七年级数学(上) 合并同类项、去括号(B卷)

合集下载

人教版七年级数学上册:2.2.2去括号合并同类项同步测试题

人教版七年级数学上册:2.2.2去括号合并同类项同步测试题

2.2.2去括号合并同类项一.选择题1.化简-16(x-0.5)的结果是()A.-16x-0.5 B.-16x+0.5 C.16x-8 D.-16x+82.学习了去括号后,李欣、曹敏、李犇和朱晓洋同学在,去括号:-(-a+b-1)时分别得到下面的,其中正确的是()A.-a+b-1 B.a+b+1 C.a-b+1 D.-a+b+13.下列各题去括号所得结果正确的是()A.x2-(x-y+2z)=x2-x+y+2z B.x-[-y+(-3x+1)]=x+y+3x-1C.3x-[5x-(x-1)]=3x-5x-x+1 D.(x-1)-(x2-2)=x-1-x2-24.下列等式成立的是()A.-(3m-1)=-3m-1 B.3x-(2x-1)=3x-2x+1C.5(a-b)=5a-b D.7-(x+4y)=7-x+4y5.已知a-b=-3,c+d=2,则(b+c)-(a-d)的值为()A.1 B.5 C.-5 D.-16.若(a+1)2+|b-2|=0,化简a(x2y+xy2)-b(x2y-xy2)的结果为()A.3x2y B.-3x2y+xy2.-3x2y+3xy2D.3x2y-xy2二.填空题7.去括号:-x+2(y-2)= .8.在等式的括号内填上恰当的项,x2-y2+8y-4=x2-().9.去括号,合并同类项得:3b-2c-[-4a+(c+3b)]+c= .10.若a=200,b=20,c=2,则(a+b+c)+(a-b+c)+(b-a+c)= .三.解答题11.先去括号,再合并同类项(1)2(2b-3a)+3(2a-3b)(2)4a2+2(3ab-2a2)-(7ab-1)12.先化简,再求值: (1)2x 3+4x −13 x 2−(x −3x 2+2x 3),其中x=-3. (2)(6a 2+4ab )−2(3a 2+ab −12 b 2),其中a=2,b=1.答案:1.D 2.C3.B 4.B 解析:根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.5.B 解析:因为(b+c )-(a-d )=b+c-a+d=(b-a )+(c+d )=-(a-b )+(c+d )…(1), 所以把a-b=-3、c+d=2代入(1),得:原式=-(-3)+2=5.6.B 解析:∵(a+1)2+|b-2|=0,∴a+1=0,b-2=0,即a=-1,b=2,则原式=-(x 2y+xy 2)-2(x 2y-xy 2)=-x 2y-xy 2-2x 2y+2xy 2=-3x 2y+xy 2.7.-x+2y-4 8.y 2-8y+49.4a-2c 解析:原式=3b -2c+4a-(c+3b )+c=3b-2c+4a-c-3b+c=4a-2c .10.226解析:原式=a+b+c+a-b+c +b-a+c=a+b+3c ,当a=200,b=20,c=2时,原式=200+20+6=226.11.解:(1)2(2b-3a )+3(2a-3b )=4b-6a+6a-9b=-5b ;(2)4a 2+2(3ab-2a 2)-(7ab-1)=4a 2+6ab-4a 2-7ab+1=-ab+1.12.解:(1)原式=2x 3+4x-13 x 2-x+3x 2-2x 3=83x 2+3x , 把x=-3代入上式得:原式=83×(-3)2+3×(-3)=24-9=15; (2)原式=6a 2+4ab-6a 2-2ab+b 2=2ab+b 2,把a=2,b=1代入上式得:原式=2×2×1+1=5.。

七年级上册数学第五单元测试卷及答案B卷北师大版

七年级上册数学第五单元测试卷及答案B卷北师大版

七年级上册数学第五单元测试卷及答案B 卷北师大版一、选择题(每小题3分,共30分)1.若方程x ax 35+=的解为5=x ,则a 等于( ) A.80B.4C.16D.22.下列方程的变形中,正确的是( )A.方程1223+=-x x ,移项,得2123+-=-x xB.方程()1523--=-x x ,去括号,得1523--=-x xC.方程2332=x ,未知数系数化为1,得1=x D.方程15.02.01=--xx 化成63=x 3.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则还有1人不能上车.有下列四个等式: ①4010431m m +=-;②1014043n n ++=;③1014043n n --=;④4010431m m +=+. 其中正确的是( )A.①②B.②④C.②③D.③④4.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( )A.不赚不亏B.赚8元C.亏8元D. 赚15元 5.若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是( )A.0x =B.3x =C.3x =-D.2x =6.一个两位数,把其十位数字与个位数字交换位置后,所得的数比原数多9,这样的两位数的个数有( ) A.0B.1C.8D.97.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价( ) A.40% B.20% C.25% D.15% 8.已知等式523+=b a ,则下列等式中不一定...成立的是( ) A.b a 253=- B.6213+=+b a C.523+=bc ac D.3532+=b a 9.若方程042=-+a x 的解是2-=x ,则a 等于( )A.-8B.0C.2D.8 10.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:11222y y -=,怎么办呢?小明想了一想,便翻看书后答案,此方程的解是53y =-,于是很快就补好了这个常数,你能补出这个常数吗?它应是( ) A.1 B.2 C.3 D.4 二、填空题(每小题3分,共24分) 11.若与互为相反数,则的值是 . 12.当m= __________时,方程的解为.13.用一根长为28 cm 的铁丝围成一个长方形,使该长方形的长比宽多4 cm ,此时,长方形的长为 cm ,宽为 cm.14.某数的4倍减去3比这个数的一半大4,则这个数为__________. 15.方程432-=+x m x 与方程6)16(21-=-x 的解相同,则m 的值为__________. 16.一队师生共328人,乘车外出旅行,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车?设如果还要租x 辆客车,可列方程为__________.17.一个两位数,个位上的数字是十位上的数字的3倍,它们的和是12,那么这个两位数是 .18.小强比他叔叔小30岁,而两年前,小强的年龄是他叔叔的41,则小强的叔叔今年____________岁.三、解答题(共46分)19.(12分)解下列一元一次方程:(1)x x 3.15.67.05.0-=-; (2);(3)1676352212--=+--x x x ; (4)4.06.0-x3.011.0+x .20.(5分)定义新运算符号“*”的运算过程为b a b a 3121*-=,试解方程.21.(6分)当m 为何值时,关于x 的方程x x m +=+135的解比关于x 的方程的解大2?22.(6分)已知321+=x y ,x y 2112-=. (1)当x 取何值时,1230y y -=?(2)当x 取何值时,131y 比22y 大1? 23.一个两位数的十位上的数字是个位上的数字的两倍,若把两个数字对调,则新得到的两位数比原两位数小36,求原两位数.24.已知甲仓库储粮35吨,乙仓库储粮19吨,现调粮食15吨给两仓库,则应分配给两仓库各多少吨,才能使得甲仓库的粮食质量是乙仓库的两倍?25.(6分)为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定吨数以下的收费标准相同;规定吨数以上的超过部分收费标准相同,以下是小明家15月份用水量和交费情况: 月份12 3 4 5 用水量(吨) 8 10 11 15 18 费 用(元) 1620233544根据表格中提供的信息,回答以下问题: (1)求出规定吨数和两种收费标准.(2)若小明家6月份用水20吨,则应缴多少元?(3)若小明家7月份缴水费29元,则7月份用水多少吨?参考答案一、选择题1.B 解析:将5=x 代入方程x ax 35+=,得1555+=a ,解得4=a .2.D 解析:A.方程移项,得2123+=-x x ,错误;B.去括号得5523+-=-x x ,错误;C.未知数系数化为1,得49=x .错误;D 正确. 3.D4.C 解析:设盈利的衣服进价是元,则,解得.设亏损的衣服进价是元,则,解得.,所以亏了8元,故选C .5.A 解析:若原方程是一元一次方程,则,所以.方程为,所以方程的解是0x =.6.C 解析:设原两位数的十位数字为,个位数字为,根据题意有,整理得,即.满足要求的两位数的个位数字比十位数字要大1.∴ 这样的两位数有12,23,34,45,56,67,78,89,共8个,故选C . 7.B 解析:不妨把原价看做单位“1”,设应降价, 则提价25%后为1+25%,再降价后价格为.欲恢复原价,则可列方程为,解得,故选B .8.C 解析:A 项可由移项得到;B 项可由方程两边都加上1得到;D 项可由方程两边同除以3得到,只有C 项是不一定成立的.9.D 解析:将2-=x 代入方程得044=-+-a ,解得8=a . 10.C 解析:设所缺的部分为,则x y y -=-21212, 把53y =-代入,可求得,故选C .二、填空题 11. 解析:∵与互为相反数,∴,解得,则.12.5 解析:将代入方程得,解得.13.9 ;5 解析:设长方形的宽为 cm ,则长为cm ,由题意得,,解得,∴ 长方形的长为9 cm ,宽为5 cm .14.2 解析:设这个数为,则,解得.15.-6 解析:方程6)16(21-=-x 的解为.将代入方程432-=+x mx 得032=+m,解得.16. 解析:设还要租辆客车,则:已有校车可乘64人,所以还剩人.因为客车每辆可乘44人,所以,即可列方程.17.39 解析:设十位上的数字为,则个位上的数字为.由题意得,解得,.所以该数为39.18.42 解析:设小强的叔叔今年岁,则小强今年岁,根据两年前,小强的年龄是他叔叔的41,得,解得.故小强的叔叔今年42岁.三、解答题 19.解:(1)移项,得,合并同类项,得, 两边都除以1.8,得.(2)去括号,得, 移项,得,合并同类项,得,两边都除以2,得.(3)两边都乘6,得,去括号,得,移项,合并同类项,得,系数化为1,得.(4)将方程两边的分子分母都扩大10倍,得4610-x310+x , 两边同乘12,得,去括号,得, 移项,合并同类项,得,系数化为1,得1929. 20.解:根据新运算符号“*”的运算过程,有x x x 31131221*2-=-⨯=, x x x 312131121*1-=-⨯=,.故=+x 9132x 3121-. 解方程得83-=x .21.解:方程x x m +=+135的解是251mx -=, 方程的解是. 由题意可知251m -,解关于m 的方程得73-. 故当73-时,关于x 的方程x x m +=+135的解比关于x 的方程的解大2.22.解:(1)将321+=x y ,x y 2112-=代入1230y y -=,得 ,解方程得.故当时,1230y y -=.(2)若131y 比22y 大1,即123121=-y y , 将321+=x y ,x y 2112-=代入,得 31,解方程得56. 故当56时,131y 比22y 大1.23.分析:若设原数的个位数字为,题中数量关系如下表:十位数字 个位数字本数 原两位数 220 新两位数2 102可知相等关系为:原两位数+36=新两位数. 解:设原两位数的个位数字为,则其十位数字为2. 列出方程为,解之得.则原数的十位数字为.答:原两位数是84.24.分析:若设应分给甲仓库粮食吨,则数量关系如下表:原有粮食 新分给粮食 现有粮食甲仓库35乙仓库 19故相等关系为:甲仓库现有粮食的质量=2×乙仓库现有粮食的质量. 解:设应分给甲仓库粮食x 吨,则应分给乙仓库粮食吨.依题意得,解之得,则.答:应分给甲仓库11吨粮食,分给乙仓库4吨粮食. 25.分析:(1)根据1、2月份可知,当用水量不超过10吨时,每吨收费2元.根据3月份的条件,用水11吨,其中10吨应交20元,超过的1吨收费3元,则超出10吨的部分每吨收费3元.(2)根据求出的收费标准,则用水20吨应缴水费就可以算出.(3)中存在的相等关系是:10吨的费用20元+超过部分的费用=29元. 解:(1)从表中可以看出规定吨数为不超过10吨,10吨以内,每吨2元,超过10吨的部分每吨3元.(2)小明家6月份的水费是:(元). (3)设小明家7月份用水吨,因为,所以.由题意得,解得:.故小明家7月份用水13吨.一、细心选择(每题3分,共30分)1. 下列方程中,一元一次方程一共有( ) ①;②;③;④1315123x x x -=-() A .1个 B .2个 C .3个 D .4个 2. 下列方程的解是3x =的有( )①260x --=②25x +=③()()310x x --= ④123x x =- A .1个 B .2个 C .3 D .4个3. 若代数式154m +与154m ⎛⎫- ⎪⎝⎭的值互为相反数,则m 的值为( )A .0B .320 C .120 D .1104. 下列变形中正确的是( )A.由25-=x 得25--=xB.由05=y 得51=y C.由23-=x 得23-=xD.由532+=x x 得x x 235-=-5. 对有理数a b 、,规定运算☆的意义是:a b a b a b =⨯++☆,则方程1352x =☆的解是( ) A .0 B .1 C .2 D .36. 小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,那么这个数阵的形式可能是( )7. 甲乙两个超市为了促销一种定价相等的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买同样的商品最合算( ) A .甲 B .乙 C .相同 D .和商品的价格有关8. 足球比赛记分规则为:胜一场得3分,平一场得1分,负一场得0分,一个队进行了14场比赛,其中负5场,共得分19分,若设胜场次数为x 场,则可列方程为( ) A. 31(14-)19x x += B. 31(145)19x x +--=C. 31(14-)0(145)19x x x ++--=D. 319x x +=9. 小华在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是1133y y -=-■,怎么办呢?小明想了一想,便翻看了书后的答案,此方程的解是:6y =-,小华很快补好了这个常数,并迅速完成了作业,这个常数是( ) A .243- B .233 C .143- D .14310.《个人所得税条例》规定,公民题资薪水每月不超过800元者不必纳税,超过800元的部分按超过金额分段纳税,详细税率如下图,某人12月份纳税80元,则该人月薪为( )全月应纳税金额 税率(%) 不超过500元 5 超过500元到2000元 10 超过2000元至5000元15 …………A .1900元B .1200元C .1600元D .1050元二、耐心填空(每题3分,共24分)11. 在梯形面积公式()h b a S +=21中,若24=S ,6=a ,3=h ,则=b ____. 12. 已知方程23252x x -+=-的解也是方程72x b -=的解,则b=_______. 13. 若单项式26x a b --与3312y a b -是同类项,则代数式()()23x y y x ---的值为____.14. 把方程50.2 1.6310.3 1.2y y--=-中的小数化为整数得_______________.15. 方程513211264x x x +---=去分母时,方程的两边应同时乘以______,则得到的方程是___________.16. 如图3-1,小红将一个正方形纸片剪去一个宽为4厘米的长条后,再从剩下的长方形纸片上剪去一个宽为5厘米的长条,且剪下的两个长条的面积相等.问这个正方形的边长应为多少cm? 设正方形边长为xcm,则可列方程________________.17. 一列火车以30里/时的等速行驶,进入一个比列车长两倍的隧道,由第一节车箱进入隧道时刻到最后离开这个隧道的时刻,总共用去6分钟,这列火车的长度是______.18. 某时刻钟表在10点和11点之间,在这个时刻再过6分钟的分针和这个时刻3分钟前的时针正好方向相反且在同一直线上,那么钟表这个时刻为_________.三、用心解答(共46分) 19. 解下列方程 (1)(本题5分)12225y y y -+-=-(2)(本题7分)519x -=20. (本题6分)已知()2310a b -++=,代数式22b a m -+的值比12b a m -+多1,求m.21.(本题6分)某件商品的价格是按获利润25%计算出的,后因库存积压和急需加收资金,决定降价出售,如果每件商品仍能获得10%的利润,试问应按现售价的几折出售(减价到原标价的百分之几就叫做几折,例如标价一元的商品售价七角五分,叫做“七五折”)?22.(本题7分)售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.” 顾客甲:“我店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.” 乙顾客:“我家买了两箱相同特价的鸡蛋,结果18天后,剩下的20个鸡蛋全坏了.” 请你根据上面的对话,解答下面的问题:(1)顾客乙买的两箱鸡蛋合算吗?说明理由.(2)请你求出顾客甲店里买了多少箱这种特价鸡蛋,假设这批特价鸡蛋的保质期还有18天,那么甲店里平均每天要消费多少个鸡蛋才不会浪费?23.(本题7分)有一列数,按一定规律排列成:1248163264----,,,,,,,…,其中有三个相邻的和为1224,这种说法对吗?请说明理由.24.(本题8分)李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了100元,现在找回27.60元”刘磊算了一下说:“你一定搞错了”李红一想,发觉的确不对,因为他把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少?想一想有没有可能找回27.60元,试用方程的知识给予解释.参考答案1.A ;2. C ;3. D ;4. D ;5. B ;6.C ;7. B ;8. B ;9. D ;10. C ;11. 10;12. 7;13. 20;14.50216301312y y--=-; 15. 12,2(51)123(32)x x x -+-=-;16. 45(-4) x x =;17. 1里; 18. 10点15分; 19. (1)117(2)若∵510x -≥ ∴ 519x -= 即2x = 若∵510x -< ∴ (51)9x --= 即85x =- 20. 0m =.21. 解:设将决定按x 折出售每件商品.根据题意得:化简方程,,折扣数为88%,答:应按现售价的八八折出售.22. 解:(1)顾客乙买两箱鸡蛋节省的钱2(1412)4⨯-=顾客乙丢掉的20个坏鸡蛋浪费的钱2012830⨯= 因为4元<8元, 所以顾客乙买的两箱鸡蛋不合算. (2)设顾客甲买了x 箱鸡蛋.由题意得:1221496x x =⨯-.解这个方程得:6x =,6301810⨯÷=(个) 答:略23. 解:设第一个数字为x ,则第二、三个数字依次为24x x -、. 根据题意可得:(2)41224x x x +-+=解得:408x =,则291641832x x -==、但这三个数字却不在以上数列中,所以按规律排列的三个数字和为1224,这种说法是错误的.24. 解:购买单价1.80元的笔记本24本,单价2.60元的笔记本12本.如果按李红原来报的价格,那么设购买单价1.80元的笔记本x 本,列方程可得:1.8x+2.6·(36-x)=100-27.60, 解之得x=2.60不符合实际问题的意义,所以没有可能找回27.60元. 一、认真选一选:(每题3分,共18分) 1.下列等式变形正确的是( )A.如果s=12ab,那么b=2s a; B.如果12x=6,那么x=3 C.如果x-3=y-3,那么x-y=0; D.如果mx=my,那么x=y2. 方程12-3=2+3x 的解是( )A.-2;B.2;C.-12;D.123.关系x 的方程(2k-1)x 2-(2k+1)x+3=0是一元一次方程,则k 值为( )A.0B.1C.12D.24.已知:当b=1,c=-2时,代数式ab+bc+ca=10,则a 的值为( ) A.12 B.6 C.-6 D.-125.下列解方程去分母正确的是( )A.由1132x x --=,得2x-1=3-3x;B.由232124x x ---=-,得2(x-2)-3x-2=-4C.由131236y y y y +-=--,得3y+3=2y-3y+1-6y;D.由44153x y +-=,得12x-1=5y+20 6.某件商品连续两次9折降价销售,降价后每件商品售价为a 元,则该商品每件原价为( )A.0.92aB.1.12aC.1.12aD.0.81a二、认真填一填:(每空3分,共36分)7.x=3和x=-6中,________是方程x-3(x+2)=6的解. 8.若x=-3是方程3(x-a)=7的解,则a=________.9.若代数式213k--的值是1,则k=_________.10.当x=________时,代数式12x-与113x +-的值相等.11.5与x 的差的13比x 的2倍大1的方程是__________. 12.若4a-9与3a-5互为相反数,则a 2-2a+1的值为_________.13.一次工程,甲独做m 天完成,乙独做比甲晚3天才能完成,甲、乙二人合作需要_______天完成.14.解方程132x-=,则x=_______. 15.三个连续偶数的和为18,设最大的偶数为x,则可列方程______.16.甲水池有水31吨,乙水池有水11吨,甲池的水每小时流入乙池2吨,x 小时后, 乙池有水________吨,甲池有水_______吨,________小时后,甲池的水与乙池的水一样多. 三、解方程:(每题6分,共24分) 17.70%x+(30-x)×55%=30 18.511241263x x x +--=+19.1122(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦; 20.432.50.20.05x x ---=. 四、解答题:(共42分)21.(做一做,每题5分,共10分) 已知2y+m=my-m. (1)当m=4时,求y 的值.(2)当y=4时,求m 的值.22.王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4 米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/ 秒的速度跑了多少米? (10分)23.请你联系你的生活和学习,编制一道实际问题,使列的方程为51-x=45+x. (11分)24.(探究题)小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和为84,你知道我是几号出去的吗?”小王说:“我假期到舅舅家去住了七天,日期数的和再加上月份数也是84,你能猜出我是几月几号回家的吗?”试列出方程,解答小赵与小王的问题.(11分)参考答案一、1.C 2.A 3.C 4.D 5.C 6.D 二、7.x=-6 8.163-9.-4 10.-1 11.13(5-x)=2x+1或13(5-x)-2x=1, 12.1 13.11(3)1323m m m m m +⎛⎫÷+=⎪++⎝⎭. 14. -5或7. 15.x+(x-2)+(x-4)=18 16.11+2x ,31-2x,x=5 三、17. x=12.18. x=32-. 19. x=513-. 20 x=2.5.四、21.解:(1)167. (2) 1. 22.:设王强以6米/秒速度跑了x 米,那么以4米/秒速度跑了(3000-x)米.根据题意列方程:3000106064x x-+=⨯ 得x=1800.解法二:设王强以6米/秒速度跑了x 秒,则王强以4米/秒速度跑了(10×60-x)秒. 根据题意列方程6x+4(10×60-x)=3000, 解得x=300,6x=6×300=1800. 23. (略)24.解:设小赵参加夏令营这七日中间的日期期数为x,则其余六日日期分别为(x-3),(x-2),(x-1),(x+1),(x+2),(x+3). 根据题意列方程:(x-3)+(x-2)+(x-1)+x+(x+1)+(x+2)+(x+3)=84. 解得x=12,则x-3=12-2=9. 故小王是9号出去的. 设小王到舅舅家这一个星期中间的日期期数为x,则其余六天日其数分别是( x-3),(x-2),(x-1),(x+1),(x+2),(x+3).根据题意列方程:(x-3)+(x-2)+(x-1)+x+(x+1)+(x+2)+(x+3)=77.解得7x=77,x=11,则x+3=14. 故小王是七月14日回家的. 一、精心选一选(每小题3分,共30分) 1:下列方程是一元一次方程的是( )A.S=abB.2+5=7C.2x+1=x+2 D.3x+2y=62:将方程5.055.12.02.03.07.0xx -=-+变形正确的是( ) A. 550152237x x -=-+ B. 55152237.0xx -=-+ C. 550152237.0xx -=-+ D . x x -=-+315.17.0 3:方程2x+1=3与2-3xa -=0的解相同,则a 的值是( ) A.7 B.0 C.3 D.54:某种商品,若单价降低101,要保持销售收入不变,那么销售量应增加( ) A. 101 B. 91 C. 81 D. 715:设“●■▲”分别表示三种不同的物体(如图),前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■”的个数为( ) A.5 B.4 C.3 D.26:有种足球是由32块黑白相间的牛皮缝制而成的(如图)黑皮可看作正五边形,白皮可以看作正六边形,设白皮有x 块,则黑皮有(32-x)块,每块白皮有六条边,共有6x 条边,因每块白皮有三条边和黑皮连在一起,故黑皮共有3x 条边,要求白皮,黑皮的块数,列出的方程正确的是( )A.3x=32-xB.3x=5(32-x)C.5x=3(32-x)D.6x=32-x 7:如果用41升桔子浓度冲入431升水制成桔子水,可供4人饮用,现在要为14人冲入同样“浓度”(这里,“浓度”=%100⨯溶液体积溶质体积)的桔子水,需要用桔子浓缩汁[ ]A .2升;B .7升;C .72升; D .87升 8:一家商店以每包a 元的价格买进了30包甲种单枞茶,又以每包b 元的价格买进了60包乙种单枞茶。

七年级数学上册合并同类项和去、添括号拓展50题(原卷+解析)

七年级数学上册合并同类项和去、添括号拓展50题(原卷+解析)

2.2合并同类项和去、添括号拓展50题一.同类项(共10小题)1.当=m 时,单项式21215−m x y 与328+−m x y 是同类项. 2.如果关于x 、y 的单项式22+−m x y 与n x y 的和仍然是一个单项式,则+m n 的值是 .3.若单项式43−a x y 与849+b x y 是同类项, 则+=a b .4.若53+n x y 与3−x y 是同类项,则=n .5.已知代数式312+n a b 与243−−m a b 是同类项,则=m ,=n .6.若单项式22+a b x y 与413−−a b x y 是同类项,则a ,b 的值分别为=a =b . 7.已知22+−x y a b 与513x a b 的和仍为单项式,求多项式323111263−+x xy y 的值.8.已知单项式21925−−x m n 和5325y m n 是同类项,求代数式152−x y 的值.9.若23m a bc 和322−n a b c 是同类项,求2232()−+m n mn m 的值.10.如果|3|−−m a b 与|4|13n ab 是同类项,且m 、n 互为负倒数.求:−−n mn m 的值.二.合并同类项(共15小题)11.若27−+m n a b 与443−a b 的和仍是一个单项式,则−=m n .12.若单项式412−a x y 与843+−b x y 的和仍是单项式,则+=a b . 13.已知代数式22262351+−+−+−−x ax y bx x y 的值与字母x 的取值无关, 求b a 的值.14.阅读材料: 我们知道,42(421)3−+=−+=x x x x x ,类似地, 我们把()+a b 看成一个整体, 则4()2()()(421)()3()+−+++=−++=+a b a b a b a b a b . “整体思想”是中学教学解题中的一种重要的思想方法, 它在多项式的化简与求值中应用极为广泛尝试应用(1) 把2()−a b 看成一个整体, 合并2223()6()2()−−−+−a b a b a b 的结果是 ;(2) 已知224−=x y ,求23621−−x y 的值 .15.化简:(1)222228234+−−−a b a b b a b ab(2)2222111326−−+m n mn nm n m .16.合并同类项.(1)232338213223−+−+−+c c c c c c ;(2)22220.50.40.20.8−+−m n mn nm mn .17.如果代数式43232325457−+++++−x x x kx mx x x ,合并同类项后不含3x 和2x 项,求k m 的值.18.合并同类项2222(86)2(34)−−−a b ab a b ab19.如果关于x 、y 的单项式32mx y 与235−−a nx y 的和仍是单项式.(1)求2015(722)−a 的值.(2)若323250−−=a mx y nx y ,且0≠xy ,求2014(25)−m n 的值.20.若单项式522323++m n x y 与632134−−−m n x y 的和仍是单项式,求m ,n 的值.21.合并同类项:.(1)222233++−x x x x(2)2231253−−−+−a a a a .22.合并同类项(1)32322554−−−++x x x x ;(2)222252(3)3(2)6−−−a b ab ab a b .23.合并同类项:(1)357−+xy xy xy(2)222243246++−−a b ab a b .24.合并同类项(1)222326+−x x x .(2)2(23)3(23)−+−a b b a25.合并同类项.(1)5(27)3(40)−−−x y x l y(2)2[2(3)3(2)]−+−−x x y x y .三.去括号与添括号(共25小题)26.下面去括号正确的是( )A .2()2+−−=+−y x y y x yB .2(35)610−−=−+a a a aC .()−−−=+−y x y y x yD .222()2+−+=−+x x y x x y27.下列去括号正确的是( )A .22113(51)35122−−+=−++x y x x y yB .83(47)831221−−+=−−−a ab b a ab bC .222(35)3(2)61063+−−=+−+x y x x y xD .22(34)2()3422−−+=−−+x y x x y x28.下列去括号运算正确的是( )A .()−−+=−−−x y z x y zB .()−−=−−x y z x y zC .2()22−+=−+x x y x x yD .()()−−−−−=−+++a b c d a b c d 29.下列去括号的过程(1)()+−=+−a b c a b c ;(2)()−+=−−a b c a b c ;(3)()−−=−−a b c a b c ;(4)()−−=−+a b c a b c .其中,运算结果正确的个数为( )A .1B .2C .3D .4 30.将(1)()+−−+a b c 去括号,应该等于( )A .1+−−a b cB .1+−+a b cC .1+++a b cD .1++−a b c31.下列各式由等号左边变到右边变错的有( )①()−−=−−a b c a b c ;②2222()2()2+−−=+−+x y x y x y x y③()()−+−−+=−++−a b x y a b x y ;④3()()33−−+−=−−+−x y a b x y a b .A .1个B .2个C .3个D .4个32.已知5−=a .33.将()−−a b c 去括号得 .34.当13<m 时,化简|1||3|−−−=m m .35.在括号内填上恰当的项:()(−−+=−−ax bx ay by ax bx ).36.在计算:2(536)−−−A x x 时,小明同学将括号前面的“−”号抄成了“+”号,得到的运算结果是2234−+−x x ,则多项式A 是 .37.把多项式32−+−a b c d 的后3项用括号括起来,且括号前面带“−”号,所得结果是 .38.(1)去括号:()()−−=m n p q .(2)计算:22(52)4(22)+−+=a a a .39.在等式的括号内填上恰当的项,22284(−+−=−x y y x ).40.2543(−+−x x 2+x 2)347=−−x x .41.(235)(235)[3(−+++−=−a b c a b c b )][3(+b )].42.去括号:232(5)−−−=a a b c ;添括号:243+−−=−a b c d a = .43.把下面各式的括号去掉:①3(2)+−+=x y z ;②5(23)−−=x y z .44.不改变多项式22324−+−+−−x y xy x y 的值,把二次项放在带“−”的括号内,一次项放在带“+”的括号内,常数项单独放,得 .45.去括号,并合并同类项:3(56)2(34)−+−m n m n .46.计算:32[4(3)]−−−−−+b c a c b c .47.先去括号、再合并同类项①2()3()−+−+−a b c a b c②222232[2(2)]−−−a b ab a b ab .48.去括号并合并含相同字母的项:115(2)(6)3(1)2(26)102−−+−+−−−+x x y y .49.阅读下面材料:计算:123499100++++⋯++如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.12399100(1100)(299)(5051)101505050+++⋯++=++++⋯++=⨯=根据阅读材料提供的方法,计算:()(2)(3)(100)+++++++⋯++a a m a m a m a m50.观察下列各式:①()−+=−−a b a b ;②23(32)−=−−x x ;③5305(6)+=+x x ;④6(6)−−=−+x x .探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知225+=a b ,12−=−b ,求221−+++a b b 的值.合并同类项和去、添括号拓展50题参考答案与试题解析一.同类项(共10小题)1.当=m 4 时,单项式21215−m x y 与328+−m x y 是同类项. 【解答】解:项式21215−m x y 与328+−m x y 是同类项,213∴−=+m m ,4∴=m , 故答案为:4. 2.如果关于x 、y 的单项式22+−m x y 与n x y 的和仍然是一个单项式,则+m n 的值是 1 .【解答】解:关于x 、y 的单项式22+−m x y 与n x y 的和仍然是一个单项式,∴单项式22+−m x y 与n x y 是同类项,2∴=n ,21+=m ,1∴=−m ,2=n ,1∴+=m n , 故答案为:1.3.若单项式43−a x y 与849+b x y 是同类项, 则+=a b 1− .【解答】解:单项式43−a x y 与849+b x y 是同类项,48∴=a ,41+=b ,2∴=a ,3=−b ,2(3)1∴+=+−=−a b ;故答案为:1−.4.若53+n x y 与3−x y 是同类项,则=n 2− .【解答】解:由同类项的定义可知53+=n ,解得2=−n ,故答案为:2−.5.已知代数式312+n a b 与243−−m a b 是同类项,则=m 5 ,=n .【解答】解:312+n a b 与243−−m a b 是同类项,23∴−=m ,14+=n ,解得:5=m ,3=n , 故答案为:5,3.6.若单项式22+a b x y 与413−−a b x y 是同类项,则a ,b 的值分别为=a 3 =b . 【解答】解:22+a b x y 与413−−a b x y 是同类项,∴24−=⎧⎨+=⎩a b a b ,解得:3=a 、1=b , 故答案为:3、1.7.已知22+−x y a b 与53x a b 的和仍为单项式,求多项式32311263−+x xy y 的值. 【解答】解:由22+−x y a b 与513x a b 的和仍为单项式,得22+−x y a b 与513x a b 是同类项, 即2=x ,5+=x y .解得2=x ,3=y .当2=x ,3=y 时,原式323111223310263=⨯−⨯⨯+⨯=. 8.已知单项式21925−−x m n 和5325y m n 是同类项,求代数式152−x y 的值. 【解答】解:单项式21925−−x m n 和5325y m n 是同类项,215∴−=x ,39=y , 3∴=x ,3=y ,∴11535313.522−=⨯−⨯=−x y . 9.若23m a bc 和322−n a b c 是同类项,求2232()−+m n mn m 的值.【解答】解:23m a bc 和322−n a b c 是同类项,3∴=m ,1=n ,222232()3312(313)15∴−+=⨯⨯−⨯+=m n mn m .10.如果|3|−−m a b 与|4|13n ab 是同类项,且m 、n 互为负倒数.求:−−n mn m 的值. 【解答】解:|3|−−m a b 与|4|13n ab 是同类项,|3|1∴−=m ,|4|1=n ,解得:4=m 或2,14=±n , 又m 、n 互为负倒数,4∴=m ,14=−n 113(1)444−∴−−=−−−−=n mn m . 二.合并同类项(共15小题)11.若27−+m n a b 与443−a b 的和仍是一个单项式,则−=m n 9 .【解答】解:27−+m n a b 与443−a b 的和仍是一个单项式,24∴−=m ,74+=n , 解得:6=m ,3=−n ,故6(3)9−=−−=m n .故答案为:9.12.若单项式412−a x y 与843+−b x y 的和仍是单项式,则+=a b 1− . 【解答】解:由题意,得48=a ,41+=b .解得:2=a ,3=−b .321+=−+=−a b , 故答案为:1−.13.已知代数式22262351+−+−+−−x ax y bx x y 的值与字母x 的取值无关, 求b a 的值 .【解答】解:22262351+−+−+−−x ax y bx x y 2(22)(3)65=−++−+b x a x y ,代数式22262351+−+−+−−x ax y bx x y 的值与字母x 的取值无关,220∴−=b ,30+=a ,解得:1=b ,3=−a ,则3=−b a .14.阅读材料: 我们知道,42(421)3−+=−+=x x x x x ,类似地, 我们把()+a b 看成一个整体, 则4()2()()(421)()3()+−+++=−++=+a b a b a b a b a b . “整体思想”是中学教学解题中的一种重要的思想方法, 它在多项式的化简与求值中应用极为广泛尝试应用(1) 把2()−a b 看成一个整体, 合并2223()6()2()−−−+−a b a b a b 的结果是 2()−−a b ;(2) 已知224−=x y ,求23621−−x y 的值 .【解答】解:(1)把2()−a b 看成一个整体,则222223()6()2()(362)()()−−−+−=−+−=−−a b a b a b a b a b ;(2)224−=x y ,∴原式23(2)2112219=−−=−=−x y .故答案为:2()−−a b ;9−.15.化简:(1)222228234+−−−a b a b b a b ab ;(2)2222111326−−+m n mn nm n m . 【解答】解:(1)原式222222(824)363=+−−−=−−a b b ab a b b ab ;(2)原式222211121(1)()32633=−+−+=−−m n mn m n mn . 16.合并同类项.(1)232338213223−+−+−+c c c c c c ;(2)22220.50.40.20.8−+−m n mn nm mn .【解答】解:(1)原式322(22)(313)(82)31063=−+−+−++=−−+c c c c c ;(2)原式2222(0.50.2)(0.40.8)0.7 1.2=++−−=−m n mn m n mn .17.如果代数式43232325457−+++++−x x x kx mx x x ,合并同类项后不含3x 和2x 项,求k m 的值.【解答】解:由43232325457−+++++−x x x kx mx x x ,合并同类项后不含3x 和2x 项,得 20−+=k ,50+=m .解得2=k ,5=−m .2(5)25=−=k m .18.合并同类项2222(86)2(34)−−−a b ab a b ab【解答】解:原式22228668=−−+a b ab a b ab 2222(86)(68)=−+−+a b a b ab ab 2222=+a b ab .19.如果关于x 、y 的单项式32mx y 与235−−a nx y 的和仍是单项式.(1)求2015(722)−a 的值;(2)若323250−−=a mx y nx y ,且0≠xy ,求2014(25)−m n 的值.【解答】解:由题意,得233−=a ,解得3=a ,20152015(722)(1)1−=−=−a .(2)由323250−−=a mx y nx y ,且0≠xy ,得250−=m n .2014(25)0−=m n .20.若单项式522323++m n x y 与632134−−−m n x y 的和仍是单项式,求m ,n 的值. 【解答】解:单项式522323++m n x y 与632134−−−m n x y 的和仍是单项式, ∴单项式522323++m n x y 与632134−−−m n x y 是同类项, ∴52263321++=⎧⎨=−−⎩m n m n ,解得:112=⎧⎪⎨=−⎪⎩m n . 21.合并同类项:.(1)222233++−x x x x ;(2)2231253−−−+−a a a a .【解答】(1)解:原式(1313)=++−x 22=x 2;(2)原式226=+−a a .22.合并同类项(1)32322554−−−++x x x x ;(2)222252(3)3(2)6−−−a b ab ab a b . 【解答】解:(1)原式322(11)(25)(54)31=−+−++−+=−x x x ;(2)原式222222592661222=−−+=−a b ab ab a b a b ab . 23.合并同类项:(1)357−+xy xy xy ;(2)222243246++−−a b ab a b .【解答】解:(1)357(357)5−+=−+=xy xy xy xy xy ;(2)222222222432464436232++−−=−+−+=−+a b ab a b a a b b ab b ab .24.合并同类项(1)222326+−x x x ;(2)2(23)3(23)−+−a b b a【解答】解:(1)原式22(326)=+−=−x x ;(2)原式4669=−+−a b b a 5=−a .25.合并同类项.(1)5(27)3(40)−−−x y x l y ;(2)2[2(3)3(2)]−+−−x x y x y .【解答】解:(1)原式1035123025=−−+=−−x y x y x y ;(2)原式22636312=−−+−=−x x y x y x y .三.去括号与添括号(共25小题)26.下面去括号正确的是( )A .2()2+−−=+−y x y y x yB .2(35)610−−=−+a a a aC .()−−−=+−y x y y x yD .222()2+−+=−+x x y x x y【解答】解:A 、2()2+−−=−−y x y y x y ,故选项A 错误;B 、2(35)610−−=−+a a a a ,故选项B 正确;C 、()−−−=++y x y y x y ,故选项C 错误;D 、222()22+−+=−+x x y x x y ,故选项D 错误.故选:B .27.下列去括号正确的是( )A .22113(51)35122−−+=−++x y x x y y B .83(47)831221−−+=−−−a ab b a ab b C .222(35)3(2)61063+−−=+−+x y x x y x D .22(34)2()3422−−+=−−+x y x x y x【解答】解:A 、括号前是“−”,最后一项没有变号,故此选项错误;B 、括号前是“−”,中间一项没有变号,故此选项错误; C 、按去括号法则正确变号,故此选项正确;D 、括号前是“−”,最后一项没有变号,故此选项错误.故选:C .28.下列去括号运算正确的是( )A .()−−+=−−−x y z x y zB .()−−=−−x y z x y zC .2()22−+=−+x x y x x yD .()()−−−−−=−+++a b c d a b c d【解答】解:A 、原式=−+−x y z ,不符合题意;B 、原式=−+x y z ,不符合题意; C 、原式222=−−=−−x x y x y ,不符合题意;D 、原式=−+++a b c d ,符合题意, 故选:D .29.下列去括号的过程(1)()+−=+−a b c a b c ;(2)()−+=−−a b c a b c ;(3)()−−=−−a b c a b c ;(4)()−−=−+a b c a b c .其中,运算结果正确的个数为( )A .1B .2C .3D .4【解答】解:(1)()+−=+−a b c a b c ,故此题正确;(2)()−+=−−a b c a b c ,故此题正确;(3)()−−=−+a b c a b c ,故此题错误;(4)()−−=−+a b c a b c ,故此题正确. 所以运算结果正确的个数为3个,故选:C .30.将(1)()+−−+a b c 去括号,应该等于( )A .1+−−a b cB .1+−+a b cC .1+++a b cD .1++−a b c 【解答】解:(1)()1+−−+=++−a b c a b c ,故选:D .31.下列各式由等号左边变到右边变错的有( )①()−−=−−a b c a b c ;②2222()2()2+−−=+−+x y x y x y x y③()()−+−−+=−++−a b x y a b x y ;④3()()33−−+−=−−+−x y a b x y a b .A .1个B .2个C .3个D .4个【解答】解:根据去括号的法则:①应为()−−=−+a b c a b c ,错误;②应为2222()2()22+−−=+−+x y x y x y x y ,错误;③应为()()−+−−+=−−+−a b x y a b x y ,错误;④3()()33−−+−=−++−x y a b x y a b ,错误.故选:D .32.已知5−=a ,则[()]−+−=a 5− .【解答】解:5−=a ,5∴=−a ,[()]()5−+−=−−==−a a a ,故答案为:5−.33.将()−−a b c 去括号得 −+a b c .【解答】解:()−−=−+a b c a b c .故答案为:−+a b c .34.当13<m 时,化简|1||3|−−−=m m 24−m .【解答】解:根据绝对值的性质可知,当13<m 时,|1|1−=−m m ,|3|3−=−m m , 故|1||3|(1)(3)24−−−=−−−=−m m m m m .35.在括号内填上恰当的项:()(−−+=−−ax bx ay by ax bx −ay by ).【解答】解:()(−−+=−−ax bx ay by ax bx )−ay by .故答案是:−ay by .36.在计算:2(536)−−−A x x 时,小明同学将括号前面的“−”号抄成了“+”号,得到的运算结果是2234−+−x x ,则多项式A 是 2762−++x x .【解答】解:根据题意得:22(234)(536)=−+−−−−A x x x x 22234536=−+−−++x x x x 2762=−++x x ,故答案为:2762−++x x .37.把多项式32−+−a b c d 的后3项用括号括起来,且括号前面带“−”号,所得结果是 (32)−−+a b c d .【解答】解:后3项用括号括起来,且括号前面带“−”号,所得结果是(32)−−+a b c d . 故答案为:(32)−−+a b c d .38.(1)去括号:()()−−=m n p q −−+mp mq np nq .(2)计算:22(52)4(22)+−+=a a a .【解答】解:(1)()()−−=−−+m n p q mp mq np nq ;(2)222(52)4(22)328+−+=−+−a a a a a . 39.在等式的括号内填上恰当的项,22284(−+−=−x y y x 284−+y y ).【解答】解:222284(84)−+−=−−+x y y x y y .40.2543(−+−x x 2 2+x 2)347=−−x x .【解答】解:2543(−+−x x 22)347+=−−x x x ,(∴222222)543(347)543347210+=−+−−−=−+−++=+x x x x x x x x x x ,故答案为:2,10.41.(235)(235)[3(−+++−=−a b c a b c b 25−a c )][3(+b )].【解答】解:原式[3(25)][3(25)]=−−+−b a c b a c ,故答案为:25−a c ;25−a c42.去括号:232(5)−−−=a a b c 232210−++a a b c ;添括号:243+−−=−a b c d a = .【解答】解:2232(5)32210−−−=−++a a b c a a b c ,243(243)2(43)+−−=−−++=+−+a b c d a b c d a b c d ,故填232210−++a a b c ;2(43)+−+a b c d .43.把下面各式的括号去掉:①3(2)+−+=x y z 63−+x y z ;②5(23)−−=x y z .【解答】解:①3(2)63+−+=−+x y z x y z ;②5(23)1015−−=−+x y z x y z ;故答案为:①63−+x y z ,②1015−+x y z .44.不改变多项式22324−+−+−−x y xy x y 的值,把二次项放在带“−”的括号内,一次项放在带“+”的括号内,常数项单独放,得 22()(32)4−+−+−+−x y xy x y .【解答】解:根据题意得:22()(32)4−+−+−+−x y xy x y .故答案为:22()(32)4−+−+−+−x y xy x y45.去括号,并合并同类项:3(56)2(34)−+−m n m n .【解答】解:3(56)2(34)−+−m n m n 151868=−+−m n m n 2126=−m n46.计算:32[4(3)]−−−−−+b c a c b c .【解答】解:32[4(3)]−−−−−+b c a c b c 32(43)=−−−−++b c a c b c 3243=−++−+b c a c b c 4=a .47.先去括号、再合并同类项①2()3()−+−+−a b c a b c ;②222232[2(2)]−−−a b ab a b ab .【解答】解:(1)原式222333=−+−−+a b c a b c (23)(23)(23)=−+−−++a a b b c c 55=−−+a b c ;(2)原式222232(24)=−−+a b ab a b ab 2223104=−+a b ab a b 22710=−a b ab .48.去括号并合并含相同字母的项:115(2)(6)3(1)2(26)102−−+−+−−−+x x y y . 【解答】解: 原式111033341222=−++−+−+−x x y y 11()(34)12103322=−+++−+−−x x y y 78=−y49.阅读下面材料:计算:123499100++++⋯++如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.12399100(1100)(299)(5051)101505050+++⋯++=++++⋯++=⨯=根据阅读材料提供的方法,计算:()(2)(3)(100)+++++++⋯++a a m a m a m a m【解答】解:()(2)(3)(100)+++++++⋯++a a m a m a m a m101(23100)=++++⋯a m m m m101(100)(299)(398)(5051)=+++++++⋯++a m m m m m m m m10110150=+⨯a m1015050=+a m .50.观察下列各式:①()−+=−−a b a b ;②23(32)−=−−x x ;③5305(6)+=+x x ;④6(6)−−=−+x x .探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知225+=a b ,12−=−b ,求221−+++a b b 的值.【解答】解:225+=a b ,12−=−b ,221∴−+++a b b 22(1)()=−−++b a b (2)5=−−+7=.。

最新-初中数学合并同类项、去括号基础题(含答案) 精品

最新-初中数学合并同类项、去括号基础题(含答案) 精品

七年级上册数学合并同类项、去括号基础题北师版一、单选题(共11道,每道9分)1.在下列各式x2-3x,2πx2y,-5,a,0,,中,单项式和多项式的的个数分别是()A.3,4B.4,3C.5,2D.6,1答案:C试题难度:三颗星知识点:单项式的概念;多项式的概念2.-π3a2b2的系数和次数分别为()A.-1,4B.-1,5C.-π3,4D.-π,7答案:C试题难度:三颗星知识点:单项式的系数与次数3.多项式-3x2y2+6xyz+3xy2-35是()A.三次三项式B.三次四项式C.四次四项式D.五次四项式答案:C试题难度:三颗星知识点:多项式的项与次数4.如果一个多项式的次数是6,则这个多项式的任何一项的次数都()A.小于6B.等于6C.不大于6D.不小于6答案:C试题难度:三颗星知识点:多项式的次数5.下列两项中,属于同类项的是()A.与B.4ab与4abcC.与D.nm和-mn答案:D试题难度:三颗星知识点:同类项6.如果与是同类项,那么等于()A.1B.0C.2D.4答案:A试题难度:三颗星知识点:同类项(已知同类项求参数的值)7.下列运算中结果正确的是()A.3a+2b=5abB.5y-3y=2C.-3x+5x=-8xD.答案:D试题难度:三颗星知识点:合并同类项8.把3(a+b)+2(a+b)-4(a+b)中的(a+b)看成一个因式合并同类项,结果应是()A.a+bB.- (a+b)C.-a+bD.a-b答案:A试题难度:三颗星知识点:合并同类项(整体合并)9.下列运算正确的是()A.-4(x-y)=-4x-yB.-4(x-y)=-4x+yC.-4(x-y)=-4x-4yD.-4(x-y)=-4x+4y答案:D试题难度:三颗星知识点:去括号10.下列各式中与a-b-c的值不相等的是()A.a-(b+c)B.a-(b-c)C.(a-b)+(-c)D.(-c)-(b-a)答案:B试题难度:三颗星知识点:添括号11.当x=2,y=-1时,5x2-(3y2+5x2)+(3y2+xy)的值为()A.2B.1C.-1D.-2答案:D试题难度:三颗星知识点:化简求值。

七年级数学上册综合算式专项练习题解方程中的去括号与合并同类项

七年级数学上册综合算式专项练习题解方程中的去括号与合并同类项

七年级数学上册综合算式专项练习题解方程中的去括号与合并同类项一、去括号与合并同类项在解方程的过程中,经常会涉及到去括号和合并同类项的操作。

本文将针对七年级数学上册综合算式专项练习题中的去括号与合并同类项进行讲解,并提供详细的步骤和示例。

一、去括号去括号是将括号内的项与括号外的项进行相应的运算。

根据运算的不同,可以分为以下三种情况。

1. 去括号时,括号前面有正号或没有正号。

- 若括号前面有正号,则去括号后,括号内的项不变。

例如:3(x + 2) = 3x + 6- 若括号前面没有正号,则去括号后,括号内的项变号。

例如:-2(x - 3) = -2x + 62. 去括号时,括号前面有负号或没有负号。

- 若括号前面有负号,则去括号后,括号内的项变号。

例如:-4(x + 5) = -4x - 20- 若括号前面没有负号,则去括号后,括号内的项不变。

例如:5(2x - 3) = 10x - 153. 去括号时,括号前面有系数。

- 若括号前面有系数,则去括号后,括号内的项与系数相乘。

例如:2(3x + 4) = 6x + 8以上是去括号的三种情况,根据题目的具体要求和括号前面的情况来执行相应的操作。

二、合并同类项合并同类项是将具有相同字母和指数的项进行合并,简化表达式。

具体步骤如下:1. 根据字母和指数相同的原则,将表达式中的项分组。

例如:3x + 2x - 5x + 4y - 2y + 6z - 2z = (3x + 2x - 5x) + (4y - 2y) + (6z - 2z)2. 合并同类项,即将同一组内的项相加或相减。

例如:(3x + 2x - 5x) = 0x = 0(4y - 2y) = 2y(6z - 2z) = 4z3. 将合并后的结果再次组合,得到最终的表达式。

例如:3x + 2x - 5x + 4y - 2y + 6z - 2z = 0 + 2y + 4z = 2y + 4z通过上述步骤,我们可以将数学上册综合算式专项练习题中的去括号与合并同类项简化为最简形式。

七年级数学整式加减合并同类项专项练习(附答案)

七年级数学整式加减合并同类项专项练习(附答案)

七年级数学整式加减合并同类项专项练习(附答案)七年级数学整式加减合并同类项专项练1.合并同类项1) 4x^32) 03) x(6y-5)+x(7-5y)-10x4) -14x5) a^2-2ab6) -15xy2.合并单项式1) -2y2) 12a^2b^5-3a^2b-ab^23) -m^2n^3+m^3n^23.合并同类项1) 2m^2+2mn^22) -6a^2-ab-b^24.去括号并合并同类项1) -7a-5b2) -2x+105.化简3x^2+11x-36.化简1) -xy2) a-1/27.计算1) -x^2-11xy+4y^22) 4a^3b-13a^2b^2-10b^33) 6a8.计算3a+29.化简求值1) -10xy^32) -610.化简求值5a^2+8ab-6ab^211.先化简再求值2a^2b+11ab^21.答案:(1) 原式 = 4x2) 原式 = 03) 原式 = xy - 3x^2 + 5x4) 原式 = -14x5) 原式 = a^2 - 2ab6) 原式 = -13x^2y - 2xy^2解析:对每个题目进行代数计算,得出结果。

2.答案:(1) 解:原式 = x^22) 解:原式 = 6a^2b^5 - 3a^2b - ab^26a^2b^5 - 3a^2b - ab^23) 解:原式 = -m^2n^3 - m^3n^2m^2n^3 - m^3n^2解析:对每个题目进行代数计算,得出结果。

3.答案:(1) 原式 = m^2 + 2mn^22) 原式 = -3ab解析:对每个题目进行代数计算,得出结果。

4.答案:(1) 6a - (7a + 5b) = -a - 5b2) (3x + 4) - (5x - 6) = -2x + 10解析:对每个题目进行代数计算,得出结果。

5.答案:5x^3 - 3x解析:对原式进行合并同类项,得出结果。

6.答案:(1) x^2 - xy2) -a^2 + a - 1/23) -14) 6a + 4b解析:对每个题目进行代数计算,得出结果。

七年级数学上册(合并同类项与去括号)练习 试题

乏公仓州月氏勿市运河学校合并同类项与去括号作业导航1.同类项、代数式的系数和项、合并同类项的依据.2.去括号的方法.一、填空题1.在合并同类项时,我们把同类项的_____相加.2.合并同类项:〔1〕2a-5a-7a=__________.〔2〕2ab+3ab-6ab=__________.〔3〕2a2b-4ab2+3b2a-5a2b=__________.〔4〕5x3y-6x+7x3y+8x=__________.3.请写出3个与3x2y2z是同类项的代数式_______.4.去括号〔1〕2x-(2-5x)=__________.〔2〕3x2y+(2x-5x2y)=__________.5.计算:a-(2a-3b)+(3a-4b)=__________.6.假设x2y=x m y n,那么m=______,n=______.7.化简x+{3y-[2y-(2x-3y)]}=__________.8.m+n-p的相反数为__________.9.九个连续整数,中间的一个数为n,这九个整数的和为__________.10.某服装店打折出售服装,第一天卖出a件,第二天比第一天多12件,第三天是第一天的2倍,那么该服装店这三天共卖出服装__________件.11.当k =__________时,多项式x 2-3kxy -3y 2-31xy -8中不含xy 项. 12.在代数式6a 2-7b 2+2a 2b -3ba 2+6b 2中没有同类项的是__________.二、选择题13.以下各组式子中是同类项的是〔 〕A.-a 与a2 ab 2与-3a 2b C.-2ab 2与21b 2aD.a 2与2a 14.以下计算正确的选项是〔 〕A.3a +2b =5abB.-2a 2b +3ab 2=a 2b 2C.21a 2b -3a 2b =-25a 2bD.3x 2-4x 5=-x 315.当a =5,b =3时,a -[b -2a -(a -b )]等于〔 〕A.10B.14C.-10D.4 16.如果(3x 2-2)-(3x 2-y )=-2,那么代数式(x +y )+3(x -y )-4(x -y -2)的值是〔 〕A.4B.20C.8D.-6 17.-[-(-a 2)+b 2]-[a 2-(+b 2)]等于〔 〕A.2a 2B.2b 2C.-2a 2D.2(b 2-a 2) 三、解答题18.a =1,b =2,c =21,计算2a -3b -[3abc -(2b -a )]+2abc 的值. 1x m y 2与-3xy n 是同类项,计算m -(m 2n +3m -4n )+(2nm 2-3n )的值.20.把(a +b )当作一个整体化简,5(a +b )2-(a +b )+2(a +b )2+2(a +b ). 21.如果关于x 的多项式:-2x 2+mx +nx 2-5x -1的值与x 的取值无关,求m 、n 的值.三、合并同类项与去括号一、1.系数2.〔1〕-10a 〔2〕-ab 〔3〕-3a 2b -ab 2 〔4〕12x 3y +2x 3.-21x 2y 2z ;x 2y 2z ;2x 2y 2z 4.〔1〕7x -2 〔2〕-2x 2y +2xa -b 6. 2 1 x -2y8.p -m -n 9. 9n10.4a +12 11.-91 1a 2 二、13.C 14.C 15.A 16.C 17.C三、18.-2 19. 2 20.7〔a +b 〕2+〔a +b 〕 21.m =5,n =2。

七年级数学合并同类项同步练习(附答案)

合并同类项一、选择题1 .计算223a a +的结果是( ) A.23a B.24a C.43a D.44a2 .下面运算正确的是( ).A.ab b a 523=+B.03322=-ba b aC.532523x x x =+ D.12322=-y y 3 .下列计算中,正确的是( )A 、2a +3b =5ab ;B 、a 3-a 2=a ;C 、a 2+2a 2=3a 2;D 、(a -1)0=1.4 .已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A.51x --B.51x +C.131x --D.131x + 5 .下列合并同类项正确的是A.2842x x x =+B.xy y x 523=+C.43722=-x xD.09922=-ba b a 6 .下列计算正确的是( )(A)3a+2b=5ab (B)5y 2-2y 2=3 (C)-p 2-p 2=-2p 2(D)7m-m=77 .加上-2a-7等于3a 2+a 的多项式是 ( )A 、3a 2+3a-7B 、3a 2+3a+7C 、3a 2-a-7D 、-4a 2-3a-7 8 .当1=a 时,a a a a a a 10099432-++-+- 的值为( )A. 5050B. 100C. 50D. -50 二、填空题9 .化简:52a a -=_________. 10.计算:=-x x 53_________。11.一个多项式与2x 2-3xy 的差是x 2+xy,则这个多项式是_______________. 三、解答题12.求多项式:10X 3-6X 2+5X-4与多项式-9X 3+2X 2+4X-2的差。13.化简:2(2a 2+9b)+3(-5a 2-4b)14.化简:2222343423x y xy y xy x -+--+.15.先化简,后求值.(1)化简:()()22222212a b ab ab a b +--+-(2)当()221320b a -++=时,求上式的值.16.先化简,再求值:x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2),其中x=1,y=3.17.计算:(1)()()32223232y xy y x xy y ---+-;(2)5(m-n)+2(m-n)-4(m-n)。18.先化简,再求值:)52338()5333(3122222y xy x y xy x x +++-+-,其中21-=x ,2=y .19.化简求值: )3()3(52222b a ab ab b a +--,其中31,21==b a .20.先化简,后求值:]2)(5[)3(2222mn m mn m m mn +-----,其中2,1-==n m21.化简求值:]4)32(23[522a a a a ----,其中21-=a22.给出三个多项式:212x x + ,2113x +,2132x y +; 请你选择其中两个进行加法或减法运算,并化简后求值:其中1,2x y =-=.23.先化简,再求值:()()2258124xy x xxy ---+,其中1,22x y =-=.24.先化简,再求值。(5a 2-3b 2)+(a 2+b 2)-(5a 2+3b 2)其中a=-1 b=125.化简求值(-3x 2-4y )-(2x 2-5y +6)+(x 2-5y -1) 其中 x =-3 ,y =-126.先化简再求值:(ab-3a 2)-2b 2-5ab-(a 2-2ab),其中a=1,b=-2。27.有这样一道题:“计算322323323(232)(2)(3)x x y xy x xy y x x y y ----++-+-的值,其中12x =,1y =-。”甲同学把“12x =”错抄成了“12x =-”但他计算的结果也是正确的,请你通过计算说明为什么?28.已知:21(2)||02x y ++-= ,求22222()[23(1)]2xy x y xy x y +----的值。3.4合并同类项参考答案一、选择题1 .B2 .B;3 .C ;4 .A5 .D6 .C7 .B8 .D 二、填空题9 .3a ; 10.-2x 11.3x 2-2xy 三、解答题12.粘贴有误,原因可能为题目为公式编辑器内容,而没有其它字符13.解:原式=4a 2+18b-15a 2-12b =-11a 2+6b14.解:原式=)44()32()33(2222y y xy xy x x -+-+- =-xy15.原式=21a b -=1.16.x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2)= x 2-x 2 +3xy +2y 2-x 2+xy-2y 2 = 4xy-x 2当x=1,y=3时 4xy-x 2=4×1×3-1=11。 17.(1)()()yx xy y xy y x xy y y xy y x xy y 2232223322232232232-=+--+-=---+-(2)5(m-n)-2(m-n)-4(m-n) =(5-2-4)(m-n) =-2(m-n) =-2m+2n 。18.解:原式=2222252338533331y xy x y xy x x ++++--=)5253()33()38331(22222y y xy xy x x x ++-++- =2y 当21-=x ,y =2时,原式=4 .19.解:原式=3220.原式mn =,当2,1-==n m 时,原式2)2(1-=-⨯=;21.原式=692-+a a ;-2;22.(1) (212x x +)+(2132x y +)=23x x y ++ (去括号2分)当1,2x y =-=,原式=2(1)(1)326-+-+⨯=(2)(212x x +)-(2132x y +) =3x y - (去括号2分)当1,2x y =-=,原式=(1)327--⨯=- (212x x +)+(2113x +)=255166x x ++= (212x x +)-(2113x +)=2111166x x +-=- (2132x y +)+(2113x +)=25473166x y ++= (2132x y +)-(2113x +)=21313166x y +-=23.解:原式2258124xy x x xy =-+- ()()2254128xy xy x x =-+- 24xy x =+当1,22x y =-=时,原式=2112422⎛⎫-⨯+⨯- ⎪⎝⎭=024.解:原式=5a 2-3b 2+a 2+b 2-5a 2-3b 2=-5b 2+a 2当a=-1 b=1原式=-5×12+(-1)2=-5+1=-4 25.33. 26. -827.解:∵原式=32232332323223x x y xy x xy y x x y y ---+--+-3223(211)(33)(22)(11)x x y xy y =--+-++-++-- 32y =-∴此题的结果与x 的取值无关。28.解:原式=222222[23]2xy x y xy x y +--+-=222222232xy x y xy x y +-+--=22(22)(21)(32)xy x y -+-+-=21x y + ∵2(2)0x +≥,1||02y -≥又∵21(2)||02x y ++-= ∴2x =-,12y = ∴原式=21(2)12-⨯+=3。

初中数学同步 7年级上册 第7讲 同类项、合并同类项以及去括号法则(教师版含解析)

第7讲小节同类项、合并同类项以及去括号法则1.掌握同类项概念;2.能够根据合并同类项法则进行整式的加减;3.掌握去括号法则。

知识点01 同类项定义:两个单项式中所含字母相同,且相同字母的次数相同;任何常数项都是同类项;1.下列各单项式中,与﹣2mn2是同类项的是()A.5mn B.2n2C.3m2n D.mn2【解答】解:A、5mn与﹣2mn2所含字母相同,相同字母的指数不相同,不是同类项,故此选项不符合题意;B、2n2与﹣2mn2所含字母不相同,不是同类项,故此选项不符合题意;C、3m2n与﹣2mn2所含字母相同,相同字母的指数不相同,不是同类项,故此选项不符合题意;D、mn2与﹣2mn2所含字母相同,相同字母的指数也相同,是同类项,故此选项符合题意.故选:D.2.若单项式﹣2x6y与5x2m y n是同类项,则()A.m=2,n=1B.m=3,n=1C.m=3,n=0D.m=1,n=3【解答】解:因为﹣2x6y与5x2m y n是同类项,所以2m=6,n=1,解得m=3,n=1,故选:B.3.若与是同类项,则a+b=()A.5B.1C.﹣5D.4【解答】解:∵x a y3与x2y b是同类项,∴a=2,b=3,∴a+b=2+3=5.故选:A.4.若2x4y n与﹣5x m y2是同类项,则m n=16.【解答】解:∵2x4y n与﹣5x m y2是同类项,∴m=4,n=2,∴m n=42=16,故答案为:16.5.若3x m y与﹣5x2y n是同类项,则m+n=3.【解答】解:∵3x m y与﹣5x2y n是同类项,∴m=2,n=1,∴m+n=2+1=3.故答案为:3.6.已知多项式的次数是a,单项式﹣2x3y b与单项式是同类项.(1)将多项式按y的降幂排列.(2)求代数式c2﹣4ab的值.【解答】解:(1)将多项式按y的降幂排列为:;(2)∵多项式是六次四项式,∴a=6,∵单项式﹣2x3y b与单项式是同类项,∴b=1,c=3,∴c2﹣4ab=32﹣4×6×1=9﹣24=﹣15.知识点02 合并同类项法则:同类项的系数相加减,字母和字母的指数不变7.下列单项式中,可以与x2y3合并同类项的是()A.x3y2B.C.3x2y D.2x2y3z【解答】解:A、x3y2与x2y3,所含字母相同,但是相同字母的指数不相同,不是同类项,所以不能合并,故本选项不合题意;B、与x2y3,所含字母相同,相同字母的指数相同,是同类项,能合并,故本选项符合题意;C、x2y与x2y3,所含字母相同,但是相同字母的指数不相同,不是同类项,所以不能合并,故本选项不合题意;D、2x2y3z与x2y3,所含字母不尽相同,不是同类项,所以不能合并,故本选项不合题意;故选:B.8.计算a+2a结果正确的是()A.﹣a B.3a C.2a2D.3a2【解答】解:a+2a=3a,故选:B.9.下列各式正确的是()A.5xy2﹣3y2x=2xy2B.4a2b2﹣5ab=﹣aC.7m2n﹣7mn2=0D.2x2+3x4=5x6【解答】解:A.5xy2﹣3y2x=2xy2,此选项正确;B.4a2b2与﹣5ab不是同类项,无法计算,此选项错误;C.7m2n与﹣7mn2不是同类项,无法计算,此选项错误;D.2x2与3x4不是同类项,无法计算,此选项错误;故选:A.10.计算:﹣2x+3x=x.【解答】解:﹣2x+3x=(﹣2+3)x=x.故答案为:x.11.若单项式与3x5y n+1的和仍是单项式,则mn=12.【解答】解:∵单项式与3x5y n+1的和仍是单项式,∴单项式与3x5y n+1是同类项,∴2m﹣3=5,n+1=4,解得:m=4,n=3,∴mn=3×4=12,故答案为:12.12.已知多项式6x2﹣2mxy﹣2y2+4xy﹣5x+2化简后的结果中不含xy项.(1)求m的值;(2)求代数式﹣m3﹣2m2﹣m+1﹣m3﹣m+2m2+5的值.【解答】解:(1)由题意得﹣2m+4=0,解得m=2.(2)﹣m3﹣2m2﹣m+1﹣m3﹣m+2m2+5=﹣2m3﹣2m+6,将m=2代入,则原式=﹣2×8﹣2×2+6=﹣14.知识点03 去括号及整式的加减1.去括号法则:括号前面是加号时,去掉括号,括号内的算式不变;括号前面是减号时,去掉括号,括号内加号变减号,减号变加号。

2020年初中数学七年级上册第二单元整式加减04 合并同类项

2.2.1 合并同类项1、同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项.常数项都是同类项.例: 3x2和5x2 2ab和6ab 4m2n3和7m2n32、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.3、合并同类项的法则:是合并同类项后,所得的项的系数是合并前各同类项的系数和,且字母部分不变。

(新版)合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.(旧版)3x2+5x2=(3+5)x2=8x2 2ab+6ab=(2+6)ab=8 ab4m2n3+7m2n3=(4+7) m2n3=11m2n34、降幂、升幂通常我们把一个多项式的各项按照某个字母的指数从大到小(降幂)或都从小到大(升幂)的顺序排列。

降幂:X5-8x4+x3-x2-6x+1升幂:1-6x-x2+x3-8x4+X55、去括号如果括号前的符号是正号,去括号后原括号内各项的符号与原来的符号相同。

+(x-3)=x-3如果括号前的符号是负号,去括号后原括号内各项的符号与原来的符号相反。

-(x-3)=-x+3概念题1、同类项:所含叫做同类项.常数项都是2、合并同类项:把叫做合并同类项.3、合并同类项的法则:合并同类项后,所得的项的系数是合并前各同类项的系数,且部分不变。

(新版)合并同类项的法则是:同类项的系数相加,所得的结果作为,字母和字母的指数.(旧版)4、通常我们把一个多项式的各项按照某个字母的指数从叫降幂或都从叫升幂。

5、去括号:如果括号前的符号是正号,去括号后原括号内各项的符号与原来的符号,+(x-3)=如果括号前的符号是负号,去括号后原括号内各项的符号与原来的符号。

-(x-3)=同步练习一、填空题1、 ,叫做合并同类项。

2、合并同类项的法则是:______________所得结果作为_______、_______和_______不变。

3、在合并同类项时,我们把同类项的 相加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学(上) 合并同类项、去括号(B 卷)
(时间45分钟 满分100分)
一、填空(本大题共有9小题,每空2分,共36分) 1.直接写出下列各式的结果:
(1)x 2-5x 2=__________;(2)3a+4a=__________;(3)1
42
ab ab -+=_________; (4)
11
32
x x -=__________;(5)-7ab+6ab=_________;(6)-a 2b -(________)=2a 2b . 2.已知5x 2y 与32
a b
x y -是同类项,则a=________,b=________,合并同类项
得_______________.
3.单项式
2
12
x y 与-x 2y 的差是__________. 4.把(x -y)看作一个整体,那么()()()222
1124
x y x y x y -----=_________.
5.去括号,合并同类项.
(1)a 2-(2b 2-c+3d)=_______________; (2)2(m -1)-3(m+1)=_________________.
6.与2a -1的和为7a 2-4a+1的多项式是__________________.
7.若3x 2-2x+b -(-x -bx+1)中不存在x 的一次项,则b=____________. 8.若x+2y+3z=10,4x+3y+2z=15,则x+y+z=___________.
9.规定一种新运算:=ad -bc ,例如=2×5-3×4=10-12=-2,再如
=4x -2,那么=_____________,=__________.
二、选择 (本大题共有7小题,每小题3分,共21分) 10.下列式子正确的是 ( ) A .a -(b -c)=a -b -c B .-(a -b+c)=-a+b+c C .c+2(a -b)=c+2a -b D .a -(b+c)=a -b -c 11.下列计算正确的是 ( ) A .3x+2x=5x 2 B .3x -2x=1 C .3x 2-2x=x D .3x 2-2x 2=x 2 12.下列各组的两项是同类项的是 ( ) ①2x 2y 与2xy 2;②4abc 与4ab ;③-mn 与nm ;④-15与21;⑤-x 2y 与7x 2y
A .①③⑤
B .②④⑤
C .①③④⑤
D .③④⑤
13.减去-2x 等于6x 3+3x -9的代数式是 ( )
A .6x 3-9
B .6x 3+5x -9
C .-6x 3-5x+9
D .6x 3+x -9 14.根据图所示的程序计算,若输入的x 值是
3
2
,则输出的结果是 ( )
A .
27 B .49 C .12 D .92
15.若A 是一个七次多项式,B 也是一个七次多项式,则A+B 一定是 ( )
A .十四次多项
B .七次多项式
C .不高于七次的多项式或单项式
D .六次多项式
16.如果x>1,那么121x x x -+-+的值是 ( ) A .1 B .3-2x C .4x -3 D .3-4x 三、解答(本大题共有9小题,共43分) 17.化简(本题满分6分):
(1)3x 2+2xy -4y 2-3xy+4y 2-3x 2;
(2)5(x 2y -2xy 2+z)-4(2z+3x 2y -xy 2).
18.(本题满分4分)化简求值:3(2x 2y -3xy 2)-2(2xy 2-3x 2y),其中x=1,y=-1.
19.(本题满分4分)已知A=4x 2-4xy+y 2,B=x 2+xy -5y 2,求A=2B .
20.(
(1)用代数式表示挂质量为x kg 物体时弹簧的长度; (2)当挂质量为2.4kg 的物体时,求弹簧长度.
21.(本题满分4分)已知多项式2x 2-3xy+y 2-2xy -2x 2+5xy -2y 2+1. (1)当20
7
x =
,y=-1时,求多项式的值; (2)小明把20
7
x =看成207x =-代入,求值结果一样吗?请说明理由.
22.(本题满分5分)已知()2
2310a b ++-=,化简代数式 2
2
2
1326422a b a b a b a b a b a b ⎡⎤⎛

+---+-
⎪⎢⎥⎝
⎭⎣

,并求出它的值.
23.(本题满分6分)某地出租车的收费标准是:起步价(3km以内)8元,3km至8km,收费2.35元/km,8km以后,收费2.85元/km,不足1km按1km计算;问:
(1)小明乘坐7km的路程,他应该支付多少钱?
(2)如果小明乘坐了x(x>8)km的路程,请用含x的代数式表示小明应支付的费用;
(3)如果小明共付了39.7元,你能算出他乘坐了多少km吗?
24.(本题满分4分)若多项式2x2+ax-y+b与bx2-3x+5y-1的差与字母x的取值无关,求代数式3(a2-2ab-b2)-(4a2+ab+b2)的值.
25.(本题满分6分)某公司预计今年的总利润为4 800万元,已知第一季度的利润为x 万元,第二季度的利润是第一季度利润的三分之二还多100万元,而第三季度的利润等于前两季度的和.
(1)请用代数式表示要完成预计利润计划第四季度要达到的利润;
(2)若x=900,且全年要超额10%完成利润计划,第四季度的利润应达到多少万元?
参考答案
一、1.(1)-4x 2 (2)7a (3)72
ab (4)1
6x - (5)-ab (6)-3a 2b 2.2;1;
272x y 3.232x y 4.()2
34
x y -- 5.(1)a 2-2b 2+c -3d (2)-m -5 6.7a 2-6a+2 7.1 8.5 9.3.5;3x -0.5
二、10.D 11.D 12.D 13.D 14.C 15.C 16.C
三、17.(1)-xy (2)-7x 2y -6xy 2-3z 18.原式=12x 2y -13xy 2=-25 19.2x 2-6xy+11y 2 20.(1)10+0.5x (2)11.2cm 21.(1)原式=-y 2+1=0 (2)一样,因为化简结果与x 无关 22.a=-2,13b =
,原式=2
429
ab -= 23.(1)17.4元 (2)2.85x -3.05 (3)15km 24.a=-3,b=2,原式=-a 2-7ab -4b 2=17 25.(1)10
46003
x - (2)2080万元。

相关文档
最新文档