曲线运动知识点总结

合集下载

高中物理有关曲线运动知识点总结_

高中物理有关曲线运动知识点总结_

高中物理有关曲线运动知识点总结_高中物理曲线运动这一章节主要包括:曲线运动特点、曲线运动中矢量的分解、平抛运动、圆周运动、生活中的应用等,下面是有关这一章节内容的知识点总结。

第一节曲线运动1、曲线运动的速度方向(1)在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线切线的方向.(2)曲线运动的速度方向时刻改变,无论速度的大小变或不变,运动的速度总是变化的,故曲线运动是一种变速运动2.物体做曲线运动的条件(1)当物体所受合力的方向跟它的速度方向不在同一直线上时,这个合力总能产生一个改变速度方向的效果,物体就一定做曲线运动.(2)当物体做曲线运动时,它的合力所产生的加速度的方向与速度方向也不在同一直线上(3)物体的运动状态是由其受力条件及初始运动状态共同确定的.物体运动的性质由加速度决定(加速度为零时物体静止或做匀速运动;加速度恒定时物体做匀变速运动;加速度变化时物体做变加速运动)。

物体运动的轨迹(直线还是曲线)则由物体的速度和加速度的方向关系决定(速度与加速度方向在同一条直线上时物体做直线运动;速度和加速度方向成角度时物体做曲线运动)。

两个互成角度的直线运动的合运动是直线运动还是曲线运动?决定于它们的合速度和合加速度方向是否共线(如图所示)。

常见的类型有:⑴a=0:匀速直线运动或静止。

⑵a恒定:性质为匀变速运动,分为:① v、a同向,匀加速直线运动;②v、a反向,匀减速直线运动;③v、a成角度,匀变速曲线运动(轨迹在v、a之间,和速度v的方向相切,方向逐渐向a的方向接近,但不可能达到。

)⑶a变化:性质为变加速运动。

如简谐运动,加速度大小、方向都随时间变化。

物体运动形式与其受力条件及初始运动状态的关系受力条件力与初速度方向在一直线(或初速度为零)力与初速度方向不在一直线恒力匀变速直线运动匀变速曲线运动匀加速直线运动特例:自由落体运动匀减速直线运动特例:竖直上抛运动平抛运动斜抛运动变力加速度改变的直线运动加速度改变的曲线运动简谐运动匀速圆周运动合力为零静止或匀速直线运动二、运动的合成和分解1、合运动和分运动当物体实际发生的运动较复杂时,我们可将其等效为同时参与几个简单的运动,前者实际发生的运动称作合运动,后者则称作物体实际运动的分运动.2、运动的合成和分解的概念已知分运动求合运动,叫做运动的合成;已知合运动求分运动,叫做运动的分解,这种双向的等效操作过程,是研究复杂运动的重要万法.3.运动的合成和分解的应用(1)进行运动的合成与分解,就是对描述运动的各物理量如位移、速度、加速度等矢量用平行四边形定则求和或求差.运动的合成与分解遵循如下原理:①独立性原理:构成一个合运动的几个分运动是彼此独立、互不相干的,物体的任意一个分运动,都按其自身规律进行,不会因有其他分运动的存在而发生改变.②等时性原理:合运动是同一物体在同一时间内同时完成几个分运动的结果,对同一物体同时参与的几个运动进行合成才有意义.③矢量性原理:描述运动状态的位移、速度、加速度等物理量都是矢量,对运动进行合成与分解时应按矢量法则,即平行四边形定则作上述物理量的运算.(2)合运动的性质可由分运动的性质决定:两个匀速直线运动的合成仍是匀速直线运动;匀速直线运动与匀变速直线运动的合运动为匀变速运动;两个匀变速直线运动的合运动是匀变速运动.(3).过河问题如右图所示,若用v1表示水速,v2表示船速,则:①过河时间仅由v2的垂直于岸的分量v 决定,即,与v1无关,所以当v2 岸时,过河所用时间最短,最短时间为也与v1无关。

曲线运动知识点总结

曲线运动知识点总结


抛物线切线方向时,物体可能飞离抛物
线轨迹
曲线运动的混沌现象
与预测
• 曲线运动的混沌现象:物体在曲线运动中,由于受到复杂的合外
力作用,物体的运动状态难以预测
• 如三体运动,由于受到太阳、地球、月球之间的复杂引力作
用,三体运动呈现出混沌现象
• 如大气层中的气流运动,由于受到地球引力和大气压强的复杂
作用,气流运动呈现出混沌现象
在变化
曲线运动的最大速度与最小速度
曲线运动的最小速度:物体在曲线运动中,速度达到最小值时的速度
• 如圆周运动,最小速度为v<sub>min</sub> = v,其中v为物体沿圆周切线方向的速度
• 如抛物线运动,最小速度出现在抛物线顶点,速度大小为v<sub>min</sub> = v - gt
曲线运动的最大速度:物体在曲线运动中,速度达到最大值时的速度
曲线运动的向量表示:用向量表示物体的位置、速
度、加速度等物理量
曲线运动的向量表示方法:
• 如位置向量:r = (x, y)
• 可以用向量表示物体的运动状态,如
• 如速度向量:v =
速度、加速度等
(v<sub>x</sub>,
• 可以用向量运算表示物体受到的合外
v<sub>y</sub>)
力、合力矩等
• 曲线运动的研究有助于我们更好地解决工程技术中的实际问题,
提高工程质量和效率
曲线运动在生物学中的应用
• 曲线运动在生物学中的应用广泛,如动物迁徙、植物生长等
• 如鸟类迁徙,研究鸟类的迁徙路线,揭示鸟类迁徙的规律和原

曲线运动知识点总结

曲线运动知识点总结

曲线运动知识点总结曲线运动是物体在运动过程中所呈现的轨迹为曲线的运动形式。

在物理学中,曲线运动是一个重要的研究领域,涵盖了许多基本概念和原理。

下面,我们将对曲线运动的相关知识进行总结,并详细讨论其相关特点和应用。

一、曲线运动的基本概念1. 曲线运动的定义:物体在运动过程中所呈现的轨迹如果为曲线形状,则称为曲线运动。

2. 曲线运动的要素:曲线运动主要包括两个要素,即位移和时间。

位移是指物体从一个位置到另一个位置的变化量,而时间则是指位移发生的持续时间。

3. 曲线运动的描述方法:曲线运动可以通过图像、数学模型和实验数据等多种方式进行描述。

其中,图像是最直观的描述方法,数学模型可以用公式表示,实验数据则通过实际测量得到。

二、曲线运动的常见特点1. 轨迹形状:曲线运动的最显著特点是轨迹为曲线形状。

曲线的形状可以是直线、抛物线、圆周等多种形式,取决于物体运动的特性。

2. 速度变化:与直线运动不同,曲线运动的速度不是恒定的。

由于物体在曲线运动过程中改变了方向,速度会随着时间的推移而发生变化。

3. 加速度存在:曲线运动中常常存在加速度。

加速度是速度的变化率,它描述了物体在单位时间内速度的变化量。

在曲线运动中,加速度不仅考虑了速度的大小,还涉及了速度的方向变化。

4. 矢量描述:由于曲线运动中涉及到方向的改变,所以常常需要用矢量来描述物体的位移、速度和加速度。

矢量具有大小和方向两个特性,能够很好地描述曲线运动的复杂性。

三、曲线运动的常见模型1. 抛物线运动:抛物线运动是一种特殊的曲线运动,其轨迹呈抛物线形状。

抛物线运动常见于自由落体、抛体运动等情况,其数学模型可以通过解析几何和牛顿力学中的运动方程来描述。

2. 圆周运动:圆周运动是物体绕固定轴进行的曲线运动,轨迹为圆形。

圆周运动常见于行星绕太阳运动、卫星绕地球运动等情况,其数学模型可以通过旋转运动和牛顿运动定律来描述。

3. 螺旋线运动:螺旋线运动是物体同时绕轴线转动和沿轴线前进的运动形式,轨迹呈螺旋形状。

总结曲线运动知识点总结

总结曲线运动知识点总结

总结曲线运动知识点总结在曲线运动中,物体的速度、加速度的变化是非常重要的。

在曲线运动的问题中,我们常常需要求解物体在运动过程中的速度、加速度、位移、运动轨迹等参数。

因此,掌握曲线运动的知识对于理解和解决这些问题是非常重要的。

一、曲线运动的基本概念1. 曲线运动的概念曲线运动是物体在其运动过程中,其速度、加速度不是保持一个方向和大小的运动形式。

在曲线运动中,物体的速度和加速度的方向和大小都会随着时间的变化而发生变化,它的运动轨迹也不是一条直线,而是一条曲线。

2. 曲线运动过程中的速度、加速度变化规律在曲线运动过程中,物体的速度和加速度都可以随着时间的变化而变化。

速度的变化是由加速度决定的。

当物体在曲线上做曲线运动时,它总是有一个向心加速度,这个向心加速度决定了速度的大小和方向的变化。

因此,在曲线运动中,我们需要分析物体的向心加速度,从而确定速度和加速度的变化规律。

3. 曲线运动的运动轨迹在曲线运动中,物体的运动轨迹通常是一条曲线,这条曲线可能是一个圆、椭圆、抛物线等等。

运动轨迹的形状取决于物体所受的力的大小和方向,例如,当物体处于一个旋转的圆周运动中时,它的运动轨迹就是一个圆。

二、曲线运动的基本理论1. 切线加速度和法向加速度在曲线运动中,物体的加速度可以分解为切线加速度和法向加速度两个分量。

切线加速度是沿着速度方向的加速度分量,它决定了速度的大小的变化。

而法向加速度是垂直于速度方向的加速度分量,它决定了速度方向的变化。

根据这个分解,我们可以更好地理解曲线运动中速度和加速度的变化规律。

2. 向心加速度在曲线运动中,物体总是有一个向心加速度,这个向心加速度决定了速度的大小和方向的变化。

向心加速度是由曲线运动物体所受的向心力决定的,它的大小与速度的平方成正比,与曲线的曲率成反比。

因此,向心加速度是曲线运动中一个重要的参数,它决定了物体速度和加速度的变化。

3. 非惯性系中的曲线运动在非惯性系中,物体的曲线运动问题会更加复杂。

高中物理曲线运动知识点总结

高中物理曲线运动知识点总结

高中物理曲线运动知识点总结一、曲线运动的基本规律1. 曲线运动的概念曲线运动是指物体在一定时间内沿着曲线路径运动的现象。

在这种运动过程中,物体的速度和加速度都是随时间变化的。

因此,曲线运动是一种复杂的运动形式,需要通过物理学知识进行分析和研究。

2. 曲线运动的基本特征曲线运动有许多与之相关的基本特征,例如曲线的凹凸性、切线与速度、速度与加速度的关系等。

通过对这些基本特征的分析,可以更好地理解和解释曲线运动的规律和特点。

3. 曲线运动的描述方法曲线运动的描述主要有两种方法,一种是参数方程法,另一种是运动学方程法。

这两种方法可以通过不同的数学和物理模型对曲线运动进行描述和分析,从而得到更准确的运动规律和轨迹。

二、曲线运动的数学模型1. 参数方程参数方程是一种描述曲线运动的数学方法。

它将物体的运动状态描述为时间t的函数,并通过参数化的形式来描述曲线轨迹。

参数方程可以更直观地展现出曲线运动的规律,对于复杂的曲线路径来说,参数方程更容易进行运动规律的分析。

2. 运动学方程运动学方程是描述曲线运动的另一种数学模型。

它是根据牛顿运动定律和匀变速直线运动的知识推导出来的。

通过运动学方程可以得出物体在曲线轨迹上的速度和加速度的关系,从而对曲线运动进行定量的分析和计算。

三、曲线运动的速度和加速度1. 曲线运动的速度在曲线运动中,物体的速度是随着时间和位置的变化而变化的。

通常情况下,物体的速度可以分解为切向速度和法向速度两个分量。

切向速度是描述物体在曲线路径上的速度,而法向速度则是描述物体在曲线路径上的加速度。

这两个分量结合起来可以更全面地描述曲线运动中的速度规律。

2. 曲线运动的加速度曲线运动的加速度也是随着时间和位置的变化而变化的。

在曲线路径上,物体的加速度可以分解为切向加速度和法向加速度两个分量。

切向加速度是描述物体在曲线路径上的加速度,而法向加速度则是描述物体在曲线路径上的加速度。

这两个分量结合起来可以更全面地描述曲线运动中的加速度规律。

高中物理必修二曲线运动知识点归纳

高中物理必修二曲线运动知识点归纳

必修二知识点第一章曲线运动(一)曲线运动的位移研究物体的运动时,坐标系的选取十分重要.在这里选择平面直角坐标系.以抛出点为坐标原点,以抛出时物体的初速度v0方向为x轴的正方向,以竖直方向向下为y轴的正方向,如下图所示.当物体运动到A点时,它相对于抛出点O的位移是OA,用l表示. 由于这类问题中位移矢量的方向在不断变化,运算起来很不方便,因此要尽量用它在坐标轴方向的分矢量来表示它. 由于两个分矢量的方向是确定的,所以只用A点的坐标(x A、y A)就能表示它,于是使问题简化.(二)曲线运动的速度1、曲线运动速度方向:做曲线运动的物体,在某点的速度方向,沿曲线在这一点的切线方向.2.对曲线运动速度方向的理解如图所示, AB割线的长度跟质点由A运动到B的时间之比,即v=ΔxAB,等于AB过程中平均速度的大小,其平均速度的方向由A指向B.当B Δt非常非常接近A时,AB割线变成了过A点的切线,同时Δt变为极短的时间,故AB间的平均速度近似等于A点的瞬时速度,因此质点在A点的瞬时速度方向与过A点的切线方向一致.(三)曲线运动的特点1、曲线运动是变速运动:做曲线运动的物体速度方向时刻在发生变化,所以曲线运动是变速运动.(曲线运动是变速运动,但变速运动不一定是曲线运动)2、做曲线运动的物体一定具有加速度曲线运动中速度的方向(轨迹上各点的切线方向)时刻在发生变化,即物体的运动状态时刻在发生变化,而力是改变物体运动状态的原因,因此,做曲线运动的物体所受合力一定不为零,也就一定具有加速度.(说明:曲线运动是变速运动,只是说明物体具有加速度,但加速度不一定是变化的,例如,抛物运动都是匀变速曲线运动.)(四)物体做曲线运动的条件:物体所受的合外力的方向与速度方向不在同一直线上,也就是加速度方向与速度方向不在同一直线上.(只要物体的合外力是恒力,它一定做匀变速运动,可能是直线运动,也可能是曲线运动)当物体受到的合外力方向与速度方向的夹角为锐角时,物体做曲线运动的速率将增大;当物体受到的合外力方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合外力方向与速度的方向垂直时,该力只改变速度方向,不改变速度的大小.(五)曲线运动的轨迹做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受合力的大致方向.速度和加速度在轨迹两侧,轨迹向力的方向弯曲,但不会达到力的方向.(六)运动的合成与分解的方法1、合运动与分运动的定义如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,那几个运动就是分运动.物体的实际运动一定是合运动,实际运动的位移、速度、加速度就是它的合位移、合速度、合加速度,而分运动的位移、速度、加速度是它的分位移、分速度、分加速度.2、合运动与分运动的关系3、合运动与分运动的求法运动的合成与分解的方法:运动的合成与分解是指描述运动的各物理量,即位移、速度、加速度的合成与分解,由于它们都是矢量,遵循平行四边形定则(或进行正交分解).(1)如果两个分运动都在同一条直线上,需选取正方向,与正方向同向的量取“+”,与正方向反向的量取“-”,则矢量运算简化为代数运算.(2)如果两个分运动互成角度,则遵循平行四边形定则(如图所示).(3)两个相互垂直的分运动的合成:如果两个分运动都是直线运动,且互成角度为90°,其分位移为s1、s2,分速度为v1、v2,分加速度为a1、a2,则其合位移s、合速度v和合加速度a,可以运用解直角三角形的方法求得,如图所示.合位移大小和方向为s=s21+s22,tanθ=s 1 s 2 .合速度大小和方向为v=v21+v22,tanφ=v 1 v 2 .合加速度的大小和方向为:a=a21+a22,tanα=a 1 a 2 .(4)运动的分解方法:理论上讲一个合运动可以分解成无数组分运动,但在解决实际问题时不可以随心所欲地随便分解.实际进行运动的分解时,需注意以下几个问题:①确认合运动,就是物体实际表现出来的运动.②明确实际运动是同时参与了哪两个分运动的结果,找到两个参与的分运动.③正交分解法是运动分解最常用的方法,选择哪两个互相垂直的方向进行分解是求解问题的关键.特别提醒a合运动一定是物体的实际运动(一般是相对于地面的).b不是同一时间内发生的运动、不是同一物体参与的运动不能进行合成.c对速度进行分解时,不能随意分解,应该建立在对物体的运动效果进行分析的基础上.d合速度与分速度的关系当两个分速度v1、v2大小一定时,合速度的大小可能为:|v1-v2|≤v≤v1+v2,故合速度可能比分速度大,也可能比分速度小,还有可能跟分速度大小相等.4、运动的合成与分解是研究曲线运动规律最基本的方法,它的指导思想就是化曲为直,化变化为不变,化复杂为简单的等效处理观点.在实际问题中应注意对合运动与分运动的判断.合运动就是物体相对于观察者所做的实际运动,只有深刻挖掘物体运动的实际效果,才能正确分解物体的运动.(七)如图所示,用v1表示船速,v2表示水速.我们讨论几个关于渡河的问题.当v 1垂直河岸时(即船头垂直河岸),渡河时间最短1v d t =,船渡河的位移θsin d s =。

曲线运动相关的知识点总结

曲线运动相关的知识点总结

曲线运动相关的知识点总结一、曲线运动的概念和特点曲线运动是指物体在空间中不沿直线运动,而是沿着一定的轨迹运动的运动。

曲线运动的特点有以下几个方面:1. 随着时间的推移,物体在空间中的位置不断变化,形成一定的轨迹;2. 曲线运动的速度和加速度可能随着时间和位置的变化而变化;3. 曲线运动通常受到外界力的作用,这些外界力会影响物体的速度和加速度;4. 曲线运动的轨迹可以是圆形、椭圆形、抛物线形等不同形状。

二、曲线运动的基本参数1. 位移(s):物体在曲线运动过程中,由于位置的变化而产生的矢量,表示物体在空间中的移动距离和方向。

位移通常用矢量来表示,其大小等于物体起始位置和终点位置之间的直线距离,方向与曲线轨迹的切线方向一致。

2. 速度(v):物体在曲线运动中的平均速度和瞬时速度分别表示物体在一段时间内的位移与时间的比值和物体在某一瞬时的位置变化率。

曲线运动中的速度通常也是矢量,其大小等于位移与时间的比值,方向与曲线轨迹的切线方向一致。

3. 加速度(a):物体在曲线运动中的平均加速度和瞬时加速度分别表示物体在一段时间内速度的变化率和物体在某一瞬时的速度变化率。

曲线运动中的加速度也是矢量,其大小等于速度与时间的比值,方向与速度变化的方向一致。

三、曲线运动的数学描述1. 位移-时间图:曲线运动的位移-时间图用来描述物体在不同时间段内的位移变化情况,通过位移-时间图可以了解物体的运动方向、速度和运动过程中的各个阶段。

2. 速度-时间图:曲线运动的速度-时间图用来描述物体在不同时间段内的速度变化情况,通过速度-时间图可以了解物体的加速度、减速度和速度达到最大值和最小值的时间点。

3. 加速度-时间图:曲线运动的加速度-时间图用来描述物体在不同时间段内的加速度变化情况,通过加速度-时间图可以了解物体的变速情况和加速度的大小和方向变化情况。

四、曲线运动的相关定理和公式1. 物体的位移与速度关系:曲线运动中,物体的位移与速度之间存在着一定的关系,如在匀变速直线运动中,位移与速度之间的关系可以表示为s=v0t+1/2at^2或v^2=v0^2+2as 等。

曲线运动知识归纳

曲线运动知识归纳

曲线运动要点归纳要点一曲线运动的特点1.轨迹是一条曲线.2.曲线运动的速度方向(1)质点在某一点(或某一时刻)的速度方向沿曲线在该点的切线方向.(2)曲线运动的速度方向时刻改变.速度是描述运动的一个重要的物理量,它既有大小,又有方向.如果物体在运动过程中只有速度大小的改变,而速度方向不变,那么物体只能做直线运动.因此,假设物体做曲线运动,说明物体的速度方向时刻变化.3.运动性质是变速运动(1)无论物体做怎样的曲线运动,由于轨迹上各点的切线方向不同,物体的速度时刻发生变化,因此,曲线运动一定是变速运动.(2)曲线运动是否为匀变速运动决定于物体是否受到恒力作用,如抛体运动中,由于物体只受重力作用,其加速度不变,故物体做匀变速运动,这与物体的运动轨迹无关.要点二物体做曲线运动的条件1.曲线运动是变速运动,凡物体做变速运动必有加速度,而加速度是由于力的作用产生的,因而做曲线运动的物体在任何时刻所受合外力皆不为零,不受力的物体不可能做曲线运动.2.当物体受到的合外力的方向与运动方向在一条直线上时,运动方向(速度方向)只能沿该直线(或正或反),其运动依然是直线运动.3.当物体受到合外力的方向跟物体的速度方向不在一条直线上,而是成一定角度时,合外力产生的加速度方向跟速度方向也成一定角度.一般情况下,这时的加速度不仅反映了速度大小的变化快慢,还包含了速度方向的变化快慢.其运动必然是曲线运动.4.当合外力为恒力(F与v不共线)时,加速度也恒定,物体的速度均匀变化,物体做匀变速曲线运动;当合外力变化时,物体做非匀变速曲线运动(变加速度的曲线运动).应该注意的是,曲线运动不一定要求合外力变化.因此,一个物体是否做曲线运动,与力的大小及力是否变化无关,关键是看合外力的方向与速度方向是否在同一直线上.在比拟中可知:(1)在变速直线运动(加速直线运动或减速直线运动)中,加速度方向(即合外力方向)与速度方向在同一直线上,加速度只改变速度的大小,不改变速度的方向.(2)在曲线运动中,加速度方向(合外力方向)与速度方向不在同一条直线上,加速度可以改变速度的大小,也可以改变速度的方向.1.运动轨迹和外力、速度的关系(1)把加速度和合力F都分解到沿曲线切线和法线(与曲线切线垂直)方向上,沿切线方向的分力F1使质点产生切线方向的加速度a1,当a1和v同向时,速度增大,如图5-1-3甲所示,此时的合力方向一定与速度方向成锐角;当a1和v反向时,速度减小,如图乙所示,此时的合力方向一定与速度方向成钝角;如果物体做曲线运动的速率不变,说明a1=0,即F1=0,此时的合力方向一定与速度方向垂直.沿法线方向的分力F2产生法线方向上的加速度a2,它使质点改变了速度的方向.由于曲线运动的速度方向时刻在改变,合力的这一作用效果对任何曲线运动总是存在的.可见,在曲线运动中合力的作用效果可分成两个方面:产生切线方向的加速度a1,改变速度的大小;产生法线方向的加速度a2,改变速度的方向,这正是物体做曲线运动的原因.假设a1=0,那么物体的运动为匀速率曲线运动;而假设a2=0,那么物体的运动为直线运动.(2)运动轨迹确实定①物体的轨迹与初速度和合外力有关,物体的运动轨迹一定夹在合外力与速度方向之间.②运动轨迹与速度相切,并偏向合外力一侧,因此轨迹是平滑的曲线.(3)合外力方向确实定物体所受合外力的方向指向轨迹的弯曲方向的内侧.即运动轨迹必夹在速度方向与合力方向之间.2.力与运动的关系(1)认识这个问题,应分清物体做曲线运动的条件和做匀变速运动的条件,物体做曲线运动的条件是加速度与初速度不在同一直线上,而做匀变速运动的条件是加速度的大小和方向恒定不变,二者之间没有必然联系.(2)物体运动的形式,按速度分类有匀速和变速;按径迹分类,有直线和曲线,其原因取决于物体的初速度v0和合外力F,具体分类如下:①F=0,静止或匀速运动.②F≠0,变速运动.③F为恒量,匀变速运动.④F为变量,非匀变速运动.⑤F和v0方向在同一直线上,直线运动.⑥F和v0方向不在同一直线上,曲线运动.归纳总结1.物体做曲线运动时,其速度方向是沿曲线上该点的切线方向.2.速度方向时刻改变,即速度一定时刻改变,所以曲线运动一定是变速运动.3.速度变化包括大小和方向的变化,故变速运动包括曲线运动与直线运动.平抛运动的特点及规律1.平抛运动是水平方向的匀速直线运动和竖直方向自由落体运动的合运动〔运动的合成〕2. 运动的规律 ⎪⎩⎪⎨⎧==2021)1(at y t v x⎪⎪⎩⎪⎪⎨⎧+===220)2(y x y x v v v gt v v v平抛特点总结:1.运动时间只由高度决定设想在高度H 处以水平速度v o 将物体抛出,假设不计空气阻力,那么物体在竖直方向的运动是自由落体,由公式可得:,由此式可以看出,物体的运动时间只与平抛运动开始时的高度有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲线运动考点梳理:一.曲线运动1.运动性质------ 变速运动,具有加速度2.速度方向------ 沿曲线一点的切线方向3.质点做曲线运动的条件(1)从动力学看,物体所受合力方向跟物体的速度不再同一直线上,合力指向轨迹的凹侧。

(2)从运动学看,物体加速度方向跟物体的速度方向不共线例题1:如图5-1-5在恒力F作用下沿曲线从 A运动到B,这时突然使它受的力反向, 而大小不变,即由 F变为一F,在此力作用下,关于物体以后的运动情况的下列说法中正确的是(A .物体不可能沿曲线 Ba运动B .物体不可能沿直线 Bb运动C.物体不可能沿曲线 Be运动D .物体不可能沿原曲线由B返回A.运动的合成与分解1.合运动和分运动:当物体同时参与几个运动时,其实际运动就叫做这几个运动的合运动,这几个运动叫做实际运动的分运动.2.运动的合成与分解(1)已知分运动(速度V、加速度a、位移s)求合运动(速度V、加速度a、位移s),叫做运动的合成.(2)已知合运动(速度V、加速度a、位移s)求分运动(速度V、加速度a、位移s),叫做运动的分解.(3)运动的合成与分解遵循平行四边形定则.3.合运动与分运动的关系(1)等时性:合运动和分运动进行的时间相等(2)独立性:一个物体同时参与几个分运动,各分运动独立进行,各自产生效果(互不影(3)等效性:整体的合运动是各分运动决定的总效果,它替代所有的分运动.三.平抛运动1.定义:水平抛出的物体只在重力作用下的运动.2.性质:是加速度为重力加速度g 的匀变速曲线运动,轨迹是抛物线.3.平抛运动的研究方法0 ©S yS xAx(1)平抛运动的两个分运动:水平方向是匀速直线运动,竖直方向是自由落体运动.sV0V y V图 5-1-(3) 平抛运动的位移 水平方向水平位移:S x =v o t1 2竖直位移:S y = gt2■ 22合位移:s =、-'Sx+S y,方向:tg $4.平抛运动的轨迹:抛物线;轨迹方程: yg 2x 2(y 是什么? x 又是什么?)2v o5. 几个有用的结论(1)运行时间和水平射程:水平方向和竖直方向的两个分运动既有独立性,又有等时性合速度:V = 7;7;V y方向:tg (v 为什么会变?S x所以运动时间为-■2g h即运行时间由高度h决定,与初速度v o无关.水平射程V ly V2y V oV1△ V V2⑵ 相同时间内速度改变量相等,即厶v=gAt,△ v的方向竖直向下.图 5-2-3【例题】1.证明:(一个有用的推论)平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半【例题】2. 一水平抛出的小球落到一倾角为二的斜面上时,其速度方向与斜面垂直,运动轨迹如右图中虚线所示。

小球在竖直方向下落的距离与在水平方向通过的距离之比为A.C. D . 2ta n 日四.匀速圆周运动1.匀速圆周运动(1)定义:做圆周运动的质点,若在相等的时间内通过的圆弧长度相等,叫做匀速圆周运⑵运动学特征:V大小不变,T不变,3不变,a向大小不变;V和a向的方向时刻在变.匀速即由w和h共同决定.圆周运动是变加速运动•(3)动力学特征:合外力大小恒定,方向始终指向圆心• 2.描述圆周运动的物理量 (1)线速度① 物理意义:描述质点沿圆周运动的快慢•② 方向:质点在圆弧某点的线速度方向沿圆弧该点的切线方向s③ 大小:V (s 是t 时间内通过的弧长). (2)角速度① 物理意义:描述质点绕圆心转动快慢•6② 大小: (单位rad/s),其中$是连结质点和圆心的半径在t⑶周期T 、频率f做圆周运动的物体运动一周所用的时间叫做周期 •单位:s.做圆周运动的物体在单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速.单 位:Hz.(4) V 、3、T 、f 的关系-二互二2n f ,―也-r ■Tv⑸向心加速度① 物理意义:描述线速度方向改变的快慢2“2丄 2 “22二 m — r 二 m4 f r 二 m4 n r T2③来源:向心力是按效果命名的力•可以由某个力提供,也可由几个力的合力提供 ,或由某个力的分力提供•如同步卫星的向心力由万有引力提供 ,圆锥摆摆球的向心力由重力和绳 上拉力提供(或由绳上拉力的水平分力提供).④ 匀速圆周运动的向心力就是合外力 ,而在非匀速圆周t 时间内转过的角度2V a = — = w② 大小: 224r 〒r2 2 2 2= 4~. f r = 4二③方向:总是指向圆心 3.向心力F 向①作用效果:产生向心加速度 速度的大小.•所以不论 a 的大小是否变化,它都是个变化的量•,不断改变质点的速度方向,维持质点做圆周运动,不改变 F②大小:2V 2=m mw r r 方向的分力,而合外力沿切线方向的分力改变线速度的大小4.质点做匀速圆周运动的条件 : (1) 质点具有初速度;(2) 质点受到的合外力始终与速度方向垂直 ;F< mr wF=02F> mr®运动中,向心力是合外力沿半径2F= mr wV 2⑶合外力F的大小保持不变,且F = m m -rr2 2”V 2 V 2右F :::m m . r ,质点做离心运动;若F • m ‘ r ,质点做向心运动;r r若F=0,质点沿切线做直线运动问题与方法一.绳子与杆末端速度的分解方法绳与杆问题的要点,物体运动为合运动,分解为沿绳或杆方向和垂直于绳或杆方向的分运动例题:1.如图5-1-7岸上用绳拉船,拉绳的速度是V,当绳与水平方向夹角为9时,船的速度为多大?例题:2•如图5-1-3车甲以速度求v1 : v2■小船过河问题1 •渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间d dt =—二——,显然,当r -90时,即船头的指向与河岸垂直,渡河时间最小1 船sin 二为d,合运动沿V的方向进行。

V2.位移最小若:船•:水图 5-1-v船圆周运动所需的向心力,设v 临是小球能通过最高点 的最小速度,则:结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为COST 二—■-船若V 船:::V 水,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢? 如图所示,设船头V 船与河岸成B 角。

合速度V 与河岸成a 角。

可以看出:a 角越大,船漂下的距离 X 越短,那么,在什么条件下a 角最大呢?以V 水的矢尖为圆心,V 船为半径画圆,当 V 与圆V 船相切时,a 角最大,根据COS船头与河岸的夹角应为V 水V 船v - arccos ,船沿河漂下的最短距离为:V 水问题:有没有船速等于水速时,渡河最短位移的情况【例题1】河宽d = 60m,水流速度v 1= 6m/s,小船在静水中的速度 V 2=3m/s,问:(1)要使它渡河的时间最短,则小船应如何渡河 (2 )要使它渡河的航程最短,则小船应如何渡河 ?最短时间是多少??最短的航程是多少?问题三:绳杆模型竖直平面内的圆周运动(1)绳子模型没有物体支持的小球,在竖直平面内做圆周运动过最高点:①临界条件:小球在最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力充当=(v 水- V 船 cos"此时渡河的最短位移d dv 水 s 二cosv② 能过最高点的条件:v> v 临③ 不能通过最高点的条件:v< v 临,实际上物体在到达最高点之前就脱离了圆轨道 (2)轻杆模型•有物体支持的小球在竖直平面内做圆周运动情况①临界条件:由于硬杆或管壁的支撑作用,小球能到达最高点的临界速度v 临=0,轻杆或轨道对小球的支持力:N=mg②当最高点的速度 v = .. gr 时,杆对小球的弹力为零 2N = mg — m —,而且:NJr④ 当v> gr 时,杆对小球有拉力(或管的外壁对小球有竖直向下的压力)2F = m — — mg,而且:NTr冋题四:水平面内做圆周运动的临界冋题在水平面上做圆周运动的物体, 当角速度w 变化时,物体有远离或向着圆心运动的趋势, 这时,要根据物体的受力情况,判断物体受某个力是否存在以及这个力存在时方向朝哪, 特别是一些静摩擦力,绳子的拉力等例题:1.如图所示,细绳一端系着质量为 M =0.6k g 的物体,静止在水平面上,另一端通过光滑小孔吊着质量为 m=0.3kg 的物体,M 的中点与圆孔距离 为0.2m ,并知M 和水平面的最大静摩擦力为 22现使此平面 绕中心轴转动,问角速度 3在什么范围内m 处于静止状态?(取 g=10m/s 2)3Mm图 5-3-11问题五:生活中的一些圆周运动1•水流星问题用一根绳子系着盛水的杯子,演员抡起绳子,杯子在竖直平面内做圆周运动,此即为水流星。

参照绳子模型2•火车转弯问题 3•汽车过拱形问题v mg= m — rv 临=gr 图 5-3-5③当0<v< .. gr 时,杆对小球有支持力:4•航天器中的失重现象咼考降临:例1 •如图,图甲所示,在杂技表演中,猴子沿竖直杆向上运动,其v — t图象如图乙所示。

人顶杆沿水平地面运动的s — t图象如图丙所示。

若以地面为参考系,下列说法中正确的是( )A.猴子的运动轨迹为直线B.猴子在2s内做匀变速曲线运动C.t = 0时猴子的速度大小为8m/sD.t = 2s时猴子的加速度为4m/s2例2 . 一探照灯照射在云层底面上,云层底面是与地面平行的平面,如图所示,云层底面距地面高h,探照灯以匀角速度3在竖直平面内转动,当光束转到与竖直方向夹角为0时,云层底面上光点的移动速度是( )h h -A. h,B.C. D h,tan vcos J cos r例3 .如右图所示,一根长为I的轻杆OA O端用铰链固定,另一端固定着一个小球A,轻杆靠在一个高为h的物块上。

若物块与地面摩擦不计,则当物块以速度 v向右运动至杆与水平方向夹角为0时,物块与轻杆的接触点为B,下列说法正确的是(1) A、B的线速度相同B. A、B的角速度不相同轻杆转动的角速度为畔C.D. 小球A的线速度大小为普例4 . 一小球自长为L 倾角为二的斜面底端 的正上方水平抛出如图 所示,小球恰好垂直落到斜面中点,则据此可计算 ()A. 小球在落到斜面时 的重力的功率B. 小球平抛过程重力势能 的减少量C. 小球抛出点距斜面底端的高度D. 抛出小球时小球的初动能例5 .如图所示,一长为 .2L 的木板,倾斜放置,倾角为 45°,今有一弹性小球,自与木 板上端等高 的某处自由释放,小球落到木板上反弹时,速度大小不变, 与木板夹角相等,欲使小球恰好落到木板下端,则小球释放点距木板上端 例6 •如右图所示,质量为m 的小球置于立方体 的光滑盒子中,盒子的边长略大于球 的直径。

相关文档
最新文档