做轴对称图形
(人教版) 轴对称图形 教学PPT课件1

•
10、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。
•
11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。
•
12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。洗牌,但是玩牌的是我们自己!
•
17、逆境是成长必经的过程,能勇于接受逆境的人,生命就会日渐的茁壮。
•
18、哪里有天才,我是把别人喝咖啡的功夫,都用在工作上的。——鲁迅
•
19、所谓天才,那就是假话,勤奋的工作才是实在的。——爱迪生
•
20、做一个决定,并不难,难的是付诸行动,并且坚持到底。
•
21、不要因为自己还年轻,用健康去换去金钱,等到老了,才明白金钱却换不来健康。
•
22、如果你不给自己烦恼,别人也永远不可能给你烦恼,烦恼都是自己内心制造的。
•
23、命运负责每个人身上都有惰性和消极情绪,成功的人都是懂得管理自己的情绪和克服自己的惰性,并像太阳一样照亮身边的人,激励身边的人。
•
2、你心里最崇拜谁,不必变成那个人,而是用那个人的精神和方法,去变成你自己。
•
3、你今天必须做别人不愿做的事,好让你明天可以拥有别人不能拥有的东西。
•
8、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给时间来定夺。
•
9、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡慕那些总能撞大运的人,你必须很努力,才能遇上好运气。
轴对称图形有哪些

轴对称图形有哪些
轴对称图形有:正方形、长方形、等腰三角形、等边三角形、等腰梯形.
1、正方形:是特殊的平行四边形,两组对边分别平行且相等;四条边都相等;对角线互相垂直平分;具有不稳定性(易变形);
2、长方形:有一个角是直角的平行四边形叫做长方形;两条对角线相等;对边平行且相等;具有稳定性;
3、等腰三角形:有两条边相等的三角形叫做等腰三角形;顶角是直角;底边上的高等于腰上的高;等腰三角形的性质:两条边相等的三角形是等边三角形;等腰三角形的判定:在同一个三角形中,如果有两个角相等,那么这两个角所对的边也相等;
4、等边三角形:三条边都相等的三角形叫做等边三角形;
5、等腰梯形:有一个角是直角的梯形叫做等腰梯形;等腰梯形的判定:在同一个梯形中,如果有两个角相等,那么这两个角所对的边也相等;
6、菱形:具有一个角为直角的平行四边形叫做菱形;
7、圆:圆是一种特殊的平行四边形,它的定义域是所有的实数;
8、扇形:由圆心角的角度和弧度决定的图形叫做扇形;
9、圆锥:由圆锥面、底面圆和母线组成的几何体叫做圆锥;10、球:在地球表面,由坚硬的岩石组成的天然形体叫做球;11、椭圆:定义:过焦点的圆叫做椭圆;12、双曲线:定义:过焦点的双曲线;13、抛物线:定义:与x 轴有两个交点的曲线叫做抛物线;14、直线:无限长的,平行于x 轴y 轴的线段叫做。
八年级数学上册 画轴对称图形 人教版4

对称点是 P 1 ,点 P 1 关于直线l的对称点是 P 2 ,求 P 1 P 2
的长(用含a的代数式表示).
图13-2-13
解:(1)由题意可知,A 1 (8,0),B 1 (7,0),C 1 (7,2).
如图13-2-14,A1B1C1 即为所求作的图形.
例2 如图13-2-3,在方格纸上建立的平面直角坐标
系中,Rt△ABC关于y轴对称的图形为Rt△DEF,则点A 的对应点D的坐标是__(2_,_1_)_.
图13-2-3 解析:由题图知点A的坐标是(-2,1),所以点A关于y 轴对称的对应点D的坐标是(2,1).
例3 如图13-2-4,利用关于坐标轴对称的点的坐标 特征,作出△ABC关于x轴对称的图形△A′B′C.
图13-2-4
解:∵△ABC关于x轴对称的图形为△A′B′C′,且 △ABC三个顶点的坐标分别是A(-1,4),B(-3,-3), C(2,1), ∴△A′B′C′三个顶点的坐标分别是A′(-1,-4), B′(-3,3),C′(2,-1). 如图13-2-5,△A′B′C′即为所求.
图13-2-5
图13-2-12
题型五 关于坐标轴对称的点的坐标特征的综合运用 例9 如图13-2-13,在平面直角坐标系中,直线l过点
M(3,0)且平行于y轴. (1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0), C(-1,2),△ABC关于直线l的对称图形是 A1B1C1 ,作
出 A1B1C1,并写出点 A1, B1,C1 的坐标;
图13-2-14
(1) 图13-2-15 (2)
当a=3时,P(-3,0).∵点P与点P 1 关于y轴对称,∴ P 1 (3,0).
轴对称图形PPT课件

看一看,说一说
下面哪些图形是轴对称图形
看看哪些是对称图形,画出它们的对称轴,
○有无数条 对称轴,
1.下面哪些图形是轴对称图形 画√
2.试着在钉子板上围出对称图形,并与同伴说一说. 3.在方格纸上画出轴对称图形.
4.剪一个自己喜欢的对称轴图形,在全班进行展览.
1.找一找哪些数字、字母等是轴对称的,
2.在点子图上画出轴对称图形 3.摆出轴对称图形
4.在方格纸上画出轴对称图形,这些图形像什么 5.画出下图的轴对称图形,你发现了什么
Add the author and the accompanying title
生活
图标元素
商务图标元素商务源自图标元素商务图标元素
商务
图标元素
对称轴,
2、特点
• 对称轴两侧的图形完全重合 • 对称点到对称轴的距离相等
相等
猜一猜,剪一剪
1 上面都是轴对称图形的一半,猜一猜整个图形分别是什么 2 你能剪出这些图形吗 利用附页1中的图2试一试,并与同伴说一说.
看一看,说一说,下面哪些是对称图形,
这些图形中哪 些是对称的 画 出它们的对称 轴,
轴对称图形
Add the author and the accompanying title
看看下面图形
看看下面图形
沿虚线剪开
比一比
打开
这样的图形就叫做 轴对称图形 ,
对称轴
1、定义
如果一个图形沿着一条直线对 折,直线两侧的图形能够完全重合, 这个图形就是 轴对称图形,
折痕所在的这条直线叫做
轴对称图形知识点

轴对称图形知识点轴对称图形是初中数学中一个很重要的知识点,也是应用十分广泛的一个概念。
轴对称图形可以用于建模、美术、建筑等领域,是我们生活中不可或缺的一部分。
一、轴对称图形的定义及性质轴对称图形,顾名思义,就是指如果平面上一个图形经过一条直线对称后,得到的图形与原来的图形完全一致,那么这个图形就是轴对称图形。
这条直线就被称为轴对称线或对称轴。
轴对称图形的一个显著性质是:对于图形上的任意一对点,它们关于轴对称线是对称的。
我们可以通过画出一条虚线,把两个关于它对称的点连起来,以此获得轴对称图形的对称性。
二、轴对称图形的制作方法制作轴对称图形的方法有几种。
其中一种方法是通过“折纸法”制作轴对称图形。
我们可以把待制作的图形剪下来,然后将其沿着轴对称线对折,再将两部分黏在一起,就可以得到轴对称的图形。
另一种制作轴对称图形的方法是通过使用计算机绘图软件,例如Photoshop、Illustrator等。
这些软件可以帮助我们轻松地制作各种轴对称图形,并且可以灵活地改变图形的颜色、大小等因素。
三、轴对称图形的应用轴对称图形在各个领域中都有很重要的应用。
例如,在美术领域中,我们经常使用轴对称图形进行将来建构,特别是在双面画和复合画中,更是少不了轴对称图形。
建筑领域中,轴对称图形被广泛应用于大厦、广场、宫殿等建筑的设计和建造中。
此外,在语言和文字领域,轴对称图形也被用于设计会标、字体等。
四、轴对称图形的实例以下是一些常见的轴对称图形实例:1. 五角星五角星是一个非常常见的轴对称图形。
它由两个重叠的正五角形所组成。
2. 心形心形是一个非常常见的轴对称图形。
它由两个相似的弧形线条组成,以轴对称线为轴对称。
3. 十字架十字架也是一个经典的轴对称图形,由一个直线和一条相交的线段组成。
它在基督教和天主教中有着非常深厚的象征意义。
总的来说,轴对称图形是一个非常重要的初中数学知识点,也是不可或缺的一个概念,可以应用于各个领域。
这个概念的掌握对我们日常生活和工作中的许多方面都会产生巨大的影响。
轴对称图形

经过平移,对应线段不可能在同一直 线上超过或等于两条。
平移不改变图形的形状、大小和方向 (平移前后的两个图形是全等形)。
平移前后,对应线段所在直线的夹角 相等。
平移的应用
01
02
03
图形设计
通过平移可以将不同的图 形组合在一起,形成新的 设计。
、艺术、工程等领域。
展望
进一步研究轴对称图形的性质和应用
虽然我们已经对轴对称图形有了一定的了解,但是还有很多性质和应用需要进一步研究和 探索。例如,对于更复杂的图形,如何判断它们是否为轴对称图形?对于非平面图形,如 何寻找它们的对称轴?这些问题都需要我们进行深入研究。
将轴对称图形应用到实际问题中
除了在美学和艺术中应用外,我们还可以将轴对称图形应用到实际问题中,例如在工程和 建筑设计中使用轴对称图形以提高结构的稳定性和美观度。
性质3
对称轴一侧的图形围绕对称轴旋转180度后,与另 一侧的图形重合。
对称的应用
应用1
在艺术和设计中,轴对称被广泛 使用,因为它给人一种平衡和稳
定的感觉。
应用2
在自然界中,许多物体具有轴对 称性,例如人体和许多植物。
应用3
在物理学中,轴对称也被广泛研 究,因为它与守恒定律有关。
05
轴Байду номын сангаас称图形的应用
艺术领域
图案设计
轴对称图形在艺术设计中应用广 泛,如纺织品、地毯、墙纸等, 使图案更加美观、典雅。
雕塑造型
许多雕塑利用轴对称设计,如自 由女神像、埃菲尔铁塔等,使作 品更加匀称、平衡。
绘画构图
作轴对称图形的对称轴

五、作业布置
1、课本P66习题13.1第12、13题 2、导学案P23课题13.1轴对称(第3课时) 3、名师学案P33~P34
在数学的领域中,提出问题的艺术比解答 问题的艺术更为重要.
——康托尔
线l,则l就是这个五角星的一条
对称轴.
类似地,你能做出这个五角星的其他对称轴吗?
例2 如图,△ABC和△AˊBˊCˊ是两个成轴对称的图 形,请作出它的对称轴.
l
作法: (1)找出两个图形的一对对 应点C和C′,连接CC′. (2)作出线段CC′的垂直平 分线l,则l就是△ABC和 △AˊBˊCˊ的对称轴.
八年级 上册
13.1 轴对称
第3课时 作轴对称图形的对称轴
学习目标
1. 掌握线段垂直平分线的画法; 2. 会作轴对称图形或成轴对称的两个图形的对称轴.
重难点
轴对称图形或成轴对称的两个图形的对称轴的作法
一、读书思考
阅读教科书第62~64页,思考下列问题: 1.怎样用尺规作已知线段的垂直平分线? 2.如何准确地作出轴对称图形或成轴对称 的两个图形的对称轴?
影部分面积等于正方形面积的一半, 即 1 a2 .2Biblioteka 【答案】 1 a22
2. 如图,A,B是路边两个新建小区,要在公路l上 增设一个公共汽车站.使两个小区到车站的路程一样长, 该公共汽车站应建在什么位置?
【提示】连接AB,作AB的垂 直平分线,则与公路的交点 就是要建的公共汽车站.
3. 有A,B,C三个村庄,现准备要建一所学校,要求 学校到三个村庄的距离相等,请你确定学校的位置.
【提示】学校在连接任意两 点的两条线段的垂直平分线 的交点处.
4.如图,△ABC中,边AB,BC的垂直平分线交于点P.
轴对称图形知识点归纳

轴对称知识梳理一、基本概念1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点.2.线段的垂直平分线经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线3.轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.4.等腰三角形有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.5.等边三角形三条边都相等的三角形叫做等边三角形.二、主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离相等.3.(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y).(2)点P(x,y)关于y轴对称的点的坐标为P″(-x,y).4.等腰三角形的性质(1)等腰三角形的两个底角相等(简称“等边对等角”).(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.(4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等.(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。
(6)等腰三角形顶角的外角平分线平行于这个三角形的底边.5.等边三角形的性质(1)等边三角形的三个内角都相等,并且每一个角都等于60°.(2)等边三角形是轴对称图形,共有三条对称轴.(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合.三、有关判定1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.三个角都相等的三角形是等边三角形.4.有一个角是60°的等腰三角形是等边三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.把下列各图形补成关于l 对称的图形.
2.如图,把下列图形补成关于l 对称的图形,看一看你得到了什么.
3.已知ABC ∆和直线MN .求作:'''A B C ∆,使'''A B C ∆和ABC ∆关于直线MN 对称.(不要求写作法,只保留作图痕迹
)
4.亲爱的同学们,在我们的生活中,处处有数学的身影.请你看右
图,沿着虚线折叠一张三角形纸片,把三角形的三个角拼在一
起,则A ∠= ,B ∠= ,C ∠= ,
得到一个著名的几何定理:“三角形的内角和等于 度.”
5.如右图,六边形ABCDEF 是轴对称图形,CF 所在的直线是它的对称轴,若o 150AFC +BCF =∠∠,
6.5AB cm =,求AFE +BCD ∠∠的度数和ED 长.
6.八年级(1)班同学做游戏,在活动区域边OP 放了一些球(如下图),则小明按怎样的路线跑,去捡哪个位置的球,才能最快拿到球跑到目的地A ?
O P
7.解决第1题后提出问题:如果另一侧OQ放着一些小木棍,小明拿到球后还要去取小木棍,则又应按怎样的路线跑,去捡哪个位置的球、小木棍,才能最快跑到目的地A?
Q
O
P
8.如果我们把台球桌做成等边三角形的形状(如下图),那么从AC中点D处发出的球,能否依次经BC,AB两条边反射后回到D处?如果认为不能,请说明理由;如果认为能,请作出球运动的路线,并加以说明.
9.如下图,直线l表示草原上的一条河.一少年从A处出发,让他的马去河边饮水,然后返回位于B处的家中.问这位少年按怎样的路线使总路程最短?请作出这条路线.
10、如图,A为马厩,B为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷.请你帮他确定这一天的最短路线.
11、如图1,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示,用坐标描述这个运动,找出小球运动的轨迹上几个关于直线l对称的点.如果小球起始时位于(1,0)处,仍按原来方向击球,请你在图2上,画出这时小球运动的轨迹.
图1 图2。