场景红外成像仿真原理和应用
红外热成像摄像机原理分析以及应用

红外热成像摄像机原理分析以及应用随着技术的进步,监控系统已经在各个领域得到了广泛的应用。
目前的视频监控系统主要采用可见光摄像机和人工监视、录像相结合的方式进行日常的安全防护,但由于可见光摄像机在恶劣天气或照度较低的条件下,很难滤除干扰得到有用的视频图像,因此使得整个安防系统在夜间或恶劣天气条件下的防范能力大打折扣。
同时,由于现在的视频监控系统仍然依托于人工监视,安保人员需要对监控画面进行24小时不间断的监视、人为对视频图像进行分析报警,否则系统就起不到实时报警的功能,而更多的只是事发后取证的作用。
从整体上来说,目前的视频监控系统还处于在半天时、半天候和半自动状态。
在伊拉克战争中,美军平均每个士兵拥有1.7台红外热像仪产品一项统计数据表明,世界上47%的暴力犯罪案件发生在晚6点到早6点之间。
原因很简单,在夜幕的笼罩下,犯罪分子容易隐蔽,犯罪场面也不容易被看见——黑暗掩盖了犯罪行为。
即使安装了一般的视频监控系统,也有可能让犯罪分子逃之夭夭。
因此,如何提高在“夜黑风高”的案件高发时间段的自动报警防范能力,成为安防系统当成亟待解决的难题之一。
在这种情况下,红外热成像技术以其作用距离远、穿透能力强、能识别隐蔽目标等优势被引入安防领域,成为监控领域的一份子。
热成像摄像机的监控原理在自然界中一切温度高于绝对零度(-273.16摄氏度)的物体都不断地辐射着红外线,这种现象称为热辐射。
红外线是一种人眼不可见的光波,无论白天黑夜,物体都会辐射红外线,但红外线不论强弱,人们都看不到。
热成像摄像机(又叫热像仪)就是利用红外探测器、光学成像物镜接收被测目标的红外辐射信号,经过红外光学系统红外探测器的光敏源上利用电子扫描电路对被测物的红外热像进行扫描转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热图像。
利用这种原理制成的仪器为热成像摄像机。
它通过探测微小的温度差别,将温度差异转换成实时的视频图像,显示在监视器上。
红外成像方案

红外成像方案红外成像技术是一种利用红外辐射进行成像的技术,它在各个领域都有着广泛的应用,如军事、医疗、安防等。
本文将探讨红外成像方案在不同领域的应用以及其原理和优势。
第一部分:军事领域中的在军事领域,红外成像技术被广泛应用于侦察、测距、导航等方面。
通过红外成像装置,可以探测远距离目标,提高战场的控制力和战场意识。
红外成像方案在坦克、战斗机、导弹等武器系统中被广泛应用,能够为作战指挥员提供重要的战场信息。
第二部分:医疗领域中的在医疗领域,红外成像技术也得到了广泛应用。
例如,红外成像可以通过测量人体表面的红外辐射来检测体温,对于发烧等体温异常的诊断有着重要的作用。
此外,在乳腺癌等疾病的早期筛查中,红外成像也能够提供良好的辅助诊断手段。
通过对患者进行红外成像扫描,可以及早发现异常的热点区域,从而提高治疗效果。
第三部分:安防领域中的在安防领域,红外成像技术被广泛应用于监控系统中,可以在黑暗环境下实现对目标的有效监测。
红外摄像机通过接收目标的红外辐射,将其转化为可见图像,从而实现监控目标的识别和跟踪。
与传统的监控摄像机相比,红外摄像机具备良好的低照度性能和暗光增强功能,适用于各种复杂的环境条件。
第四部分:红外成像方案的原理和优势红外成像技术的原理是基于物体表面的红外辐射,通过红外传感器将其转化为电信号,再经过处理和显示,形成红外图像。
相比于可见光成像技术,红外成像技术具有以下几个优势:1. 不受照明条件限制:红外成像技术可以在完全黑暗的环境下实现成像,这使得它在夜间作战、远程监测等方面具备独特的优势。
2. 温度探测能力:红外成像可以通过测量物体表面的红外辐射来判断其温度分布,这在医疗、工业检测等领域有着广泛的应用。
3. 显示人工、智能结合:红外图像可以通过图像处理和分析算法进行进一步的处理,实现目标的识别、跟踪和分析。
这使得红外成像技术在军事、医疗和安防等领域的应用更为广泛。
总结:红外成像方案在军事、医疗和安防领域中具有广泛的应用,并且在不同领域中都有其独特的优势。
红外成像方案

红外成像方案摘要:红外成像技术在许多领域中得到了广泛应用,包括安全监控、无人机导航、医学诊断等。
本文将介绍红外成像的基本原理和常用的红外成像方案,包括热像仪、红外摄像机、红外传感器等。
此外,还将讨论红外成像技术的局限性和未来发展趋势。
一、引言红外成像技术是一种通过探测物体发出的红外辐射来生成图像的技术。
相比于可见光相机,红外成像可以在低光或者没有光的环境下工作,并且可以探测到人眼无法看见的热能辐射。
因此,红外成像技术在许多领域中得到了广泛应用。
二、红外成像方案1. 热像仪热像仪是一种通过探测物体发出的红外辐射来生成图像的设备。
它由红外光学系统、探测器和图像处理系统组成。
红外光学系统可以将红外辐射聚焦到探测器上,而探测器则可以将红外辐射转化为电信号。
最后,图像处理系统将电信号转化为可见的图像。
热像仪广泛应用于安全监控、夜视设备、火灾检测等领域。
2. 红外摄像机红外摄像机是一种将红外辐射转化为可见光图像的设备。
它采用红外辐射传感器,将物体发出的红外辐射转化为电信号,然后通过图像处理算法将电信号转化为可见的图像。
红外摄像机在安防监控、无人机导航、辐射温度检测等领域中得到了广泛应用。
3. 红外传感器红外传感器可以检测物体发出的红外辐射,并将其转化为电信号。
红外传感器包括被动式红外传感器和主动式红外传感器。
被动式红外传感器基于物体发出的热能辐射来检测物体的存在,广泛应用于安防系统中。
主动式红外传感器则通过发射红外辐射并检测被物体反射的红外辐射来实现目标检测和测距等功能。
三、红外成像技术的局限性尽管红外成像技术在许多领域中得到了广泛应用,但它仍存在一些局限性。
首先,红外成像设备的成本较高,不易大规模应用。
此外,红外成像技术对气候和环境条件比较敏感,可能受到大气湿度、温度变化等因素的影响。
此外,红外成像技术在分辨率和精度方面还有待改进。
四、红外成像技术的未来发展趋势随着科技的不断进步,红外成像技术也在不断发展。
红外线技术在热成像方面的应用

红外线技术在热成像方面的应用红外线技术是一种非接触式测温技术,与传统接触式测温方法相比,具有测温快速、准确性高、安全性强等优点,因此在热成像方面广泛应用。
本文将分别从红外线技术的测温原理、应用领域、优缺点三个方面介绍红外线技术在热成像方面的应用。
一、红外线技术的测温原理红外线技术是一种通过检测物体发出或反射的红外辐射来测量物体表面温度的技术,其原理基于物质对热辐射的吸收和反射特性。
物体表面的红外辐射是与物体表面温度直接相关的,当物体表面温度升高时,其发射的红外辐射也会随之增强。
使用红外线相机可以捕捉到微弱的红外辐射信号,并通过算法计算出物体表面的温度分布图。
二、红外线技术的应用领域红外线技术的应用领域非常广泛,其中热成像技术是其主要应用之一。
以下是热成像技术在不同领域的应用:1. 建筑领域在建筑领域,热成像技术可以用来检测建筑墙体、窗户、屋顶等部位的隐蔽缺陷,如漏水、渗水、漏热等。
通过对建筑物的热成像检测,可以及时发现和修复隐蔽缺陷,提高建筑物的能源利用效率。
2. 电力领域在电力领域,热成像技术主要应用于发电机、变压器、电缆等设备的故障诊断和维护。
通过对设备的热成像检测,可以准确发现并诊断其温升异常和故障。
3. 机械制造领域在机械制造领域,热成像技术主要用于机器设备、轴承、齿轮等部件的检测和维护,及时发现并修复设备的故障和异常,提高生产效率和设备寿命。
4. 医疗领域在医疗领域,热成像技术可以用来检测人体表面器官的温度分布,诊断患者是否存在疾病。
比如,对于肿瘤患者,热成像技术可以在早期发现其异常的温升情况,从而提高治疗效果。
三、红外线技术在热成像方面的优缺点红外线技术在热成像方面具有许多优点,但同时也存在一定的缺点。
1. 优点①非接触式测温:红外线技术可以在不接触物体的情况下,快速准确地测量物体表面的温度,无需暴露于有害的温度环境中,更符合安全、环保要求。
②画面直观:热成像技术可以直观地呈现出物体表面的温度分布和变化趋势,便于操作者分析和诊断异常情况。
红外线成像原理

红外线成像原理红外线成像是一种利用物体辐射的红外辐射来获取目标信息的技术。
红外线成像技术已经广泛应用于军事、安防、医疗、工业检测等领域。
它能够在夜晚或者低光条件下实现目标的探测和识别,具有很高的实用价值。
红外线成像的原理主要基于物体的热辐射特性。
所有的物体都会向外辐射热能,这种热能的波长范围在红外波段,因此被称为红外辐射。
根据物体的温度不同,其辐射的红外波长也会不同。
利用红外线成像技术,可以通过探测器接收目标的红外辐射,然后将其转换成电信号,最终形成红外图像。
红外线成像技术主要包括红外辐射探测、信号处理和图像显示三个主要部分。
首先是红外辐射探测,它是整个系统的核心部分。
探测器的性能直接影响到成像的清晰度和灵敏度。
目前常用的红外探测器有热电偶探测器、焦平面阵列探测器等。
其次是信号处理部分,它包括信号放大、滤波、数字化等步骤,用于增强图像的对比度和清晰度。
最后是图像显示,通过将信号转换成可见的图像,来实现对目标的观测和识别。
红外线成像技术具有很多优点。
首先,它可以实现夜视功能,对于夜间作战和夜间监控具有重要意义。
其次,它可以穿透一些雾、烟、灰尘等大气干扰,具有较好的透视能力。
另外,红外线成像技术还可以实现对温度分布的测量,用于工业检测和医学诊断。
然而,红外线成像技术也存在一些局限性。
首先,受到红外辐射的波长范围限制,其分辨率不如可见光成像技术高。
其次,受到大气吸收和散射的影响,红外线成像技术在远距离观测上存在一定的局限性。
另外,红外线成像设备的成本较高,对于一些应用场景来说,成本可能是一个制约因素。
总的来说,红外线成像技术以其独特的优势和应用价值,已经成为现代科技领域中不可或缺的一部分。
随着技术的不断进步,相信红外线成像技术在未来会有更广泛的应用和发展。
基于DMD红外场景仿真系统的研究及应用

第37卷,增刊红外与激光工程2008年6月V ol.37Supplement Infrared and Laser Engineering Jun.2008基于DMD红外场景仿真系统的研究及应用朱振福,罗继强,范小礼,李军伟(目标与环境光学特征国防科技重点实验室,北京100854)摘要:系统地介绍了数字微镜器件(DMD)的工作原理、发展及应用。
分析了DMD在红外场景仿真应用中所面临的主要技术问题,包括二进制脉宽调制(BPWM)可能产生的短暂假信号、动态范围受微镜衍射的限制、出射光瞳的均匀照射、DMD光学窗的光谱透射以及投影仪与被测导引头同步等。
同时基于DMD开发了红外场景仿真原理样机,经测试可在受控的环境下逼真模拟比较复杂的战场环境,并能对红外制导系统的性能进行评估和系统参数优化。
该系统可用于红外成像导引头与红外成像火控系统的半实物仿真、光电对抗以及红外成像武器系统的教学训练,并可根据用户的要求研制紫外和可见光场景的仿真系统。
关键词:DMD;红外场景仿真;半实物仿真复杂环境中红外成像系统探测性能的评估孟卫华,吴玲,祁鸣,张晓阳(中国空空导弹研究院,河南洛阳471009)摘要:用户越来越重视装备在复杂环境中的使用效能,而探测性能是红外成像系统使用效能的关键因素,因此复杂环境中系统的探测性能备受关注。
以往不同应用的红外成像系统,无论是以阈值辐照度还是噪声等效温差衡量,其探测性能在测试时都只简单认为背景辐射是均匀的。
这种情况与实际使用环境差别较大,测得的结果比较理想,对用户缺乏指导意义,用户难以认同。
如何改进、完善测试评估体系获取与使用环境相关的探测性能,并以此指导用户使用已受多方关注,文章就此进行探讨。
红外成像系统探测性能主要受背景红外辐射和传输路径两方面环境特性影响。
传输路径研究相对成熟,目标及背景在传输中皆受到衰减,不同大气条件、不同波段衰减不同,可以利用一些商业软件进行分析计算;背景辐射对探测性能影响很大,但此影响研究不够系统、深入,无法对探测性能评估提供有力支持。
红外成像的原理和应用
红外成像的原理和应用原理介绍红外成像技术是利用物体发出的热辐射来获取物体的热像图。
红外成像的原理主要基于物体的热辐射特性。
一般情况下,物体的温度越高,辐射的能量越大,同时辐射的频率也越高。
红外成像技术利用红外传感器和红外相机来接收物体发出的红外辐射,然后通过处理和分析,将辐射信号转换为可视化的热像图。
应用领域1. 工业领域•红外成像技术在工业领域中被广泛应用于故障检测和预防维护。
通过红外成像技术,可以实时监测机械设备和电子元器件的温度变化,及时发现异常情况,并采取相应的修复措施,避免设备故障和生产事故的发生。
•红外成像技术还可以用于检测电力系统中的热点,提前发现电线、插座和电器设备等可能存在的隐患,预防火灾和安全事故的发生。
2. 建筑领域•在建筑领域中,红外成像技术可以用于检测建筑物的能量损失,帮助设计和改善建筑物的能源效率。
通过检测建筑物表面的热辐射分布,可以发现热桥、隔热层缺陷和漏风等问题,从而提出相应的改进方案。
•红外成像技术还可以用于检测建筑物的结构裂缝,通过监测裂缝周边的热辐射变化,可以提前发现结构问题,避免建筑物的倒塌和安全事故的发生。
3. 医学领域•红外成像技术在医学领域中也有重要的应用。
例如,红外热像仪可以用于乳腺癌的早期筛查,通过检测乳房组织的热辐射分布,可以发现异常的温度变化,帮助医生进行早期诊断和治疗。
•另外,红外成像技术还可以用于皮肤病的诊断和治疗。
通过检测皮肤的温度变化,可以帮助医生判断皮肤病的严重程度和疗效,指导治疗方案的制定和调整。
优势和局限性•优势:–红外成像技术可以在暗光环境下工作,对照明要求较低。
–红外成像技术具有非接触性,可以远距离观测目标,减少人工干预的需要。
–红外成像技术可以实时监测温度变化,及时发现异常情况,避免事故的发生。
•局限性:–红外成像技术的分辨率相对较低,无法获取目标的精确图像信息。
–红外成像技术对目标的器件、颜色和表面材质有一定的限制,可能存在误差。
红外成像技术的原理与应用
红外成像技术的原理与应用红外成像技术是一种高科技的技术,它的发展使得许多行业和领域得到了极大的改善。
红外成像技术的应用十分广泛,它的原理也是非常高深的。
本文将会深入探讨这个话题,并讲解红外成像技术的原理与应用。
一、红外成像技术的原理红外成像技术是基于物体对红外光的反射、辐射或透过红外光的不同响应特性,对物体进行探测和成像的一种技术。
在红外光学领域有一个著名的定律——Planck 定律,它是一个物理学定律,表明了物体辐射出的辐射能量是与所辐射的波长以及物体的温度有关。
Planck 定律为红外成像技术的发展奠定了基础。
红外光的波长在 0.75-1000 微米之间,远远超出了人类能够看到的可见光,因此我们无法直接观察物体对红外光的反射、辐射或透过。
但是,我们可以通过研究物体对红外光的响应特性来进行探测和成像。
红外成像技术主要包括两种方式:热成像和被动成像。
1. 热成像热成像(Thermal Imaging)是根据物体的表面温度不同,红外辐射亮度不同来进行成像的。
红外相机通过检测物体辐射出的红外光,从而测量物体的表面温度。
红外相机可以将物体表面温度的变化转换为不同颜色的图像,从而得到一幅温度图像。
不同温度的色彩呈现不同的颜色,形成一种热力图,以便更直观地反映物体表面温度的分布情况。
2. 被动成像被动成像(Passive Imaging)是指根据物体对红外光的反射、散射或透过等特性进行成像的一种技术。
被动红外成像技术主要是采用红外探测器对物体反射、透过或辐射的红外光进行探测,然后通过图像处理算法将这些数据转化为图像。
被动红外成像技术的优点是可以在黑暗中工作,无需依赖光源。
二、红外成像技术的应用红外成像技术具有广泛的应用领域,从安防、军事到医学、工业等领域都有其独特的应用。
1. 安防方面的应用红外成像技术在安防领域起着重要的作用,尤其是在暗光条件下的监控。
人们经常可以看到在监控画面中,黑暗中出现明亮的人影,这就是红外摄像机发挥的作用。
红外成像系统中的透镜设计与Zemax模拟方法的应用
红外成像系统中的透镜设计与Zemax模拟方法的应用简介红外成像系统在许多领域中都有广泛的应用,如安防监控、无人机导航和医学诊断等。
在红外成像系统中,透镜是其中关键的组成部分之一。
透镜的设计和模拟是确保系统性能优化的重要步骤。
本文将探讨红外成像系统中透镜的设计原理以及使用Zemax软件进行模拟的方法。
红外透镜的设计原理红外透镜的设计与可见光透镜类似,但受到其工作波长范围和材料特性的限制。
在设计过程中,需要考虑以下因素:1. 波长范围:红外透镜通常需要在波长范围内具有良好的透过率和成像能力。
不同的应用领域可能有不同的波长要求。
2. 焦距和视场角:透镜的焦距和视场角直接影响成像系统的成像质量和视野范围。
设计师需要根据具体应用的需求进行权衡和优化。
3. 材料选择:红外透镜通常采用透明度较高的特殊材料,如硒化锌、镉镓砷等。
材料的选择需考虑其在红外波段的透过率和成本等因素。
4. 光学畸变:透镜的设计还要考虑到光学畸变的修正,以保证成像系统的精度。
Zemax软件的应用Zemax是一种常用的光学设计和仿真软件,被广泛应用于透镜设计和成像系统模拟。
通过Zemax软件,可以进行以下模拟和分析:1. 光学系统布局:通过Zemax的图形界面,可以方便地创建和调整光学系统的布局,包括透镜的位置、距离和角度等参数。
2. 透镜表面设计:Zemax提供了丰富的透镜表面设计功能,如球面、非球面和自由曲面等。
可以根据设计要求,进行透镜表面的优化和调整。
3. 成像仿真:通过设置合适的光源和探测器,可以在Zemax中进行红外成像系统的仿真。
可以评估成像质量,比如分辨力、畸变和成像亮度等参数。
4. 光学系统分析:Zemax还提供了对光学系统进行优化和分析的功能。
通过调整透镜参数,可以优化成像系统的性能并满足设计要求。
结论红外成像系统中透镜的设计和模拟是确保系统性能优化的关键步骤。
透过Zemax软件的应用,设计师可以方便地进行透镜设计、光学系统布局和成像仿真等工作。
红外热像仪的用途和原理PDF
红外热像仪的原理和用途红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上从而获得红外热像图这种热像图与物体表面的热分布场相对应。
通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。
热图像的上面的不同颜色代表被测物体的不同温度。
一红外热像仪的发展红外热像仪在最早是因为军事目的而得以开发近年来迅速向民用工业领域扩展。
自二十世纪70年代欧美一些发达国家先后开始使用红外热像仪在各个领域进行探索。
红外热像仪也经过几十年的发展已经发展成非常轻便的现场测试设备。
由于测试往往产生的温度场差异不大和现场环境复杂等因素好的热像仪必须具备160120像素、分辨率小于0.1℃、空间分辨率小、具备红外图像和可见光图像合成功能等。
红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上从而获得红外热像图这种热像图与物体表面的热分布场相对应。
通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。
热图像的上面的不同颜色代表被测物体的不同温度。
红外热像仪在全球范围内美国拥有绝对领先的技术。
全球前三大红外热像仪品牌RNOFLIR和FLUKE都是美国品牌。
其中RNO是全球红外热像仪的鼻祖也是全球第一大红外热像仪品牌。
其知名的型号也是占据全球40市场份额的单品是PC-160. 作为一款售价4000多美元的红外热像仪这款热像仪拥有高达60HZ的帧频帧频越高热像仪精度越高感应速度也快也更精确成像也更连续这款红外热像仪可以说性价比非常高。
FLIR主要生产低端的2000美元左右的红外热像仪。
FLUKE主要生产中低端的红外热像仪。
二红外热像仪的原理红外热成像技术是一项前途广阔的高新技术。
比0.78微米长的电磁波位于可见光光谱红色以外称为红外线或称红外辐射是指波长为0.781000微米的电磁波其中波长为0.782.0微米的部分称为近红外波长为2.01000微米的部分称为热红外线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第21卷 第1期计 算 机 仿 真2004年1月 文章编号:1006-9348(2004)01-0096-03场景红外成像仿真原理和应用姚涛,李一凡(中科院沈阳自动化所,辽宁沈阳110016)摘要:根据红外成像理论,分析了各种因素对红外辐射的影响,提出了红外图像计算机仿真的原理与方法,给出了红外辐射的计算公式。
介绍了一种红外图像的计算机软件,并给出了仿真结果。
关键词:红外辐射;红外图像;仿真中图分类号:TP391.9 文献标识码:A1 引言红外制导系统根据不同背景下的目标红外辐射来跟踪目标,对红外制导系统进行性能评价,需进行大量试验。
但是这种试验既费钱又费时,而且不能经历各种可能的应用场合,所以有必要通过计算机实现红外系统的在线实物仿真。
其中如何生成一个准确逼真而且能够反映各种气象条件、各种红外电磁干扰的红外场景图像,是整个仿真系统的关键环节。
与可见光图像的成像机理不一样,红外探测器通过接收场景的红外辐射(主要在3~5微米或者8~14微米波段的范围内)成像。
影响红外成像的因素很多,包括大气辐射、环境辐射、大气对红外辐射的衰减等等,这些决定了红外图像的仿真的难度和复杂的计算度。
本文分析了红外成像的原理,研究了一般情况下的背景辐射,给出了辐射计算公式,结合SensorVision仿真软件介绍了红外场景的生成方法,并给出了仿真结果。
2 红外成像的仿真原理自然界中的一切物体,只要它的温度高于绝对温度(-273 )就存在分子和原子无规则的运动,其表面就不断地辐射红外线。
红外线是一种电磁波,它的波长范围为0.78~ 1000 m,实际物体的辐射度除依赖于温度和波长外,还与构成该物体的材料性质及表面状态等因素有关,其红外辐射可由基尔霍夫定律求得。
到达地面的太阳辐射是由太阳直接辐射和散射辐射两部分组成。
太阳的大部分辐射落在光谱的可见光部分,在短波紫外线区急剧地下降,而在红外线区则下降得非常缓慢。
太阳辐射经过大气层时,一部分被大气层中的水蒸气、二氧化碳和尘埃等物质吸收,导致低空大气层产生热辐射;一部分被云层中的尘埃、冰晶及微小水珠等反射和折射,形成散射辐射;而太阳辐射中的绝大部分是沿直线透过大气层到达地球表面,形成直接辐射。
在实际情况下,目标通常都是处在自然背景中,受到来自各个背景的红外辐射。
如何有效地计算各种背景的红外辐射,成为准确计算目标温度场的关键。
通常情况下,目标受到的背景辐射主要由太阳的直接辐射、地球反射的太阳辐射和地球自身的红外辐射三部分组成。
这三部分是影响其红外成像特性的主要因素,对于某个物体p i,各种背景辐射可用以下方法求得:1)太阳的直接照射太阳的直接辐射加热是目标表面接收到的外部热源的最主要部分,它对目标的温度影响最大。
由于太阳辐射强度是均匀的,记Q1为任一时刻目标p i接收到的太阳辐射,则可得到以下两点:a)对于高空目标(接近或外层空间)Q1=a i S0FnA i[1+0.33cos(360n/370)]式中 a i为物体的吸收率;S0为太阳常数(一般取1353W/m2),为平均日地距离的大气层外与太阳光垂直的表面上的太阳辐射强度;Fn为物体的太阳辐射角系数;A i为物体的面积;n为一年中的天数.在春分,n=81。
b)对于低空和地面目标,需要考虑太阳光线透过大气的影响,在计算中,采用如下方法计算经过大气后的太阳辐射强度:I n=S0[1+0.33cos(360n/370)]p2 m式中 m为大气质量,p2为大气透明度。
2)地球反射的太阳辐射地球表面及大气对阳光的反射与地面的性质、云层的分布状态有关,且差别很大:高空目标和低空目标接收到的反射也明显不同。
但均可用下列式子计算,记Q2为物体p i接收到的地球反射的太阳辐射.则Q2=a i E I0F SE A i式中 F SE为地球反射的辐射角系数; E为反射率,对于高空目标,可采用地球的平均反射率0.35;对低空目标,可只考虑地表的反射部分,对不同的地表应采用不同的反射率;I0对高空目标为S0,对低空目标为I n。
3)地球自身的红外辐射地球的红外辐射来源于地球表面吸收的太阳辐射的那收稿日期:2002-11-08部分能量,假设地球是一个均匀的热辐射平衡体,则其各处的热辐射强度相同。
设其红外辐射强度为E0,则 E0=(1- E)S0/4此处 E同上。
记Q3为物体接收到的地球热辐射,则 Q3=a i E0f EiA i式中 f Ei为物体p i的地球辐射角系数。
以上提到的各种辐射作用在物体上,一部分辐射被物体吸收,转化为热能的形式;一部分被物体反射;另一部分则透过物体继续传输,在物体内经过不断的被反射和吸收,只有一小部分逃逸出去。
物体将吸收到的辐射能量转化为热能,产生红外辐射。
物体自身的辐射和反射特性与其构成材料有关。
记物体的吸收率、反射率、透射率分别为 , , ,则有吸收率 、反射率 和透射率 之和等于1即 + + =1。
红外图像的成像机理与可见光图像不同,它是通过将红外探测器接收到的场景(包括其中的动态目标、静态目标以及背景)的红外辐射映射成灰度值,转化为可见光图像,场景中某一部分的辐射强度越大,反映在图像中的这一部分的灰度值越高,也就越亮。
除此之外,大气的状态(包括大气辐射、环境辐射以及辐射在传输过程中的衰减)也会对成像产生很大的影响。
不同波长的红外辐射在大气中的透射率有很大的差异,大气中对几个波段具有较高的透射率。
这些高透射区通常称为大气窗口。
目前在讨论红外成像时,一般讨论3~5微米和8~14微米两个红外窗口。
生成一幅与用红外探测器得到的信息一致的模拟红外图像,涉及以下几个步骤:1)根据红外理论,由目标的物理模型计算目标的红外辐射分布;2)按照目标与视点间的大气条件,利用大气传输模型,计算目标红外辐射分布经过大气到达视点过程中的衰减,即大气衰减;3)模拟红外探测器的特性,计算探测器成像面元对应像素的辐射度。
红外成像仿真的关键是确定物体表面的温度分布和辐射场,通过温度场来计算各点的红外辐射。
在实际情况下,目标的温度和辐射通量主要受背景辐射和内热源的影响,必须建立其适当的背景和内热源的模型。
其中对无源目标,例如草坪、人造物,它们的温度分布和自身材料的热特性、光谱反射特性以及背景辐射等因素有关,通过求解热交换方程来确定;而对于那些有源目标,例如飞机、坦克等,由于他们自身的某些部位可以认为是内热源,可以产生热量,是目标温度分布的主要因素。
例如对于行驶中的汽车来说,发动机是它的重要内热源,应该根据实际情况来给定目标的温度分布或者建立内热源模型求解其温度分布。
3 辐射度的计算到达探测器表面的辐射主要是太阳直接辐射、物体吸热所释放出来的辐射、物体反射的太阳辐射、大气辐射以及环境辐射等,而物体的辐射在很大程度上又和当时的大气状态有关。
所以到达探测器成像面上各点的辐射应该是其对应的这些辐射与大气衰减以及探测器光谱响应共同作用的结果,其辐射度计算公式如下:L detector= 2 1H( )L app arent( )(1) L ap paren t( )=L ambient( )*REF*T path+L direct( )*cosang*REF*(1-f rac)*T path( )+L direct( )*f ang*REF*norm*f rac*T path( )+L ther mal( )*(1-REF)*T path( )+L path( )*(1-T path( ))其中:L apparent( )是到达探测器表面的辐射;L det ector是在探测器成像面上的辐射;H( )是探测器的光谱响应;L ambien t( )是目标表面的环境辐射;L direct( )是太阳(或月亮)辐射;L thermal( )是与目标表面等温的黑体辐射;L path( )是目标与红外探测器之间的路径辐射;REF是目标表面的漫反射系数;T path( )是目标与探测器表面的大气透射比;ang是太阳(或月亮)光线与目标成像面法线间的夹角;f rac是目标表面的镜面反射比;f ang是目标表面镜面反射的角度依赖关系;norm是镜面反射的归一化系数;在公式(2)中,对于波长大于3微米的红外图像仿真,可以忽略公式中右边前两项。
从公式可知辐射度与大气透射率的计算涉及太阳(月亮)的方位、场景的方位、探测器的方位、大气对辐射传输的性质和场景材料L ambient( ),L direct( )由探测器到场景表面的距离、探测器海拔高度、视线仰角和直射源仰角决定,实时红外图像仿真中这些量只在每幅图像对图像中心计算一次,然后利用线性内插的方法计算各象元的L ambient( ),L direct( );L ther mal( )由斯蒂芬-玻耳兹曼定律计算与目标表面同温的黑体辐射;T path ( ),L path( )由探测器至场景表面的距离、探测器海拔高度、视线仰角、直射源仰角,直射源和探测器的方位角决定,在实时图像仿真中只需对每幅图像的中心视线计算一次,其它象元的T path( ),L path( )根据探测器至其它象元的距离利用指数外推法进行计算。
以上这些量的计算要用到大气传输模型,可通过提供参数由大气传输模型软件来计算完成。
4 红外仿真的过程以上介绍的是红外成像的仿真原理,根据生成红外图像的特点,设计实时红外景象生成器的过程如下:图1 仿真流程图1)场景建模红外场景建模应该包括以下四个方面: 建立对象库。
建立对象库是为场景建模服务的,对象库提供各种常见目标与背景的几何模型、各种材料与纹理。
建立物理特性库。
物理特性库应包括对象库中各种材料的光谱反射和吸收特性及热特性,为热辐射的计算提供材料的物理特性数据。
建立大气传输模型。
对于红外成像,需要知道大气透射率、大气辐射、太阳(或月亮)的辐射、红外窗等。
它应该包括地理位置、季节、时间、气候条件、天气情况、大气湿度、可见度及大气温度等参数。
场景建模。
建立场景中的各种物体的三维模型。
包括背景以及各种动态及静态目标的三维模型。
建模中,还要设定具体天气情况、星历模型以及观察者的位置及状态,设定物体的纹理、材料物理特性、辐射率、温度分布等等。
2)计算红外辐射强度根据已建立的大气传输模型和场景模型以及场景构成材料的物理特性,计算探测器上所接收到的红外辐射强度。
3)形成灰度等级得到在探测器成像面上对应像元的辐射亮度,但不是最终的结果,数字图像反映的是灰度值,因此在这一部分必须把辐射亮度转化为灰度等级,这是个量化的过程。
按照将最大的辐射度对应于255,最小的对应于0的原则生成一个灰度图像。
4)设计目标的运动状态。
除此之外,还要考虑动态目标的运动规律。
不仅要考虑探测器的运动轨迹,还要考虑目标相对于探测器的相对运动。