数学思想方法(一)整体思想、转化思想、分类讨论思想

合集下载

高中四大数学思想方法

高中四大数学思想方法

高中四大数学思想方法高中四大数学思想方法一、数形结合思想应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数列通项及求和公式的`函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线.以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.二、分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”.应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏.如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分类标准与分类方法,再逐项进行讨论,最后进行归纳小结.常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等.分类讨论思想方法可以渗透到高中数学的各个章节,它依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.三、函数与方程思想函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决。

运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到:(1)深刻理解函数f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系.掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.四、转化与化归思想化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想.转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题.转化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中.转化有等价转化与不等价转化.等价转化后的新问题与原问题实质是一样的.不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正.应用转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化.常见的转化有:正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化。

初中数学思想方法有哪些

初中数学思想方法有哪些

初中数学思想方法有哪些1、数形结合思想:就是依据数学问题的条件和结论之间的内在联系,既分析其代数含义,又显示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

2、分类讨论的思想:在数学中,我们经常必须要依据研究对象性质的差异,分各种不同状况予以考查;这种分类思索的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

3、联系与转化的思想:事物之间是互相联系、互相制约的,是可以互相转化的。

数学学科的各部分之间也是互相联系,可以互相转化的。

4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

2方法一1.对应的思想和方法在初一代数入门教学中,有代数式求值的计算题,通过计算发现:代数式的值是由代数式里字母的取值所决定的,字母的不同取值可得不同的计算结果。

这里字母的取值与代数式的值之间就建立了一种对应关系,再如实数与数轴上的点,有序实数对与坐标平面内的点都存在对应关系在进行此类教学〔制定〕时,应注意渗透对应的思想,这样既有助于培养同学用变化的观点看问题,又助于培养同学的函数观念。

2.整体的思想和方法整体思想就是合计数学问题时,不是着眼于它的局部特征,而是把注意和和着眼点放在问题的整体结构上,通过对其全面深入的观察,从宏观整体上熟悉问题的实质,把一些彼此独立但实质上又互相紧密联系着的量作为整体来处理的思想方法。

整体思想在处理数学问题时,有广泛的应用。

3.数形结合的思想和方法数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。

著名数学家华罗庚先生说:"数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。

'这充分说明了数形结合思想在数学研究和数学应用中的重要性。

4.分类的思想和方法教材中进行分类的实例比较多,如有理数、实数、三角形、四边形等分类的教学不仅可以使同学明确分类的重要性:一是使有关的概念系统化、完整化;二是使被分概念的外延更清楚、更深入、更具体,并且还能使同学掌握分数的要点方法:3方法二1、数形结合的思想和方法在同学刚接触初中数学不久,教材中设置利用"数轴'这一图形,巩固"具有相反意义的量'的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。

常用的数学思想方法

常用的数学思想方法

常用的数学思想方法常用的数学思想方法大全在数学的学习过程中,有哪些常见的思想方法呢?下面是店铺网络整理的常见的数学思想方法以供大家学习。

常用的数学思想方法篇11、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。

数学学科的各部分之间也是相互联系,可以相互转化的。

在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。

配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。

换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。

这种思维过程通常称为“执果寻因”8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”9、演绎法:由一般到特殊的推理方法。

初中数学思想方法有哪些

初中数学思想方法有哪些

初中数学思想方法有哪些
初中数学思想方法从接受的难易程度可分为三个层次:
一是基本具体的数学方法,如配方法、换元法、待定系数法、归纳法与演绎法等;
二是科学的逻辑方法,如观察、归纳、类比、抽象概括等方法,以及分析法、综合法与反证法等逻辑方法;
三是数学思想,如数形结合的思想、函数与方程的思想、分类讨论的思想及化归与转化的思想。

例如:
1、数形结合思想。

数形结合思想就是根据数学题目所给的条件和结论之间的内在关系,即分析其代数的意义,又分析其几何的意义,把题目所展示出的数量关系与图形(画图)相结合起来,利用这样的结合,找到解题的思路,使问题得到解决。

2、分类讨论思想。

在数学中,有时候根据题目所给出的条件,可能存在各种不同的情况,这时候就需要通过分类讨论,将所有可能出现的情况整合在一起,得出最后的结果,这种分类思考的方法,是一种重要的数学思想方法,也是一种重要的解题策略。

3、换元法。

在解决题目的过程过程中,将一个或者某个字母的式子看成一个整体,用一个新的字母来表示,达到简化式子的目的。

换元法可以把一个比较复杂的式子化简,把问题归结为比原来更基本的问题,达到化繁为简、化难为易的效果。

4、配方法。

将一个式子设法构成平方式,然后再进行所需要的转化。

当在求二次函数最值问题、解决实际问题最省钱、盈利最大化等问题时,经常要用到此方法。

5、待定系数法法。

当我们所研究的数学式子具有某种特定形式时,要确定它,就需要求出式子中待定的字母的值;为此,需要把已知的条件代入到这个待定的式子中,往往会得到含待定字母的方程或者方程组,然后解这个方程或者方程组就可以使问题得到解决。

高中数学_必须掌握的六种常用的数学思想方法

高中数学_必须掌握的六种常用的数学思想方法

高中数学_必须掌握的六种常用的数学思想方法数学思想方法与数学基础知识相比较,它有较高的地位和层次。

数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。

而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。

常用数学思想方法有:1、数形结合的思想方法2、分类讨论的思想方法3、函数与方程的思想方法4、转化(化归)的思想方法5、分类讨论的思想方法6、整体的思想方法。

更多数学思维方法,请参阅《高中数学_快速解题的六种数学思维方法》。

一、数形结合的数学思想方法数学中的知识,有的本身就可以看作是数形的结合。

如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

1、导读:2、相关内容:3、再现性题组:1.如果θ是第二象限的角,且满足cos θ2-sinθ2=1-sinθ,那么θ2是_____。

A.第一象限角B.第三象限角C.可能第一象限角,也可能第三象限角D.第二象限角2.如果实数x、y满足等式(x-2)2+y2=3,那么yx的最大值是_____。

A. 12B.33C.32D. 34、巩固性题组:1.已知5x+12y=60,则x y22+的最小值是_____。

A. 6013 B. 135C. 1312D. 12.方程2x=x2+2x+1的实数解的个数是_____。

A. 1B. 2C. 3D.以上都不对3.方程x=10sinx的实根的个数是_______。

二、分类讨论的数学思想方法①问题所涉及到的数学概念是分类进行定义的。

如|a|的定义分a>0、a=0、a<0三种情况。

这种分类讨论题型可以称为概念型。

②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。

三角形问题中的数学思想方法

三角形问题中的数学思想方法

三角形问题中的数学思想方法数学思想和方法是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识、技能的灵魂.因此,在解三角形题过程中准确快捷的关键是正确运用数学思想方法.这里对三角形解题时常用的分类讨论思想、整体思想、方程思想、转化思想、数形结合思想等举例予以说明,以供同学们学习参考应用.一、分类讨论思想由于题目的约束较弱(条件趋一般)或图形位置的变化常常使同一问题具有多种形态,因而有必要考查全面(所有不同情况)才能把握问题的实质.此种情况下应当进行适当分类,就每种情形研究讨论结论的正确性.例1 在等腰三角形中,一腰上的中线把它的周长分为15cm 和6cm 两部分,求三角形各边的长.分析:要注意等腰三角形有两边相等, 一腰上的中线把它的腰分成的两段相等.由于问题中未指明哪一段为15cm ,哪一段为6cm ,故需分类讨论.解:设腰长为xcm ,底边为ycm ,即AB=x ,则AD=CD=21x ,BC=y ⑴ 若x+21x=6时,则y+21x=15. 由x+21x=6得x=4.把x=4代入y+21x=15得y=13. 因为4+4<13,所以不能构成三角形. ⑵ 若x+21x=15时,则y+21x=6. 由x+21x=15得x=10.把x=10代入y+21x=15得y=1. 10+1>10符合题意, 所以三角形三边分别为10cm 、10cm 、1cm.例2 已知非直角三角形ABC 中,∠A=45°,高BD 和CE 所在直线交于H ,求∠BHC 的度数.分析:三角形的形状不同,高的交点的位置也就不同.高的交点可能在三角形内部,也可能在三角形外部,故应分两种情况加以讨论.解:⑴当△ABC 为锐角三角形时(图2)∵BD 、CE 是△ABC 的高, ∠A=45°, ∴∠ADB=∠BEH=90°. 在△ABD 中, ∠ABD=180°-90°-45°=45°.图1图2ABC D H E∵∠BHC 是△BHE 的外角, ∴∠BHC=90°+45°=135°. ⑵当△ABC 为钝角三角形时(图3)∵H 是△ABC 两条高所在直线的交点 ∠A=45°, ∴∠ABD=180°-90°-45°=45°.在Rt △BEH 中, ∠BHC=180°-90°-45°=45°. ∴∠BHC 的度数是135°或45°.注意:涉及三角形高的问题,常常会因为高的位置而需要讨论,否则就会漏解. 二、整体思想研究某些数学问题时,往往不是以问题的某个组成部分为着眼点,而是将待解决的问题看作一个整体,通过研究问题的整体形式,整体结构做整体处理后,达到解决问题的目的.例3 如图4,求∠A+∠B+∠C+∠D+∠E+∠F+∠G 的度数.分析:观察图形可得,图由一个四边形和一个三角形构成,可根据四边形和三角形的内角和定理求度数之和.解:因为∠A +∠C+∠E=180°, 又因为∠B+∠D+∠F+∠G=360°,所以∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.剖析:例题中若直接求出每一角的度数再求其和显然是做不到的.因此,设法整体求值是解题的关键.事实上,有些数学问题,如果从局部去考虑,拘泥于常规,则举步维艰.如果从全局着手,突破常规,则会柳暗花明.三、方程思想求值时,当问题不能直接求出时,一般需要设未知数继之建立方程.用解方程的方法求出结果,这也是解题中常见的具有导向作用的一种思想.例4 如图5,在△ABC 中,∠B =∠C ,∠1=∠2,∠BAD=40°.求∠EDC. 分析:利用三角形的外角性质,设法建立关于∠EDC 的方程. 解:设∠EDC=x.因为∠1是△DEC 的外角,所以∠1=x+∠C. 又因为∠1=∠2,所以∠2=x+∠C.又因为∠2是△ABD 的外角,所以∠ADC=∠B+∠BAD. 所以∠B+∠BAD =∠2+x ,即∠B+40°=∠C+2x. 因为∠B =∠C ,所以2x=40°,解得x=20°.A BDHCE图3图5AEGFB CD图4剖析:方程是解决很多数学问题的重要工具,很多数学问题可以通过构造方程而获解.事实上,用设未知数的方法表示所求,可使计算过程书写简便,也易于表明角与角之间的关系.四、转化思想用简单、已学过的知识解决复杂、未知的知识,把复杂的问题转化为简单的问题,将陌生的问题转化为熟悉的问题来解.这种解题思想叫转化思想.例5 如图6,求五角星各顶角之和.分析:因为∠A 、∠B 、∠C 、∠D 、∠E 较分散,本例中又不 知其度数,因此,应设法将它们集中起来,将问题转化为三角形 来处理.根据三角形外角性质和内角和定理可以求解.解:因为∠1=∠C+∠E ,∠2=∠B+∠D ,又因为∠1+∠2+∠A=180°,所以∠A+∠B+∠C+∠D+∠E=180°.点拨:此题还可以连接CD 求解.当我们求多个角之和不能直接计算时,应考虑转化为三角形求解.五、数形结合思想例6 如图7,在△ABC 中,已知AD 是角平分线, ∠B=60°,∠C=45°,求∠ADB 和∠ADC 的度数.分析:在△ABD 中,∠ADB 是一个内角,它等于180°-∠B -∠BAD ,故求出∠BAD 即可求出∠ADB 的度数,这由已知条件不难求得;同理可求出∠ADC 的度数.解:在△ABC 中,∵∠B=60°, ∠C=45°, ∠B+∠C+∠BAC=180°, ∴∠BAC=180°-∠B -∠C=180°-60°-45°=75°. 又∵AD 是角平分线, ∴∠BAD=∠DAC=21∠BAC=37.5°. 在△ABD 中,∠ADB=180°-∠B -∠BAD=180°-60°-37.5°=82.5°. 同理∠ADC=180°-∠C -∠DAC=180°-45°-37.5°=97.5°.点拨:几何与代数是患难兄弟,密不可分.在求解几何题中,通常数与形要结合起来才能打开思路,进行运算.否则,一头舞水,扑朔迷离,茫然不知所措.图6A D 图7数学思想方法在三角形中的应用一、方程思想方法:例1、已知:等腰三角形的周长是24cm ,腰长是底边长的2倍,求腰长.分析:根据等腰三角形的周长=腰长+腰长+底边长和腰长是底边长的2倍,可设一腰长的长为xcm ,可列方程为x +2x +2x =24,解之即可.解:(1)设底边长x cm ,则腰长为2x cm x +2x +2x =24 x =4.8∴腰长=2x =2×4.8=9.6 (cm)点拨:用设未知数,找相等关系,列方程来解,体现了几何问题用代数方法解和方程思想.二、分类讨论的思想方法:例2、已知斜三角形ABC 中,∠A=45°,高BD 和CE 所在直线交于H ,求∠BHC 的度数.分析:三角形的形状不同,高的交点的位置也就不同,斜三角形包括锐角三角形和钝角三角形,故应分两种情况讨论.图1ACD解:∵△ABC 为斜三角形,∴△ABC 可能是锐角三角形,也可能是钝角三角形, (1) 当△ABC 为锐角三角形时(如图1), ∵BD 、CE 是△ABC 的高,∠A=45°, ∴∠ADB=∠BEH=90°,∴∠ABD=90°-45°=45°,∴∠BHC=∠ABH+∠BEH=45°+90°=135°.(2)当△ABC为钝角三角形时(如图2),H为△ABC的两条高所在直线的交点,∠A=45°,∴∠ABD=90°-45°=45°,在Rt△EBH中,∠BHC= 90°-∠ABD=90°-45°=45°.综上所述,∠BHC的度数是135°或45°.点拨:当问题出现的结果不唯一时,我们就需要分不同的情况来解决,这就是分类的思想.此类问题的出现,往往会被同学们忽视,或考虑不全面,希望大家在平时就要养成分类解析的习惯.本题易犯的错误是只考虑锐角三角形的情况,而造成解答不全面的错误.三、转化的数学思想方法:例3、如图3,已知五角星形的顶点分别为A、B、C、D、E,请你求出∠A+∠B+∠C+∠D+∠E的度数.分析:直接求这五个角的度数和显然比较难,又考虑到此图中提供的角应与三角形有关,我们应该想办法将这几个角转化成三角形的内角,然后利用三角形的内角和定理求解.解法一:∵∠1是△CEM的外角,∴∠1=∠C+∠E,∵∠2是△BDN的外角,∴∠1=∠B+∠D.在△AMN中,由三角形内角和定理,得∠A+∠1+∠2=180°,∴∠A+∠B+∠C+∠D+∠E=180°.解法二:如图4,连结CD,在△BOE和△COD中,∠5=∠6,∵∠3+∠4+∠6=∠B+∠E+∠5=180°,∴∠3+∠4=∠B+∠E.在△ACD中,∠A+∠ACE+∠ADC=180°,∴∠A+∠ACE+∠ADC+∠3+∠4+∠ADB=180°,∴∠A+∠B+∠C+∠D+∠E=180°.点拨:在遇到不熟悉的数学问题时,要善于研究分析该问题的结构,通过“拼”、“拆”、“合”、“分”等方法将之转化为熟悉问题来解决.这种将不熟悉的数学问题转化为熟悉的数学问题来解决,这就是转化的思想.在运用三角形知识解决有关问题时,通过添加辅助线将一般图形转化为三角形来解决是常用解答方法之一.。

初中数学思想方法大全.pdf

初中数学思想方法大全.pdf

一、宏观型思想方法数学思想是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识、技能的灵魂。

(一)、转化(化归)思想解决数学问题就是一个不断转化的过程,把问题进行变换,使之化繁为简、化难为易、化生疏为熟悉,变未知为已知,从而使问题得以解决。

不是对原来的问题直接解答,而是想方设法对它进行变形,直到把它转化成某个(某几个)已经解决了的问题为止。

通过转化可使原条件中隐含的因素显露出来,从而缩短已知条件和结论之间的距离,找出它们之间内在的联系,以便应用有关方法将问题解决。

“转化”的思想是一种最基本的数学思想。

数学解题过程的实质就是转化过程,具体的说,就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“抽象”转化为“具体”,把“复杂问题”转化为“简单问题”,把“高次”转化为“低次”,在不断的相互转化中使问题得到解决。

可运用联想类比实现转化、利用“换元”、“添线”、消元法,配方法,进行构造变形实现转化、数形结合,实现转化。

一般转化为特殊,有些代数问题,通过构造图形,化抽象为具体,借助直观启发思维,转化为易解的几何问题。

有些不易解决的几何题通过辅助线转化为代数三角的知识来证明,有些结构比较复杂的问题,可以简化题中某一条件,甚至暂时撇开不顾,先考虑一个简化的问题,这种简化题对于证明原题常常能起到引路的作用。

把实际问题转化为数学问题。

结合解题进行化归思想方法的训练的做法:a、化繁为简;b、化高维为低维;c、化抽象为具体;d、化非规范性问题为规范性问题;e、化数为形;f、化实际问题为数学问题;g、化综合为单一;h、化一般为特殊。

有加减法的转化,乘除法的转化,乘方与开方的转化,添辅助线,设辅助元等等都是实现转化的具体手段。

因此,首先要认识到常用的很多数学方法实质就是转化的方法应用:A将未知向已知转化;B将陌生向熟知转化;C方程之间的转化;D平面图形间的转化;E空间图形与平面图形的转化;F统计图之间的相互转化。

高中数学思想与逻辑:11种数学思想方法总结与例题讲解

高中数学思想与逻辑:11种数学思想方法总结与例题讲解

高中数学思想与逻辑:11种数学思想方法总结与例题讲解高中数学转化化归思想与逻辑划分思想例题讲解在转化过程中,应遵循三个原则:1、熟悉化原则,即将陌生的问题转化为熟悉的问题;2、简单化原则,即将复杂问题转化为简单问题;3、直观化原则,即将抽象总是具体化.策略一:正向向逆向转化一个命题的题设和结论是因果关系的辨证统一,解题时,如果从下面入手思维受阻,不妨从它的正面出发,逆向思维,往往会另有捷径.例1 :四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不共面的取法共有__________种.A、150B、147C、144D、141分析:本题正面入手,情况复杂,若从反面去考虑,先求四点共面的取法总数再用补集思想,就简单多了.10个点中任取4个点取法有种,其中面ABC内的6个点中任取4点都共面有种,同理其余3个面内也有种,又,每条棱与相对棱中点共面也有6种,各棱中点4点共面的有3种,不共面取法有种,应选(D).策略二:局部向整体的转化从局部入手,按部就班地分析问题,是常用思维方法,但对较复杂的数学问题却需要从总体上去把握事物,不纠缠细节,从系统中去分析问题,不单打独斗.例2:一个四面体所有棱长都是,四个顶点在同一球面上,则此球表面积为( )A、 B、 C、 D、分析:若利用正四面体外接球的性质,构造直角三角形去求解,过程冗长,容易出错,但把正四面体补形成正方体,那么正四面体,正方体的中心与其外接球的球心共一点,因为正四面体棱长为,所以正方体棱长为1,从而外接球半径为,应选(A).策略三:未知向已知转化又称类比转化,它是一种培养知识迁移能力的重要学习方法,解题中,若能抓住题目中已知关键信息,锁定相似性,巧妙进行类比转换,答案就会应运而生.例3:在等差数列中,若,则有等式( 成立,类比上述性质,在等比数列中,,则有等式_________成立.分析:等差数列中,,必有,故有类比等比数列,因为,故成立.二、逻辑划分思想例题1、已知集合 A= ,B= ,若B A,求实数 a 取值的集合.解 A= :分两种情况讨论(1)B=¢,此时a=0;(2)B为一元集合,B= ,此时又分两种情况讨论:(i) B={-1},则 =-1,a=-1(ii)B={1},则 =1, a=1.(二级分类)综合上述所求集合为 .例题2、设函数f(x)=ax -2x+2,对于满足1≤x≤4的一切x值都有f(x)≥ 0,求实数a的取值范围.例题3、已知,试比较的大小.【分析】于是可以知道解本题必须分类讨论,其划分点为 .小结:分类讨论的一般步骤:(1)明确讨论对象及对象的范围P.(即对哪一个参数进行讨论);(2)确定分类标准,将P进行合理分类,标准统一、不重不漏,不越级讨论.;(3)逐类讨论,获取阶段性结果.(化整为零,各个击破);(4)归纳小结,综合得出结论.(主元求并,副元分类作答).十一种数学思想方法总结与详解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年中考数学二轮复习精品资料
数学思想方法(一)
(整体思想、转化思想、分类讨论思想)
一、中考专题诠释
数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。

数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。

数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。

抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲
数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。

三、中考考点精讲
考点一:整体思想
整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。

整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。

例1 (2013•吉林)若a-2b=3,则2a-4b-5= .
思路分析:把所求代数式转化为含有(a-2b)形式的代数式,然后将a-2b=3整体代入并求值即可.
解:2a-4b-5=2(a-2b)-5=2×3-5=1.
故答案是:1.
点评:本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a-2b)的值,然后利用“整体代入法”求代数式的值.
对应训练
1.(2013•福州)已知实数a,b满足a+b=2,a-b=5,则(a+b)3•(a-b)3的值是.
1.1000
考点二:转化思想
转化思想是解决数学问题的一种最基本的数学思想。

在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。

转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。

对应训练
考点三:分类讨论思想
在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。

分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。

分类的原则:(1)分类中的每一部分是相互
独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏. 例3 (2013•山西)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y (元)与印刷份数x (份)之间的关系如图所示:
(1)填空:甲种收费的函数关系式是 .
乙种收费的函数关系式是 .
(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?
思路分析:(1)设甲种收费的函数关系式y 1=kx+b ,乙种收费的函数关系式是y 2=k 1x ,直接运用待定系数法就可以求出结论;
(2)由(1)的解析式分三种情况进行讨论,当y 1>y 2时,当y 1=y 2时,当y 1<y 2时分别求出x 的取值范围就可以得出选择方式.
解:(1)设甲种收费的函数关系式y 1=kx+b ,乙种收费的函数关系式是y 2=k 1x ,由题意,得
616100b k b
=⎧⎨=+⎩,12=100k 1, 解得:0.16k b =⎧⎨=⎩
,k 1=0.12, ∴y 1=0.1x+6,y 2=0.12x ;
(2)由题意,得
当y 1>y 2时,0.1x+6>0.12x ,得x <300;
当y 1=y 2时,0.1x+6=0.12x ,得x=300;
当y 1<y 2时,0.1x+6<0.12x ,得x >300;
∴当100≤x <300时,选择乙种方式合算;
当x=100时,甲乙两种方式一样合算;
当300<x≤4500时,选择甲种方式合算.
故答案为:y 1=0.1x+6,y 2=0.12x .
点评:本题考查待定系数法求一次函数的解析式的运用,运用函数的解析式解答方案设计的运用,解答时求出函数解析式是关键,分类讨论设计方案是难点.
对应训练
3.(2013•牡丹江)某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过105700元购进40台电脑,其中A 型电脑每台进价2500元,B 型电脑每台进价2800元,A 型每台售价3000元,B 型每台售价3200元,预计销售额不低于123200元.设A 型电脑购进x 台、商场的总利润为y (元).
(1)请你设计出进货方案;
(2)求出总利润y (元)与购进A 型电脑x (台)的函数关系式,并利用关系式说明哪种方案的利润最大,最大利润是多少元?
(3)商场准备拿出(2)中的最大利润的一部分再次购进A 型和B 型电脑至少各两台,另一部分为地震灾区购买单价为500元的帐篷若干顶.在钱用尽三样都购买的前提下请直接写出购买A 型电脑、B 型电脑和帐篷的方案.
3.解:(1)设A 型电脑购进x 台,则B 型电脑购进(40-x )台,由题意,得
25002800(40-)10570030003200(40-)123200
x x x x +≤⎧⎨+≥⎩, 解得:21≤x≤24,
∵x 为整数,
∴x=21,22,23,24
∴有4种购买方案:
方案1:购A 型电脑21台,B 型电脑19台;
方案2:购A 型电脑22台,B 型电脑18台;
方案3:购A 型电脑23台,B 型电脑17台;
方案4:购A 型电脑24台,B 型电脑16台;
(2)由题意,得
y=(3000-2500)x+(3200-2800)(40-x ),
=500x+16000-400x ,
=100x+16000.
∵k=100>0,
四、中考真题演练
一、选择题
1.(2013•杭州)若a+b=3,a-b=7,则ab=()
A.-10 B.-40 C.10 D.40
1.A
2.(2013•黄冈)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()
A.πB.4πC.π或4πD.2π或4π
2.C
3.(2013•达州)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所
A .2
B .3
C .4
D .5
3.B
4.(2013•齐齐哈尔)CD 是⊙O 的一条弦,作直径AB ,使AB ⊥CD ,垂足为E ,若AB=10,CD=8,则BE 的长是( )
A .8
B .2
C .2或8
D .3或7 4.C
5.(2013•泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( )
A .2cm
B .4
C .2cm 或
D .2cm 或45.C
6.(2013•钦州)等腰三角形的一个角是80°,则它顶角的度数是( )
A .80°
B .80°或20°
C .80°或50°
D .20° 6.B
7.(2013•新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
A .12
B .15
C .12或15
D .18 7.B
8.(2013•荆州)如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB′C′,点B 经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )
A .2π
B .3π
C .4π
D .π
8.A
二、填空题
12.
13
13.0或1
19.(0)或(0)
20.(2013•凉山州)如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(10,0),(0,
4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为 .
25.5
26.(2013•天门)如图,正方形ABCD的对角线相交于点O,正三角形OEF绕点O旋转.在旋转过程中,当AE=BF时,∠AOE的大小是.
26.15°或165°
三、解答题
27.(2013•湖州)某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间函数关系如图②所示.
(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是元,小张应得的工资总额是元,此时,小李种植水果亩,小李应得的报酬是元;
(2)当10<n≤30时,求z与n之间的函数关系式;
(3)设农庄支付给小张和小李的总费用为w(元),当10<m≤30时,求w与m之间的函数关系式.
的取值范围.。

相关文档
最新文档