A x A A A U ==+≥∈∑由一个箱式不确定集合影响的不确定半定规划的近似鲁棒问题0001{(,...,)(,...,)(,...,)1}Lnn l l n nl n l U A A A A A A ξξ∞===+≤∑。

则半定规划的近似的鲁棒优化为01,011[],1,...,min :[],1,...,,1,...,lnl l ll j j j T l l x X L nl l lj j l j X A x A x A l L c x X A x l L X A x A l L ===⎧⎫≥≡+=⎪⎪⎪⎪⎪⎪≥-=⎨⎬⎪⎪⎪⎪≤+=⎪⎪⎩⎭∑∑∑由一个球不确定集合影响的不确定半定规划的近似鲁棒问题00021{(,...,)(,...,)(,...,)1}Lnn l ln nl n l U A A A A A A ξξ===+≤∑。

则半定规划问题为12120,,1[][][][]min :[]0,2()[]L nT n n j j x F G j L G A x A x A x A x c x A x F F G A x A A x F =⎧⎫⎛⎫⎪⎪⎪⎪⎪ ⎪⎪⎪ ⎪≥+≤+⎨⎬ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪⎝⎭⎩⎭∑具有易处理的鲁棒counterparts 的不确定线性规划。

如果多胞形是由有限集合的凸包给出的,则鲁棒规划为1min{:0,1,...,}nTl l j j xj c x A x A l L =+≥=∑2 鲁棒优化的几种新的方法鲁棒规划的最近的研究包括了对于可调节的鲁棒优化的研究以及对于鲁棒凸优化的研究。

2.1不确定的线性规划的可调节的鲁棒解不确定线性规划为[,,],{min :}TZ U V b Z u vLP c u Uu Vv b ζ=∈+≤,其中不确定集合n m n m Z R R R ⨯⊂⨯⨯是一个非空的紧的凸集,V 称为recourse 矩阵。

当V 是确定的情况下,则称相应的不确定线性规划为固定recourse 的。

定义:线性规划Z LP 的鲁棒counterpart 为():min{:([,,]):}TuRC c u v U V b Z Uu Vv b ζ∃∀=∈+≤,则它的可调节的鲁棒counterpart 为():min{:([,,]),:}T uARC c u U V b Z v Uu Vv b ζ∀=∈∃+≤。

可调节的鲁棒规划比一般的鲁棒规划灵活,但是同时它也比一般的鲁棒规划难解。

对于一个不确定线性规划的鲁棒规划是一个计算上易处理的问题,然而它相应的可调节的鲁棒规划却是不易处理的问题。

但是如果不确定集合是有限集合的凸包,则固定recourse 的ARC 是通常的线性规划。

从实际的应用来看,只有当原不确定问题的鲁棒counterpart 在计算上容易处理的时候,鲁棒优化方法才有意义。

当可调节的变量是数据的仿射函数时,可以得到一个计算上易处理的鲁棒counterpart.对于Z LP 的仿射可调节的鲁棒counterpart (AARC)可以表示为,,():min{:(),([,,])}T u w WAARC c u Uu V w W b U V b Z ζζ++≤∀=∈。

如果Z 是一个计算上易处理的集合,则在固定recourse 的情况下,Z LP 的仿射可调节的鲁棒counterpart (AARC)是一个计算上易处理的问题。

如果Z 是这样的一个集合,1{[,,][,,][,,]:}Ll l l l l Z U V b U V b U V b ξξ===+∈ℵ∑,ℵ是一个非空的凸紧集。

在固定的recourse 的情况下,AARC 具有这样的形式01000,,,...,min {:[][][],}LT l l ll l l u v v vc u U U u V v v b b ξξξξ+++≤+∀∈ℵ∑∑∑ 如果不确定的集合是一个锥表示的,则Z LP 的仿射可调节的鲁棒counterpart (AARC)是一个锥二次或半定规划。

如果recourse 也是可变的,则AARC 是不易处理的问题,这时采用它的近似形式。

在简单椭圆不确定集合的情况下,AARC 等价于一个半定规划。

当扰动的集合是一个中心在原点的箱式集合或者是一个关于原点对称的多胞形集合,则AARC 可以有一个半定规划来近似。

相关文档
最新文档