鲁棒优化的方法及应用概述

合集下载

鲁棒性优化的原理、评估方法及应用-放射医学论文-基础医学论文-医学

鲁棒性优化的原理、评估方法及应用-放射医学论文-基础医学论文-医学

鲁棒性优化的原理、评估方法及应用-放射医学论文-基础医学论文-医学鲁棒性优化的原理、评估方法及应用放射医学论文基础医学论文医学放射医学作为一门重要的医学分支,应用广泛且发展迅猛。

在放射医学的实践中,为了保证诊断结果的准确性和稳定性,提高影像质量和疾病诊断的可信度,鲁棒性优化成为一种重要的手段。

本论文将着重探讨鲁棒性优化的原理、评估方法以及其在放射医学中的应用。

一、鲁棒性优化原理鲁棒性优化是指在实际应用中,通过在系统中引入一定程度的冗余,使得系统对各种干扰因素和不确定性具有强健性。

在放射医学领域中,鲁棒性优化的原理主要包括以下几个方面。

1. 信号处理技术鲁棒性优化中的信号处理技术主要针对图像数据的处理。

比如在辐射剂量计算中,为了减小各种因素对剂量计算结果的影响,可以基于模型订正或者增加剂量分配的冗余,提高系统的鲁棒性。

2. 特征提取与选择特征提取与选择是鲁棒性优化的关键环节。

通过合理选择影像中的关键特征,可以减少噪声和其他干扰因素对诊断结果的影响。

比如在肿瘤检测中,可以通过计算形状特征、纹理特征等来提高肿瘤检测的准确性和鲁棒性。

3. 算法优化算法优化是鲁棒性优化的重要手段。

通过改进或设计新的算法,可以提高系统对各种噪声和变化的适应能力。

例如,对于放射源和探测器位置的微小变化,可以采用基于机器学习的方法来优化图像重建算法,从而提高图像质量和诊断准确性。

二、鲁棒性优化的评估方法为了评估鲁棒性优化的效果,我们需要选择合适的评估方法和指标。

以下是几种常用的评估方法。

1. 灵敏度分析灵敏度分析是评估系统对输入参数变化的鲁棒性的一种方法。

通过改变系统参数或输入数据的扰动幅度,观察输出结果的变化情况,可以评估系统在不同干扰因素下的鲁棒性。

2. 参数估计参数估计是通过对输入参数进行统计分析,估计系统对参数变化的鲁棒性。

通过观察参数估计结果的方差、置信区间等指标,可以评估系统在不同干扰条件下对参数的稳定性和可信度。

数学中的robust optimization

数学中的robust optimization

数学中的robust optimization
鲁棒优化(robust optimization)是一种数学优化方法,旨在处
理在不确定条件下的优化问题。

它主要关注的是如何在给定的不确定性条件下找到最佳解,使其在不确定参数变化时尽可能稳健。

在传统的优化问题中,问题的参数一般是确定的,问题可以完全定义并解决。

然而,在现实世界中,很多问题的参数是不确定的,可能受到一些随机变化、测量误差或者模型假设的影响。

鲁棒优化就是为了解决这种不确定性问题而发展起来的。

鲁棒优化的目标是寻找一个最优解,使得在所有可能的不确定情况下都能够保持一定的性能水平。

它考虑的是在最坏情况下的最优性能,而不是在特定情况下的最优性能。

鲁棒优化方法通常基于一个确定性优化问题,通过引入不确定性集合来描述不确定性条件。

这个不确定性集合可以是参数的范围、概率分布或者其他形式的不确定性模型。

然后,在确定性优化问题的约束条件中引入这个不确定性集合,从而将不确定性考虑进优化问题中。

鲁棒优化方法可以帮助我们在不确定条件下做出更可靠的决策,并降低由于参数变化而导致的风险。

它在许多领域中都有广泛的应用,例如供应链管理、金融风险管理、交通规划等。

自动化控制系统的鲁棒优化设计方法研究现状分析论文素材

自动化控制系统的鲁棒优化设计方法研究现状分析论文素材

自动化控制系统的鲁棒优化设计方法研究现状分析论文素材自动化控制系统的鲁棒优化设计方法研究现状分析自动化控制系统是现代工业生产中不可或缺的一部分。

通过使用控制算法、传感器和执行器,自动化控制系统能够实现生产流程的自动化,并提高生产效率和质量。

在设计自动化控制系统时,鲁棒优化是一个重要的考虑因素。

本文将对自动化控制系统的鲁棒优化设计方法进行研究现状分析。

一、鲁棒优化概述鲁棒优化是指在面对系统不确定性和外部干扰时保持控制系统的稳定性和性能。

传统的优化方法往往是基于系统准确的数学模型,但实际的控制系统常常存在模型不确定性和外部干扰,因此,需要使用鲁棒优化方法来提高控制系统的稳定性和鲁棒性。

二、鲁棒优化设计方法1. 参数整定方法鲁棒参数整定方法是一种基于系统模型的优化方法。

通过对系统模型进行分析和建模,确定系统参数的取值范围,并通过试探法或迭代算法来优化系统参数。

常见的鲁棒参数整定方法有H∞优化、线性矩阵不等式(LMI)方法等。

2. 鲁棒控制设计方法鲁棒控制设计方法是通过引入鲁棒控制器来提高控制系统的性能和鲁棒性。

常见的鲁棒控制器设计方法有H∞控制、μ合成控制等。

这些方法通过对系统模型进行描述,并结合鲁棒控制理论,设计出满足性能指标和鲁棒性要求的控制器。

3. 鲁棒优化方法在非线性系统中的应用非线性系统的优化设计涉及到非线性系统的建模和分析,以及非线性控制器的设计。

鲁棒优化方法在非线性系统中的应用主要是通过引入鲁棒控制理论,将非线性系统转化为具有线性结构的模型,并利用线性控制理论进行设计。

三、鲁棒优化设计方法的应用领域鲁棒优化设计方法在各个领域都具有重要的应用价值。

例如,在工业生产过程中,自动化控制系统的鲁棒优化设计可以提高生产效率和产品质量;在飞行器控制系统中,鲁棒优化设计可以提高系统的稳定性和安全性;在机器人控制系统中,鲁棒优化设计可以提高机器人的灵活性和适应性。

四、研究现状分析目前,国内外学者在自动化控制系统的鲁棒优化设计方法方面做了大量的研究工作。

控制系统中的鲁棒性与鲁棒优化控制

控制系统中的鲁棒性与鲁棒优化控制

控制系统中的鲁棒性与鲁棒优化控制一、引言鲁棒性与鲁棒优化控制在控制系统中起着重要的作用。

鲁棒性是指控制系统对于外部扰动和系统参数变化的稳定性。

鲁棒优化控制是在保持鲁棒性的前提下,通过调整控制器参数实现最优控制。

本文将从鲁棒性的定义与评估、鲁棒控制设计基础、鲁棒优化控制等方面进行探讨。

二、鲁棒性的定义与评估在控制系统中,外部扰动和系统参数变化是难以避免的。

因此,控制系统的鲁棒性成为了一个关键的性能指标。

鲁棒性的定义是指控制系统在外部扰动和系统参数变化的条件下仍然能够保持稳定的能力。

评估鲁棒性通常可以通过鲁棒稳定边界来实现。

鲁棒稳定边界是指控制系统在外部扰动和系统参数变化的范围内仍然能够保持稳定的区域。

三、鲁棒控制设计基础为了提高控制系统的鲁棒性,可以采用鲁棒控制设计基础方法。

鲁棒控制设计基础方法包括鲁棒稳定性分析和鲁棒控制器设计两个主要步骤。

1.鲁棒稳定性分析鲁棒稳定性分析是控制系统鲁棒性设计的第一步。

它通过分析系统的传递函数,确定系统存在哪些参数的变化和外部扰动的范围是导致系统不稳定的原因。

常用的鲁棒稳定性分析方法有小增益鲁棒分析、大增益鲁棒分析等。

2.鲁棒控制器设计鲁棒控制器设计是控制系统鲁棒性设计的关键步骤。

通过选取合适的鲁棒控制器结构和调整控制器参数,可以实现对系统的鲁棒性能的改善。

常用的鲁棒控制器设计方法有H∞控制、μ合成控制等。

四、鲁棒优化控制鲁棒优化控制是在保持系统鲁棒性的前提下,通过调整控制器参数实现最优控制性能的方法。

在实际控制系统中,鲁棒优化控制能够有效地提高系统的鲁棒性和控制性能。

1.鲁棒优化控制基本原理鲁棒优化控制的基本原理是在目标函数中同时考虑系统控制性能和鲁棒性能,并通过调整控制器参数来实现最优化。

常用的鲁棒优化控制方法有线性二次调节器(LQR)和H∞最优控制。

2.鲁棒优化控制实践实际应用中,鲁棒优化控制可以通过离线和在线两种方式实现。

离线方式包括离线参数调整和离线优化方法,通过对控制系统的模型进行分析和优化来获取最优的控制器参数。

控制系统的鲁棒优化控制方法

控制系统的鲁棒优化控制方法

控制系统的鲁棒优化控制方法在现代工业领域中,控制系统起着至关重要的作用,用于实现对工艺过程的自动化控制和优化。

然而,由于工艺过程本身的复杂性和不确定性,传统的控制方法常常无法满足系统的要求。

因此,鲁棒优化控制方法应运而生,旨在提高系统的控制性能和稳定性。

本文将介绍控制系统的鲁棒优化控制方法及其应用。

一、鲁棒优化控制的基本概念鲁棒优化控制是一种针对不确定系统的自适应控制方法,其目标是在面对参数变化、环境扰动和不确定模型时,仍能实现系统的稳定性和优化性能。

鲁棒优化控制方法通过在控制器中引入鲁棒性设计和优化算法,以提高系统对不确定性的适应能力,并优化系统的控制性能。

二、鲁棒优化控制方法的原理及应用1. 鲁棒性设计鲁棒性设计是控制器设计中的关键环节,通过引入鲁棒性方法来抵抗系统模型不确定性。

鲁棒性设计常采用H∞控制理论、μ合成等方法,以提高系统的稳定性和鲁棒性能。

通过这些方法,控制器能够对参数扰动和未建模动态进行补偿,从而使系统具有良好的鲁棒性。

2. 优化算法优化算法在鲁棒优化控制中起到了重要的作用。

常用的优化算法包括PID控制器参数整定、遗传算法、模糊控制等。

通过这些算法的应用,可以使系统的控制性能得到改善,并且能够灵活应对不同的工况变化。

3. 应用领域鲁棒优化控制方法在许多领域都有广泛的应用,例如电力系统、化工过程、机械控制等。

以电力系统为例,由于电力系统的复杂性和不确定性,传统的控制方法往往无法满足实际需求。

而鲁棒优化控制方法通过引入鲁棒性设计和优化算法,能够实现对电力系统的稳定控制和优化运行。

三、鲁棒优化控制方法的优势与挑战1. 优势鲁棒优化控制方法能够有效应对系统的不确定性和复杂性,具有良好的鲁棒性和适应性。

通过引入鲁棒性设计和优化算法,能够提高系统的控制性能和稳定性。

2. 挑战鲁棒优化控制方法的应用还面临着一些挑战。

首先,鲁棒优化控制方法需要对系统进行建模和参数估计,这对于复杂系统来说是一项困难的任务。

鲁棒优化的方法及应用概述

鲁棒优化的方法及应用概述

鲁棒优化的方法及应用杨威在实际的优化中决策过程中,我们经常遇到这样的情形,数据是不确定的或者是非精确的;最优解不易计算,即使计算的非常精确,但是很难准确的实施;对于数据的一个小的扰动可能导致解是不可行。

鲁棒优化是一个建模技术,可以处理数据不确定但属于一个不确定集合的优化问题。

早在19世纪70年代,Soyster就是最早开始研究鲁棒优化问题的学者之一,他的文章给出了当约束矩阵的列向量属于一个椭球形不确定的集合时的鲁棒线性优化问题。

几年以后Falk沿着这条思路做了非精确的线性规划。

在以后的很长的一段时间里,鲁棒优化方面都没有新的成果出现。

直到19世纪末,Ben-Tal,Nemirovski的工作以及这时计算技术的发展,尤其是对于半定优化和凸优化内点算法的发展,使得鲁棒优化又成为一个研究的热点。

一个一般的数学规划的形式为min n{x0 : f°(x, ) — X。

乞0, £(x, ) E0,i-R ,x =R其中x为设计向量,f o为目标函数,f!, f2,..., f m是问题的结构元素。

•表示属于特定问题的数据。

U是数据空间中的某个不确定的集合。

对于一个不确定问题的相应的鲁棒问题为min n{x° : f°(x, ) -X。

一0, £(x, ) 一0,i =1,...,m^ U}x -R,x :R这个问题的可行解和最优解分别称为不确定问题的鲁棒可行和鲁棒最优解。

这篇文章主要回顾了鲁棒优化的基本算法,目前的最新的研究结果及在经济上的应用。

1鲁棒优化的基本方法1.1鲁棒线性规划一个不确定线性规划{min{ c T x: Ax 3b} (c, A,b)乏U u R n x R mxh x R m}所对应的鲁x棒优化问题为min {t:t _c T x, Ax _b,(c, A,b)・U},如果不确定的集合是一个计算上易处x理的问题,则这个线性规划也是一个计算上易处理的问题。

自动化控制系统的鲁棒优化算法论文素材

自动化控制系统的鲁棒优化算法论文素材

自动化控制系统的鲁棒优化算法论文素材自动化控制系统是现代工业和科技领域中的重要组成部分。

鲁棒优化算法是自动化控制系统中的关键技术之一,它能够提高系统性能并增强其鲁棒性。

本文将提供关于自动化控制系统的鲁棒优化算法的论文素材,以供参考。

1. 引言自动化控制系统是指利用计算机和电子技术对工业过程进行监测、控制和优化的系统。

随着科技的不断发展,自动化控制系统在各个领域得到广泛应用,如工业生产、交通运输、能源管理等。

然而,由于外界环境的复杂性和工业过程的不确定性,自动化控制系统的稳定性和鲁棒性成为了研究的重点。

2. 鲁棒优化算法的概述鲁棒优化算法是一种针对系统不确定性和环境变化的优化方法。

它通过考虑系统模型的不确定性来有效地提高控制系统的性能和稳定性。

鲁棒优化算法的主要目标是在保证系统稳定性的前提下,最大化系统的性能指标。

3. 鲁棒性分析在鲁棒优化算法中,鲁棒性分析是一个关键的步骤。

它通过分析系统不确定性对系统性能的影响,确定系统的鲁棒性界限。

鲁棒性分析可以基于不确定性理论和鲁棒控制理论进行,为后续的优化算法提供基础。

4. 鲁棒优化算法的应用鲁棒优化算法在自动化控制系统中的应用非常广泛。

例如,鲁棒PID控制算法可以提高PID控制器对系统参数变化的适应性,增强系统的鲁棒性;鲁棒优化算法也可以应用于优化微分进化算法的参数设置,提高优化算法的收敛速度和优化性能。

5. 鲁棒优化算法的案例研究本节将介绍几个鲁棒优化算法在自动化控制系统中的案例研究。

例如,一种基于鲁棒优化算法的智能调度算法可以在多目标工业生产中实现资源的最优分配;另外,基于鲁棒优化算法的多智能体系统可以实现多个机器人之间的协同控制。

6. 结论本文简要介绍了自动化控制系统的鲁棒优化算法,并且提供了相关的论文素材供读者参考。

鲁棒优化算法在自动化控制系统中具有重要的应用价值,能够提高系统的鲁棒性和性能。

未来的研究可以进一步深入挖掘鲁棒优化算法在自动化控制系统中的潜力,为工业和科技领域的发展做出更大的贡献。

鲁棒性优化的原理、评估方法及应用-放射医学论文-基础医学论文-医学论文

鲁棒性优化的原理、评估方法及应用-放射医学论文-基础医学论文-医学论文

鲁棒性优化的原理、评估方法及应用-放射医学论文-基础医学论文-医学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:质子治疗过程容易受射程偏差、摆位偏差、患者解剖结构改变等不确定因素的影响,质子调强放疗的鲁棒性优化是将这些不确定因素考虑进计划的制定过程中,增加治疗计划鲁棒性的一种方法,在临床中有广泛的应用。

鲁棒性优化的方法主要有4种:(1)概率法;(2)最差剂量法;(3)添加约束项;(4)多CT优化。

本文综述了这4种方法的原理、优缺点和临床应用情况。

同时,还介绍了治疗计划鲁棒性的评估方法。

虽然目前剂量体积直方图束是最常用的评估治疗计划鲁棒性的方法,但是,剂量体积直方图束不能反映质子调强放疗计划对解剖结构改变的鲁棒性,因此,还急需建立一个简单易用并能被广泛接受的鲁棒性评估方法,方便质子调强放疗计划的对比和评估。

关键词:质子调强放射治疗; 鲁棒性优化; 鲁棒性评估; 综述;Abstract:The intensity modulated proton therapy(IMPT)process is susceptible to factors such as range uncertainties, setup uncertainties and anatomical changes. The robust optimization of IMPT is a method to increase the robustness of treatment plan by taking these uncertainties into consideration in the process of optimization, which is widely used in clinical practice.There are four methods for robust optimization:(1)probability method;(2)worst dose method;(3)adding constraints;(4)multiple CT optimization. This paper reviews the principles, advantages and disadvantages of these four methods and their clinical application, and it also introduces the evaluation methods for robustness. Although the dose volume histogram(DVH)bands is the most commonly used method to evaluate the plan robustness, DVH bands cannot reflect the robustness of IMPT plan with anatomical changes. Therefore, it is urgent to establish a simple and widely accepted robustness evaluation method to facilitate the comparison and evaluation of IMPT plans.Keyword:intensity modulated proton therapy; robust optimization; robustness evaluation; review;前言质子调强放疗(Intensity Modulated Proton Therapy,IMPT)相比于传统的光子调强放疗(Intensity Modulated Radiation Therapy,IMRT)有剂量上的优势[1,2,3,4],但是,IMPT的剂量线梯度大,容易受不确定因素的影响[5]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鲁棒优化的方法及应用杨威在实际的优化中决策过程中,我们经常遇到这样的情形,数据是不确定的或者是非精确的;最优解不易计算,即使计算的非常精确,但是很难准确的实施;对于数据的一个小的扰动可能导致解是不可行。

鲁棒优化是一个建模技术,可以处理数据不确定但属于一个不确定集合的优化问题。

早在19世纪70年代,Soyster 就是最早开始研究鲁棒优化问题的学者之一,他的文章给出了当约束矩阵的列向量属于一个椭球形不确定的集合时的鲁棒线性优化问题。

几年以后Falk 沿着这条思路做了非精确的线性规划。

在以后的很长的一段时间里,鲁棒优化方面都没有新的成果出现。

直到19世纪末,Ben-Tal,Nemirovski 的工作以及这时计算技术的发展,尤其是对于半定优化和凸优化内点算法的发展,使得鲁棒优化又成为一个研究的热点。

一个一般的数学规划的形式为0000,min {:(,)0,(,)0,1,...,}ni x R x R x f x x f x i m ξξ∈∈-≤≤=其中x 为设计向量,0f 为目标函数,12,,...,m f f f 是问题的结构元素。

ξ表示属于特定问题的数据。

U 是数据空间中的某个不确定的集合。

对于一个不确定问题的相应的鲁棒问题为0000,min {:(,)0,(,)0,1,...,,}ni x R x R x f x x f x i m U ξξξ∈∈-≤≤=∀∈这个问题的可行解和最优解分别称为不确定问题的鲁棒可行和鲁棒最优解。

这篇文章主要回顾了鲁棒优化的基本算法,目前的最新的研究结果及在经济上的应用。

1 鲁棒优化的基本方法1.1鲁棒线性规划一个不确定线性规划{min{:}(,,)}Tnm nm xc x Ax b c A b U R RR ⨯≥∈⊂⨯⨯所对应的鲁棒优化问题为min{:,,(,,)}Txt t c x Ax b c A b U ≥≥∈,如果不确定的集合是一个计算上易处理的问题,则这个线性规划也是一个计算上易处理的问题。

并且有下列的结论: 假设不确定的集合由一个有界的集合{}NZ R ξ=⊂的仿射像给出,如果Z 是1线性不等式约束系统构成P p ξ≤,则不确定线性规划的鲁棒规划等价于一个线性规划问题。

2由锥二次不等式系统给出2,1,...,Ti i i i P p q r i M ξξ-≤-=,则不确定线性规划的鲁棒规划等价于一个锥二次的问题。

3 由线性矩阵不等式系统给出dim 010i i i P P ξξ=+≥∑,则所导致的问题为一个半定规划问题。

1.2鲁棒二次规划考虑一个不确定的凸二次约束问题1{min{:2,1,...,}(,,)}T T T m i i i i i i i xc x x A x b x c i m A b c U =≤+=∈对于这样的一个问题,即使不确定集合的结够很简单,也会导致NP 难的问题,所以对于这种问题的处理通常是采用它的近似的鲁棒规划问题。

考虑一个不确定的优化问题{min{:(,)0}}TxP c x F x U ξξ=≤∈,假设不确定集合为n U V ξ=+,而n ξ表示名义的数据,而V 表示一个扰动的集合,假设V 是一个包含原点的凸紧集。

不确定问题P 可以看成是一个不确定问题的参数族{min{:(,)0}}T n xP c x F x U V ρρξξξρ=≤∈=+,0ρ≥表示不确定的水平。

具有椭圆不确定性的不确定的凸二次规划问题的近似鲁棒问题11{{(,,)(,,)(,,)}1,1,...,}Lnn n l l l m Ti i i iiil i i i i j l U c A b c A b c A b Q j k ξξξ====+≤=∑其中10,0kj jj Q Q=≥∑则问题可一转化为一个半定规划问题11111111min 2...[]22[]2..0,1,...,[]2T L kT n n T T L n T i i i i iji i i j T i T i i kij ij L L TT Li i in L i i i c xc c x b c x b x b A x c x b A x s t Qi m c A x x b A x A x A xI λλ==⎛⎫+-++ ⎪⎪ ⎪+⎪⎪⎪≥=⎪ ⎪+ ⎪⎪⎪⎪⎝⎭∑∑具有椭圆不确定集合的不确定锥二次问题的近似鲁棒规划 考虑不确定锥二次规划12{min{:,1,...,}{(,,,)}}T T m i ii i i i i i i xc x A x b x i m A b U αβαβ=+≤+=∈它的约束为逐侧的不确定111{,}(,,,)}{,}m leftm i i i i i i i i m right i i i A b U U A b U αβαβ===⎧⎫∈⎪⎪=⎨⎬∈⎪⎪⎩⎭ 它的左侧的不确定的集合是一个椭圆11{{(,)(,)(,)}1,1,...,}Lleftnn l l m T i i iil i i i j l UA b A b A b Q j k ξξξ====+≤=∑其中10,0kj jj Q Q=≥∑右侧的不确定集合是有界的,它的半定表示为11{{(,)(,)(,)}}Rrightnn r r m i i iir i i i r UV αβαβηαβη====+∈∑{:()()0}V u P Q u R ηη=∃+-≥,(),()P Q u η为线性映射。

则半定规划为11111min [][]..0,1,...,[]T kn n T iji i j T i i kijij L L T i i n n L i i i i i c xA x b A x b s t Qi m A x b A x b A x A xIτλλτ==⎛⎫-+ ⎪⎪⎪+ ⎪≥= ⎪ ⎪+⎪⎪+ ⎪ ⎪⎝⎭∑∑其中11**0,1,...,,1,...,(),1,...,(),1,...,()0,1,...,0,1,...,ij T n n i i i i T i i i T R R i i i i i m j k x Tr RV i mx P V i mx Q V i mV i mλταβαβαβ≥===++=⎛⎫+ ⎪== ⎪ ⎪+⎝⎭==≥=1.3鲁棒半定规划一个不确定的半定规划的鲁棒规划为0011{min{:0}{(,...,)}}nTm i i n i xi c x A x A A A U ==+≥∈∑由一个箱式不确定集合影响的不确定半定规划的近似鲁棒问题0001{(,...,)(,...,)(,...,)1}Lnn l l n nl n l U A A A A A A ξξ∞===+≤∑。

则半定规划的近似的鲁棒优化为01,011[],1,...,min :[],1,...,,1,...,lnl l ll j j j T l l x X L nl l lj j l j X A x A x A l L c x X A x l L X A x A l L ===⎧⎫≥≡+=⎪⎪⎪⎪⎪⎪≥-=⎨⎬⎪⎪⎪⎪≤+=⎪⎪⎩⎭∑∑∑由一个球不确定集合影响的不确定半定规划的近似鲁棒问题00021{(,...,)(,...,)(,...,)1}Lnn l ln nl n l U A A A A A A ξξ===+≤∑。

则半定规划问题为12120,,1[][][][]min :[]0,2()[]L nT n n j j x F G j L G A x A x A x A x c x A x F F G A x A A x F =⎧⎫⎛⎫⎪⎪⎪⎪⎪ ⎪⎪⎪ ⎪≥+≤+⎨⎬ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪⎝⎭⎩⎭∑具有易处理的鲁棒counterparts 的不确定线性规划。

如果多胞形是由有限集合的凸包给出的,则鲁棒规划为1min{:0,1,...,}nTl l j j xj c x A x A l L =+≥=∑2 鲁棒优化的几种新的方法鲁棒规划的最近的研究包括了对于可调节的鲁棒优化的研究以及对于鲁棒凸优化的研究。

2.1不确定的线性规划的可调节的鲁棒解不确定线性规划为[,,],{min :}TZ U V b Z u vLP c u Uu Vv b ζ=∈+≤,其中不确定集合n m n m Z R R R ⨯⊂⨯⨯是一个非空的紧的凸集,V 称为recourse 矩阵。

当V 是确定的情况下,则称相应的不确定线性规划为固定recourse 的。

定义:线性规划Z LP 的鲁棒counterpart 为():min{:([,,]):}TuRC c u v U V b Z Uu Vv b ζ∃∀=∈+≤,则它的可调节的鲁棒counterpart 为():min{:([,,]),:}T uARC c u U V b Z v Uu Vv b ζ∀=∈∃+≤。

可调节的鲁棒规划比一般的鲁棒规划灵活,但是同时它也比一般的鲁棒规划难解。

对于一个不确定线性规划的鲁棒规划是一个计算上易处理的问题,然而它相应的可调节的鲁棒规划却是不易处理的问题。

但是如果不确定集合是有限集合的凸包,则固定recourse 的ARC 是通常的线性规划。

从实际的应用来看,只有当原不确定问题的鲁棒counterpart 在计算上容易处理的时候,鲁棒优化方法才有意义。

当可调节的变量是数据的仿射函数时,可以得到一个计算上易处理的鲁棒counterpart.对于Z LP 的仿射可调节的鲁棒counterpart (AARC)可以表示为,,():min{:(),([,,])}T u w WAARC c u Uu V w W b U V b Z ζζ++≤∀=∈。

如果Z 是一个计算上易处理的集合,则在固定recourse 的情况下,Z LP 的仿射可调节的鲁棒counterpart (AARC)是一个计算上易处理的问题。

如果Z 是这样的一个集合,1{[,,][,,][,,]:}Ll l l l l Z U V b U V b U V b ξξ===+∈ℵ∑,ℵ是一个非空的凸紧集。

在固定的recourse 的情况下,AARC 具有这样的形式01000,,,...,min {:[][][],}LT l l ll l l u v v vc u U U u V v v b b ξξξξ+++≤+∀∈ℵ∑∑∑ 如果不确定的集合是一个锥表示的,则Z LP 的仿射可调节的鲁棒counterpart (AARC)是一个锥二次或半定规划。

如果recourse 也是可变的,则AARC 是不易处理的问题,这时采用它的近似形式。

在简单椭圆不确定集合的情况下,AARC 等价于一个半定规划。

当扰动的集合是一个中心在原点的箱式集合或者是一个关于原点对称的多胞形集合,则AARC 可以有一个半定规划来近似。

相关文档
最新文档