第六讲:非线性分析

第六讲:非线性分析
第六讲:非线性分析

第六讲
王慎平
非线性分析
北京怡格明思工程技术有限公司
北京怡格明思工程技术有限公司
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/871117428.html,
Innovating through simulation

25
非线性有限元分析
结构的非线性问题就是指结构的刚度随其变形而改变。所有的物理结构 都是非线性的,而线性分析只是一种方便的近似,这对一些简单设计来 说通常是精确的,但显然对许多结构模拟是不够的,诸如加工过程的模 拟,锻造过程,冲压,压溃分析和橡胶问题等的分析。 由于刚度依赖位移,所以不能再用初始柔度(将刚度阵集成并求逆即可 得到柔度阵)乘以所加载荷的方法来计算任何载荷作用下的位移。在非 线性分析中,结构的刚度阵在分析过程中必须进行多次的集成和求逆, 这就使得非线性分析求解比线性分析要昂贵得多。
北京怡格明思工程技术有限公司
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/871117428.html,
Innovating through simulation

26
非线性的来源与一般解法
1. 材料非线性
非线性弹性 弹塑性 超弹性 粘弹性与粘塑性
北京怡格明思工程技术有限公司
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/871117428.html,
Innovating through simulation

27
2. 几何非线性
大偏转或变形; 大扭曲; 结构不稳定性 (屈曲) 预紧力效应
北京怡格明思工程技术有限公司
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/871117428.html,
Innovating through simulation

28
3. 边界非线性
两个物体的接触边界随加载和变形而 改变引起的接触非线性(其中包含有 摩擦接触和无摩擦接触);
北京怡格明思工程技术有限公司
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/871117428.html,
Innovating through simulation

31
求解非线性问题主要有两种方法
隐式方法 能够求解静态和动态方程; 需要求解一组矩阵方程以便获得增量步结束时的状态; 需要进行多次迭代; ABAQUS/standard应用该方法求解非线性问题; 显式方法 只能求解动态平衡方程; 可以用来求解准静态问题; 下一步的分析只依赖于上一步分析结束时的结果; 不需要进行迭代求解; ABAQUS/Explicit应用显式方法求解;
北京怡格明思工程技术有限公司
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/871117428.html,
Innovating through simulation

求解平衡方程
典型的非线性问题具有所有三种形式的非线性。 ? 在方程中必须包括非线性项。 ? 一般的,每个自由度的非线性方程是耦合的。 静态平衡的基本表达式为:由单元应力引起的加在节点上的内力, I,与外力, P ,必须平衡,即:
P (u ) ? I (u ) = 0
(Eq. 3.1)
北京怡格明思工程技术有限公司
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/871117428.html,
Innovating through simulation

? 牛顿-拉普森求解技术 ? 第一次迭代 (i=1) 假定前面收敛增量步的解u0, P0 ,为已知的。 在当前增量步中,将一个小的增 量?P,载荷施加到结构上。 ABAQUS基于u0处的切线刚度K0 确定位移修正c1 ; ABAQUS更新模型的状态为u1 ,形成K1 并计算 I1 。 总载荷PTOTAL与内力 I1的差称为残差, R1= PTOTAL- I1. 如果 R1 在模型的每个自由度上都非常小 (在容差范围之内),结构就是 平衡的。 l默认的容差R1必须小于在整个时间段上作用于结构上的平均力的 0.5%。 lABAQUS自动计算这个在空间和时间上的平均力。 如果迭代不能得到收敛的解,ABAQUS执行另外的迭代,以找到收敛的 解。 北京怡格明思工程技术有限公司 Innovating through simulation
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/871117428.html,

? 第二次迭代 (i=2) 基于更新的刚度K1 ,计算新的 位移纠正 c2,并且
I1 : K1c2 = PTOTAL ? I1.
把新的残差R2与容差进行比较, 察看在u2 处是否得到收敛解, 。
北京怡格明思工程技术有限公司
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/871117428.html,
Innovating through simulation

该过程将一直重复,直到力的残差在允许的容差之内。每次迭代i需要: 1. 形成切线刚度Ki。 2. 求解系统方程组,得到位移修正ci+1 。 ? 修正位移的估计值: ui+1 = ui + ci+1。 3. 基于ui+1 计算内力向量Ii+1。 4. 进行平衡收敛判断: ? 是否Ri+1 在容差之内?
# iter
? 是否 ci +1 <<
∑c ?
j j =1
北京怡格明思工程技术有限公司
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/871117428.html,
Innovating through simulation

一般的,每个分析 步(?STEP)需要几 个增量步。
北京怡格明思工程技术有限公司
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/871117428.html,
Innovating through simulation

非线性输入文件
北京怡格明思工程技术有限公司
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/871117428.html,
Innovating through simulation

非线性输入文件
*HEADING CANTILEVER BEAM EXAMPLE--LARGE DISPLACEMENT *NODE 1, 0., 0. 11, 200., 0. *NGEN 1, 11, 1 *ELEMENT, TYPE=B21 1, 1, 3 *ELGEN, ELSET=BEAMS 1, 5, 2, 1 *BEAM SECTION, SECTION=RECT, ELSET=BEAMS, MATERIAL=MAT1 50., 5. *MATERIAL, NAME=MAT1 *ELASTIC 2.E5, .3 *BOUNDARY 1, 1, 6 *AMPLITUDE, NAME=RAMP 0.0, 0.0, 0.5, 0.3, 1.0, 1.0
北京怡格明思工程技术有限公司
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/871117428.html,
Innovating through simulation

非线性输入文件
*RESTART, WRITE,FREQ=3
分析步的时间 周期 建议的初始时间 增量 和线性输入的主 要不同
*STEP, NLGEOM,INC=25 APPLY POINT LOAD *STATIC
最大时间增量 最小时间增量
0.1, 1.0, 0.001, 1.0 *CLOAD, AMPLITUDE=RAMP
先前定义的载荷幅值 函数 和线性输入主要的 不同
11, 2, -1200. *NODE PRINT, FREQ=1 U, RF *EL PRINT, FREQ=10 S, E *NODE FILE, FREQ=5 U *END STEP
北京怡格明思工程技术有限公司
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/871117428.html,
Innovating through simulation

非线性输入文件
? 分析步和过程输入 *STEP, NLGEOM, INC=25 NLGEOM: 包括所有由以下原因引起的几何非线性效应: ? 大挠度、大旋转、大变形。 ? 预载荷(初始应力)。 ? 载荷刚度。 如果上面列出的项不重要,应用NLGEOM选项得到的结果同没有应用 NLGEOM选项得到的结果类似,但是求解的费用更高。 INC=25: 在本例中允许的最大增量为25: ? 如果在施加全部载荷之前达到了最大增量数量,程序将会中止。 ? 保证程序的运行时间不会太长—用户可以重新启动分析。 ? 默认值为100。
北京怡格明思工程技术有限公司
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/871117428.html,
Innovating through simulation

非线性悬臂梁分析的输出
? 状态(.sta) 文件 总结分析的过程—显示计算过程中使用的自动时间增量。 在作业运行的同时,可以检查状态文件。 在每个成功的增量之后,记录一行。
SUMMARY OF JOB INFORMATION: STEP INC ATT SEVERE EQUIL TOTAL DISCON ITERS ITERS ITERS 1 1 1 1 1 1 1 2 3 4 5 6 1 1 1 1 1 1 0 0 0 0 0 0 3 2 2 2 3 2 3 2 2 2 3 2
TOTAL TIME/ FREQ 0.100 0.200 0.350 0.575 0.913 1.00
STEP TIME/LPF
INC OF TIME/LPF
DOF IF MONITOR RIKS
0.100 0.200 0.350 0.575 0.913 1.00
0.1000 0.1000 0.1500 0.2250 0.3375 0.08750
北京怡格明思工程技术有限公司
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/871117428.html,
Innovating through simulation

非线性悬臂梁分析的输出
? 自动的时间增量 试探算法(基于多年的经验)控制时间积分的精度。 在静力学分析中,基于迭代次数达到收敛。 ? 容易得到收敛解(比最大允许迭代数量少很多): ?增加迭代步长 ? 不容易收敛或发散: ?减小增量步长 ? 否则: ?保持同样的增量步长 自动的时间增量步长控制工作很好。如果没有特殊的原因,用户不要改变它。 提示: 对于高度非线性问题,推荐初始的时间增量为总时间增量的一小部 分(比如10%)。
北京怡格明思工程技术有限公司
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/871117428.html,
Innovating through simulation

非线性悬臂梁分析的输出
? 信息 (.msg) 文件 包括: ? 所有的收敛控制: – 利用?CONTROLS选项覆盖默认值—不是经常需要 ? 关于具体模型特征的细节: – 非默认模型特征 – 使用NLGEOM参数 – 重启动文件的写出频率 ? 所有的迭代细节
北京怡格明思工程技术有限公司
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/871117428.html,
Innovating through simulation

74
常见的收敛性问题
单元扭曲 ( Element distortion) 当一个单元在某一积分点的体积变为负值时,会
提示该信息。检查属性、载荷、边界条件,一般来说需要对网格进行细化;
过度屈服 ( Excessive yielding )在一个大变形问题中,如果材料属性包含一定 的塑性,会出现该信息。检查载荷(是否过载?),材料定义或者对网 格进行细化; 沙漏问题 ( Hourglassing ) 在应用一次减缩积分单元时产生的非物理变形。
如果伪沙漏刚度过大,可以采用细化网格或者应用其他类型的单元类型 (可以应用一次全积分单元或者二次单元);
北京怡格明思工程技术有限公司
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/871117428.html,
Innovating through simulation

75
某些在ABAQUS/Standard出现的收敛性问题
数值奇异( Numerical singularities ) 这个信息通常说明在一个线性方程求解中丢失了太多的数据信息,所 得到的分析结果是不可靠的。最可能的原因是在进行静态应力分析时 对刚体没有进行约束;
零 pivots( Zero pivots )
最可能的原因是存在未约束的刚体和过约束的自由度; 负特征值 ( Negative eigenvalues ) 负特征值一般说明刚度矩阵不一定是正值。
北京怡格明思工程技术有限公司
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/871117428.html,
Innovating through simulation

ansys非线性分析指南

ANSYS 非线性分析指南(1) 基本过程 第一章结构静力分析 1. 1 结构分析概述 结构分析的定义: 结构分析是有限元分析方法最常用的一个应用领域。结构这个术语是一个广义的概念,它包括土木工程结构,如桥梁和建筑物;汽车结构,如车身、骨架;海洋结构,如船舶结构;航空结构,如飞机机身、机翼等,同时还包括机械零部件,如活塞传动轴等等。 在ANSYS 产品家族中有七种结构分析的类型,结构分析中计算得出的基 本未知量- 节点自由度,是位移;其他的一些未知量,如应变、应力和反力, 可通过节点位移导出。 七种结构分析的类型分别是: a. 静力分析- 用于求解静力载荷作用下结构的位移和应力等。静力分析 包括线性和非线性分析。而非线性分析涉及塑性、应力刚化、大变形、大应变、超弹性、接触面和蠕变,等。 b. 模态分析- 用于计算结构的固有频率和模态。 c. 谐波分析- 用于确定结构在随时间正弦变化的载荷作用下的响应。 d. 瞬态动力分析- 用于计算结构在随时间任意变化的载荷作用下的响应,并且可计及上述提到的静力分析中所有的非线性性质。 e. 谱分析- 是模态分析的应用拓广,用于计算由于响应谱或PSD 输入 随机振动引起的应力和应变。 f. 屈曲分析- 用于计算屈曲载荷和确定屈曲模态,ANSYS 可进行线性特征值和非线性屈曲分析。 g. 显式动力分析- ANSYS/LS-DYNA可用于计算高度非线性动力学和复 杂的接触问题。 除了前面提到的七种分析类型,还有如下特殊的分析应用: ? 断裂力学 ? 复合材料 ? 疲劳分析

? p-Method 结构分析所用的单元:绝大多数的ANSYS 单元类型可用于结构分析。单元类型从简单的杆单元和梁单元一直到较为复杂的层合壳单元和大应变实体单元 1.2 结构线性静力分析 静力分析的定义: 静力分析计算在固定不变的载荷作用下结构的响应。它不考虑惯性和阻尼的影响,如结构受随时间变化载荷的情况。可是静力分析可以计算那些固定不变的惯性载荷对结构的影响,如重力和离心力;以及那些可以近似为等价静力作用的随时间变化载荷,如通常在许多建筑规范中所定义的等价静力风载和地震载荷。 静力分析中的载荷: 静力分析用于计算由那些不包括惯性和阻尼效应的载荷作用于结构或部件上引起的位移、应力、应变和力。固定不变的载荷和响应是一种假定,即假定载荷和结构的响应随时间的变化非常缓慢,静力分析所施加的载荷包括: ? - 外部施加的作用力和压力 ? - 稳态的惯性力如中力和离心力 ? - 位移载荷 ? - 温度载荷 线性静力分析和非线性静力分析 静力分析既可以是线性的也可以是非线性的。非线性静力分析包括所有的非线性类型:大变形、塑性、蠕变、应力刚化、接触、间隙单元、超弹性单元等,本节主要讨论线性静力分析,非线性静力分析在下一节中介绍。 线性静力分析的求解步骤 1 建模 2 施加载荷和边界条件求解 3 结果评价和分析

非线性结构分析word版

目录 非线性结构分析的定义 (1) 非线性行为的原因 (1) 非线性分析的重要信息 (3) 非线性分析中使用的命令 (8) 非线性分析步骤综述 (8) 第一步:建模 (9) 第二步:加载且得到解 (9) 第三步:考察结果 (16) 非线性分析例题(GUI方法) (20) 第一步:设置分析标题 (21) 第二步:定义单元类型 (21) 第三步:定义材料性质 (22) 第四步:定义双线性各向同性强化数据表 (22) 第五步:产生矩形 (22) 第六步:设置单元尺寸 (23) 第七步:划分网格 (23) 第八步:定义分析类型和选项 (23) 第九步:定义初始速度 (24) 第十步:施加约束 (24) 第十一步:设置载荷步选项 (24) 第十二步:求解 (25) 第十三步:确定柱体的应变 (25) 第十四步:画等值线 (26) 第十五步:用Post26定义变量 (26) 第十六步:计算随时间变化的速度 (26) 非线性分析例题(命令流方法) (27) 非线性结构分析

非线性结构的定义 在日常生活中,会经常遇到结构非线性。例如,无论何时用钉书针钉书,金属钉书钉将永久地弯曲成一个不同的形状。(看图1─1(a))如果你在一个木 架上放置重物,随着时间的迁移它将越来越下垂。(看图1─1(b))。当在 汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的啬而变化。(看图1─1(c))如果将上面例子所载荷变形曲线画出来,你将发现它们都显 示了非线性结构的基本特征--变化的结构刚性. 图1─1 非线性结构行为的普通例子 非线性行为的原因 引起结构非线性的原因很多,它可以被分成三种主要类型: 状态变化(包括接触) 许多普通结构的表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的。轴承套可能是接触的,也可能是不接触的, 冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变在不同的值之间突然变化。状态改变也许和载荷直接有关(如在电缆情况中),

ANSYS结构非线性分析指南连载四

ANSYS结构非线性分析指南连载四--第四章材料非线性分析 (二) (2014-04-27 10:47:15) 转载▼ 标签: it 4.3 超弹性分析 4.3.1 超弹理论 4.3.1.1 超弹的定义 一般工程材料(例如金属)的应力状态由一条弹塑性响应曲线来描述,而超弹性材料存在一个弹性势能函数,该函数是一个应变或变形张量的标量函数,而该标量函数对应变分量的导数就是相应的应力分量。 上式中:[S]=第二皮奥拉-克希霍夫应力张量 W=单位体积的应变能函数 [E]=拉格朗日应变张量 拉格朗日应变可以由下式表达:[E]=1/2([C]-I) 其中:[I]是单位矩阵,[C]是有柯西-格林应变张量 其中[F]是变形梯度张量,其表达式为: x:变形后的节点位置矢量 X:初始的节点位置矢量 如果使用主拉伸方向作为变形梯度张量和柯西-格林变形张量的方向,则有: 其中: J=初始位置与最后位置的体积比 材料在第i个方向的拉伸率 在ANSYS程序中,我们假定超弹材料是各向同性的,在每个方向都有完全相同的材料特性,在这种情况下,我们既可以根据应变不变量写出应变能密度函数,也可以根据主拉伸率写出应变能密度函数。 应变不变量是一种与坐标系无关的应变表示法。使用它们就意味着材料被假定是各向同性的。Mooney -Rivlin和Blatz-Ko应变能密度函数都可以用应变不变量表示,应变不变量可以柯西-格林应变张量和主拉伸率表示出来:

一个根据应量不变量写出来的应变能密度函数如下: 为材料常数,上式是两个常数的Mooney-Rivlin应变能密度函数。 超弹材料可以承受十分大的弹性变形,百分之几百的应变是很普遍的,既然是纯弹性应变,因此超弹性材料的变形是保守行为,与加载路径无关。 4.3.1.2 不可压缩缩性 大多数超弹材料,特别是橡胶和橡胶类材料,都是几乎不可压缩的,泊松比接近于0.5,不可压缩材料在静水压力下不产生变形,几乎不可压缩材料的泊松比一般在0.48至0.5之间(不包含0.5),对这些材料,在单元公式中必须考虑不可压缩条件。在ANSYS程序中,不可压缩超弹单元修改了应变能密度函数,在单元中明确地包含了压力自由度。压力自由度使不可压缩条件得到满足,而不降低求解速度。压力自由度是一种内部自由度,被凝聚在单元内部。 4.3.1.3 超弹单元 有三种单元适合于模拟超弹性材料: 不可压缩单元有HYPE56,58,74和158,这些单元适用于模拟橡胶材料。 可压缩单元有HYPER84和86,HYPER84既可以是4节点矩形也可以是8节点矩形单元,这种单元主要用来模拟泡沫材料。 18X族单元(除LIMK和BEAM单元外,包括SHELL181, PLANE182,PLANE183,SOLID185,SOLID186,和SOLID187)。18X族单元消除了体积锁定,既适用于不可压材料,又适用于可压材料。参见《ANSYS Elements Reference》的“Mixed U-P Formulations”。 4.3.2 超弹材料选项 超弹性可用于分析橡胶类材料(elastomers),这种材料可承受大应变和大位移,但体积改变极微(不可压缩)。这种分析需用到大应变理论[ NLGEOM ,ON]。图4-13是一个例子。 图4-13 超弹性结构 在ANSYS超弹性模型中,材料响应总是假设各向同性和等温性。由于这一假设,应变能势函数按应变不变量来表示。除非明确指出,超弹性材料还假设为几乎或完全不可压缩材料。材料热膨胀也假定为各向同性的。 ANSYS在模拟不可压缩或几乎不可压缩超弹性材料时,应变能势函数有几种选项。这些选项均适用于SHELL181,PLANE182, PLANE183, SOLID185, SOLID186, SOLID187 单元。可以通过TB ,HYPER 命令的 TBOPT参数进入这些选项。

混凝土结构非线性分析

姓 名:季敏 学 号:08 手机号: 第2章 混凝土强度准则 2.1 混凝土破坏曲面的特点及表述 2.1.1 混凝土的破坏类型及其特点 混凝土在复杂应力状态下的破坏比较复杂,如果从混凝土受力破坏机理来看,有两种最基本的破坏状态,即受拉型和受压型。受拉型破坏以直接产生横向拉断裂缝为特征,混凝土在裂缝的法向丧失强度而破坏。受压型破坏以混凝土中产生纵向劈裂裂缝、几乎在有方向都丧失强度而破坏。无论何种破坏,均是以混凝土单元达到极限承载力为标志。 判断混凝土材料是否已达破坏的准则,称为混凝土的破坏准则。从塑性理论的观点来看,混凝土的破坏准则(failure criteria of concrete )就是混凝土的屈服条件或强度理论。由于混凝土材料的特殊、复杂而多变,至今还没有一个完整的混凝土强度理论,可以概括、分析和论证混凝土在各种条件的真实强度。因此,必须考虑用较简单的准则去反映问题的主要方面。目前仍把混凝土近似看成均质、各向同性的连续介质,如何可用连续介质力学分析。如果以主应力来表示,混凝土的破坏曲面可以用式(,其破坏与静水压力关系很大,所以其破坏曲面是以 σ1 =σ2=σ 3 为轴线为锥面,如图 2.1.2 混凝土破坏曲面的特点及其表述 图 σ 1 , σ 2 ,σ3,取拉应力为正,正应力为负。空间中与各坐标轴保持等 距离的各点连线,称为静水压力轴(hydrostatic axis )。静水压力轴上任意点的应力状态满足 σ1 = σ2 =σ 3 ,且任意点至坐标原点的距离均为σ 1 3 (或 σσ3233,)。静水压力轴通过坐标原点,且与各坐标轴的夹角相等,均为) (31cos 1 -=α。 混凝土破坏曲面的三维立体图不易绘制,更不便于分析和应用,所以通常用扁平面或拉压子午面上的平面图形来表示[图,(c )]。与静水压力轴垂直的平面称为扁平面(deviatoric planes )。三个主应力轴在扁平面上的投影各成120 角,不同静水压力下的扁平面包络线构成一组封闭曲线,形状呈有规律的变化[图π,π平面上的应力状态表示纯剪状态,无静水压力分量。拉压子午,拉压子午面(meridian planes )为静水压力轴和一个主应力轴[图σ3,同时通过另两轴(σ 1 轴和 σ 2 轴)的等分线。拉压子午面与破坏曲面的交线分别称为拉、压子午线

结构非线性分析汇总

结构非线性分析理论 1.结构设计方法 结构设计方法从传统的容许应力设计法发展到了基于概率统计的极限状态 设计法。传统的容许应力设计法是基于线弹性理论,依照经验选取一定的安全系 数,以构件危险截面某一点的计算应力不超过材料的容许应力为准则,目前在某 些领域仍在使用。安全系数,是一个单一的根据经验确定的数值,没有考虑不同 结构之间的差异,不能保证不同结构具有同等的安全水平。此外,容许应力设计 法以弹性理论计算内力,对那些发展塑性变形能提高承载力的构件或结构(如受 弯构件),比那些发展塑性变形不能提高承载力的构件或结构(如轴心受力构件) 具有较大的安全储备。 概率极限状态设计法是采用数理统计方法按照一定概率确定荷载或材料的 代表值,并给出结构的功能函数,用结构失效概率或可靠指标度量结构的可靠性。 《建筑结构可靠度设计统一标准》将极限状态分为两类:(1)承载能力极限状态, 是指结构或结构构件达到最大承载能力或不适于继续承载的变形;(2)正常使用 极限状态,是指结构或结构构件达到正常使用或耐久性能的某项规定限值。结构 按极限状态设计应符合下列要求: ()0,21≥n X X X g (1.1) 式((1.1)中g(X i )为结构功能函数,X i (i =1, 2……n)为基本变量,是指影响该 结构功能的各种作用、材料性能、几何参数等。 目前我国结构设计规范基本都是采用以概率理论为基础的极限状态设计方 法,用分项系数设计表达式进行计算。美国的钢结构设计采用了两种设计方法: ASD(Allowable Stress Design)和LRFD(Load and Resistance Factor Design),即容许 应力设计法和分项系数设计法,McCormac 指出LRFD 相比ASD ,并不一定节省材 料,虽然在很多情况下可以取得这样的效果,而在不同荷载作用下能给结构提供 等同的可靠性,对于活载和恒载,ASD 采用的安全系数是一样的,而LRFD 对恒 载则采用了一个较小的荷载系数(恒载比活载能更准确的确定),也就是说如果恒 载大于活载,LRFD 比ASD 节省材料。

大跨度网壳结构的稳定性分析

大跨度网壳结构的稳定性分析 xx xxxx 摘要:空间结构是一种倍受瞩目的结构形式,其中网壳结构是近半个世纪以来发展最快、应用最广的空间结构之一。随着大跨度单层网壳结构的不断涌现,其结构重要性不言而喻,结构的稳定性问题尤为突出。本文主要介绍了网壳结构的稳定性问题并以某大跨度球类馆为工程实例,采用非线性有限元法针对承载力计算时的11种工况进行整体稳定计算,考虑了材料和几何非线性,对实际工程进行了第一类和第二类稳定分析,结果表明:该网壳结构的第一类稳定符合相关规范的要求;其第二类稳定性较差。因此,第二类稳定分析应该受到重视。 关键词:网壳结构;稳定性;非线性有限元;大跨度;稳定系数 STABILITY ANALYSIS OF LONG-SPAN LATTICED SHELLS xxx Department of Civil Engineering ,xxx Abstract: Space structure is a very attractive structure system, and the latticed shell is one of the furthest development and the most widely applied space structure in the recent half century. The stability analysis is the key problem in the design of latticed shells, especially in single-layer latticed shells. This paper introduces the stability of latticed shells and a long-span ball gymnasium is adopted as a practical work, and it is analyzed by nonlinear finite element method under the first and the second kinds of stability problems. The holistic calculation aimed at 11 conditions in bearing capacity, material and geometric nonlinearity are considered. The results show that the first kind of stability of this latticed shells accords with the requirements of correlative specifications; the second kind of stability is poorer. Therefore, the analysis of the second kind of stability should be paid attention.. Keywords: latticed shells; stability; nonlinear finite element; long-span; stability factor 1 前言 自20世纪以来,大跨度、大空间的建筑在世界各地得到了迅猛发展。平面结构从技术经济方面讲,很难跨越很大的空间,也很难满足建筑平面、空间和造型方面的要求。解决大跨度建筑结构最具有竞争性的结构就是空间结构,即在荷载作用下,具有三维受力特性并呈空间工作地结构。网壳结构作为空间网格结构的优秀代表,在过去半个多世纪得到了快速发展和广泛应用。它构造简单、轻型化、受力合理、造型优美等优点,深受建筑与结构工作人员的喜爱。 网壳结构是一种与平板网架类似的空间杆系结构,系以杆件为基础,按一定规律组成网格,按壳体结构布置的空间构架,它兼具杆系和壳体的性质。其传力特点主要是通过壳内两个方向的拉力、压力或剪力逐点传力。网壳结构又包括单层网壳结构、预应力网壳结构、板锥网壳结构、肋环型索承网壳结构、单层叉筒网壳结构等。网壳结构除广泛用于工业与民用建筑的屋盖和楼层外,还用于形态新颖、功能各异的特种结构,如:塑像骨架、标志结构、各种用途的整个球面网壳结构、高耸塔架、网架墙体、网架桥梁、装饰网架等。 对于网壳结构,稳定性分析是非常重要的,特别是单层网壳结构。稳定性分析的目的是

非线性收敛判断

一.何为收敛?在这里我引用一个会员的提问来解释这个问题: Q:结构非线性静力分析经常出现收敛这个词,如:收敛容限,收敛准则,收敛的解,位移收敛检验等,请解释,thanks! A: 个人是这样理解的 谈到收敛总会和稳定性联系在一起, 简单的说,就是在进行求解过程中的一些中间值的误差对于结果的影响的大小,当中间量的误差对于你的数值积分的结果没有产生影响,就说明你的积分方法是稳定的,最终你的 数值积分的结果就会收敛于精确解;当中间量的误差导致数值积分结果与精确解有很大的差别时,就说明你的方法稳定性不好,你的数值积分结果不会收敛于精确解。 我想当你对于稳定性和收敛的概念真正理解后,那些名词对于你来说,并不是问题,力学的问题最终都会和数学联系在一起,建议你看看数值积分方面的教程,学好了数学,力学对于你来说就是a piece of cake。 Q:那么说收不收敛,最终都是因为采用的计算方法和计算参数选取的问题了? A: 就本人所学的专业来说,很大程度上取决于所采用的算法,我学的是结构工程,举个例子吧 :当在进行结构动力时程分析时,采用的几分方法有线性加速度法,威尔逊-theta法,对于线性加速度法,当时间步长大于周期的0.5倍时,计算结果很可能出现不收敛,而当时间步长小于0.1倍的周期时,才有可能获得稳定的计算结果;而威尔逊-theta法,实质上就是线性加速度法的修正形式,很多实例表明当theta值大于1.37时,这种算法是无条件稳定的。 当然影响计算结果是否收敛的原因有很多,比如初始条件,我所指的仅仅是我所学专业的一个问题的很小的一个方面。

A: 说白了,就是数学。 牵涉到实际的计算问题时,才发现数学实在是太有用了,不过可惜数学实在学得不好。 A: 收敛的问题,就好像你往水里扔一块石头激起的波浪,慢慢会平息下来,这就收敛了。计算的时候就是这样,数据在每次迭代的时候在精确解的周围震荡,最后无限趋向于精确解。我想学过级数的人就应该知道,里面就有个无穷级数的和收敛的问题。 数学真的非常重要,特别是研究做的比较深入以后,有些东西别人没做过,要靠自己推导,有些迭代方法也需要自己证明是否收敛,或者方法的可靠性等等,都需要比较扎实的数学基础。有时候想解决一个问题,却苦于没有数学工具,这让我觉得学校教育应该在现代数学的一些方面多做些介绍,至少应该让人大概知道一个问题应该朝哪个方面去想,就算不懂,学起来也有个方向。 A: 首先说明,我对收敛问题没有做过专门研究2,只是在学习中多次遇到,说说我对收敛的理解,当然,也提出点疑问。 1)收敛问题,是不是可以定义为当前解法中解是不是趋近于真实解的问题。 2)我觉得现在有一种,或者说一类方法,就是求问题数值解的问题。这类问题并不要求或难以求出解析解。对这类问题的一个解决思路是:假设初始解,通过目标函数对初始解进行反馈,调整,从而去接近于真实解或最优解。这类解法有一个重要的问题,就是下一步的解要比当前解更趋近于真实解的问题。我认为这就是收敛问题的由来。 希望大家批评指正!

网壳非线性分析安全系数

3D3S\sap200\midas gen 都可以做单层网壳的特征值屈曲分析,ANSYS 还可以做更加接近工程实际情况的非线性屈曲分析,来考虑初始缺陷请问各位老师, 网壳规程要求其承载力大于第一屈曲模态下力的5 倍,即k=5。 那么ansys 和3d3s 分析时如何查询这个K 值? A: 1、过去k=5,如今的新规程已将k 取为4.2 。具体说明如下:确定系数K 时考虑到下列因素: (1) 荷载等外部作用和结构抗力的不确定性可能带来的不利影响; (2) 复杂结构稳定性分析中可能的不精确性和结构工作条件中的其他不利因素。 对于一般条件下的钢结构,第一个因素可用系数1.64 来考虑;第二个因素暂设用系数1.2 来考虑,则对于按弹塑性全过程分析求得的极限承载力,系数K 应取为1.64*1.2=2.0 。 对于按弹性全过程分析求得的极限承载力,系数K 中尚应考虑由于计算中未考虑材料弹塑性而带来的误差; 对单层球面网壳、柱面网壳和双曲扁网壳的系统分析表明,塑性折减系数cp(即弹塑性极限荷载与弹性极限荷载之比)从统计意义上可取为0.47 ,则系数K应取为1.64*1.2/0.47=4.2 。 对其它形状更为复杂的网壳无法作系统分析,对这类网壳和一些大型或特大

型网壳,宜进行弹塑性全过程分析。 2、假定设计载荷为2kN/m2,可给网壳施加约12kN/m2的载荷,通过载荷- 位移全过程曲线判断临界载荷,假如得出为10kN/m2,则其k=10/2=5。 ①单层网壳以及厚度小于跨度1/50 的双层网壳均应进行稳定性计算; ②网壳的稳定性可按考虑几何非线性的有限元法(荷载—位移全过程分析)进行计算,分析中可假定材料保持为弹性,也可考虑材料的弹塑性。对于大型和形状复杂的网壳结构宜采用考虑弹塑性的全过程分析方法; ③球面网壳的全过程分析可按满跨均布荷载进行,圆柱面网壳和椭圆抛物面网壳除考虑满跨均布荷载外,宜补充考虑半跨活荷载分布的情况。进行网壳全过程分析时应考虑初始曲面形状的安装偏差的影响,可采用结构的最低阶屈曲模态作为初始几何缺陷分布模态,其缺陷最大计算值可按网壳跨度的 1/300 取值;④按以上②和③条进行网壳结构全过程分析求得的第一个临界点处的荷载值,可作为该网壳的极限承载力。将极限承载力除以系数K 后, 即为按网壳稳定性确定的容许承载力(标准值)。对于按弹塑性全过程分析求得的极限承载力,系数K可取为2.0 。对于常见的单层球面网壳、柱面网壳和椭圆抛物面网壳按弹性全过程分析求得的极限承载力,系数K可取为 4.2 ; 首先请关注一下以上四条。 Q:用ansys 进行稳定性分析,一个是特征值屈曲分析,一个是非线性屈曲

分析非线性系统的方法

非线性系统稳定性问题的判定方法和发展趋势 任何一个实际系统总是在各种偶然和持续的干扰下运动或工作的。所以,当系统承受干扰之后,能否稳妥地保持预订的运动轨迹或者工作状态,即系统的稳定性是首要考虑的。一个系统的稳定性,包括平衡态的稳定性问题和任一运动的稳定性问题。而对于给定运动的稳定性可以变换成关于平衡点的稳定性问题。 对平衡点的稳定性进行分析可将平衡点的稳定性定义为李雅普诺夫稳定、一致稳定、渐进稳定、一致渐近稳定、按指数渐进稳定和全局渐进稳定,除了全局渐进稳定,其他都是局部的概念。 非线性系统的数学模型不满足叠加原理或其中包含非线性环节。包括非本质非线性(能够用小偏差线性化方法进行线性化处理的非线性)和本质非线性(用小偏差线性化方法不能解决的非线性)。它与线性系统有以下主要区别: 1.线性控制系统只能有一个平衡点或无穷多的平衡点。但非线性系统可以有一个、二个、多个、以至无穷多个平衡点。非线性系统与线性定常系统明显不同,其稳定性是针对各个平衡点而言的。通常不能说系统的稳定性如何,而应说那个平衡点是稳定的或不稳定的。2.在线性系统中,系统的稳定性只与系统的结构和参数有关,而与外作用及初始条件无关。非线性系统的稳定性除了与系统的结构和参数有关外,还与外作用及初始条件有关。 由于非线性控制系统与线性控制系统有很大的差异,因此,不能直接用线性理论去分析它,否则会导致错误的结论。对非线性控制系统的分析,还没有一种象线性控制系统那么普遍的分析、设计方法。 现代广泛应用于非线性系统上的分析方法有基于频率域分析的描述函数法和波波夫超稳定性,还有基于时间域分析的相平面法和李雅普诺夫稳定性理论等。这些方法分别在一定的假设条件下,能提供关于系统稳定性或过渡过程的信息。而计算机技术的迅速发展为分析和设计复杂的非线性系统提供了有利的条件。另外,在工程上还经常遇到一类弱非线性系统,即特性和运动模式与线性系统相差很小的系统。对于这类系统通常以线性系统模型作为一阶近似,得出结果后再根据系统的弱非线性加以修正,以便得到较精确的结果。摄动方法是处理这类系统的常用工具。而对于本质非线性系统,则需要用分段线性化法等非线性理论和方法来处理。目前分析非线性控制系统的常用方法如下: 1、线性化方法 采用线性化模型来近似分析非线性系统。 这种近似一般只限于在工作点附近的小信号情况下才是正确的。这种线性化近似,只是对具有弱非线性(或称非本质非线性)的系统。 常用线性化方法,有正切近似法和最小二乘法。 此外,对一些物理系统的非线性特性比较显著,甚至在工作点附件的小范围内也是非线性的,并且不能用一条简单的直线来代表整个非线性系统特性的系统,可采用分段线性化方法。2、相平面法 相平面法是一种基于时域的分析方法,一种用图解法求解一、二阶非线性常微分方程的方法。 该方法通过图解法将一阶和二阶系统的运动过程转化为位置和速度平面上的相轨迹,从而比较直观、准确地反映系统的稳定性、平衡状态和稳态精度以及初始条件及参数对系统运动的影响。相轨迹的绘制方法步骤简单、计算量小,特别适用于分析常见非线性特性和一阶、二阶线性环节组合而成的非线性系统 对于分段线性的非线性系统来说,相平面分析法的步骤为: (1)用n条分界线(开关线,转换线)将相平面分成n个线性区域;(2)分别写出各个线性区域的微分方程;(3)求出各线性区的奇点位置并画出相平面图;

《网壳结构的稳定性》 沈世钊著

网壳结构的稳定性 沈世钊(哈尔滨工业大学哈尔滨150090) 摘要:本文通过荷载-位移全过程分析对各种形式网壳结构的稳定性能进行了深入研究。对复杂结构的全过程分析方法作了探讨,通过所完成的2800余例各式网壳的全过程分析揭示了不同类型网壳结构稳定性能的基本特性,并提出了单层球面网壳、柱面网壳和椭圆抛物面网壳稳定性承载力的实用计算公式。 关键字:网壳结构稳定性全过程分析非线性有限元分析 一、概述 稳定性分析是网壳结构、尤其是单层网壳结构设计中的关键问题。国外自70年代以来,国内自80年代中期以来,网壳结构发展异常迅速,其稳定性问题遂成为研究热点领域之一。结构的稳定性可以从其荷载-位移全过程曲线中得到完整的概念。传统的线性分析方法是把结构强度和稳定问题分开来考虑的。事实上,从非线性分析的角度来考察,结构的稳定性问题和强度问题是相互联系在一起的。结构的荷载-位移全过程曲线可以准确地把结构的强度、稳定性以至于刚度的整个变化历程表示得清清楚楚。当考察初始缺陷和荷载分布方式等因素对实际网壳结构稳定性能的影响时,也均可从全过程曲线的规律性变化中进行研究。 但以前,当利用计算机对复杂结构体系进行有效的非线性有限元分析尚未能充分实现的时候,要进行网壳结构的全过程分析是十分困难的。在较长一段时间内,人们不得不求助于连续化理论("拟壳法")将网壳转化为连续壳体结构,然后通过某些近似的非线性解析方法来求出壳体结构的稳定性承载力。例如文献1-3都提出了关于球面网壳稳定性的计算公式。这种"拟壳法"公式对计算某些特定形式网壳的稳定性承载力起过重要作用。但这种方法有较大的局限性:连续化壳体的稳定性理论本身并未完善,缺乏统一的理论模式,需要针对不同问题假定可能的失稳形态,并作出相应的近似假设;事实上仅对少数特定的壳体(例如球面壳)才能得出较实用的公式;此外,所讨论的壳体一般是等厚度的和各向同性的,无法反映实际网壳结构的不均匀构造和各向异性的特点。因此,在许多重要场合还必须依靠细致的模型试验来测定结构的稳定性承载力,并与可能的计算结果相互印证。 随着计算机的发展和广泛应用,非线形有限元分析方法逐渐成为结构稳定性分析中有利工具。近20年来,这一领域的研究工作一直相当活跃,尤其在屈曲后路径跟踪的计算技术方面做了许多有效的探索。由Ricks 和Wempnor 提出并由Crisfield 和Ramn 等人改进的各种弧长法是这方面的一个重要成果,它为结构的荷载-位移全过程路径跟踪提供了迄今仍然是最有效的计算方法卜[4-6]。但对于像网壳这样具有成千自由度的大型复杂结构位系,要实现其荷载-位移全过程分析,并不像文献中通常给出的一些简单算例那么容易。大量计算实践表明,由结构过渡到大型复杂结构的全过程分析,不只是量的变化;在后者情况下,由于计算累计误差的严重影响和减少CPU 时间的迫切意义,仅仅依靠改进路径跟踪方法可能仍然无能为力;为了保证迭代的实际收敛性,本文在非线形有限元分析理论表达式的精确化、灵活的迭代策略、以及计算控制参数的

结构非线性动力分析方法综述_周文峰

·自然科学研究· 结构非线性动力分析方法综述 周文峰 郭 剑 (攀枝花学院土木工程学院,四川攀枝花 617000) 摘 要 时程分析法是一种计算机模拟分析方法,其优势在于能模拟出结构进入非弹性阶段的受力性能。该 方法主要包括结构分析模型、单元模型和恢复力模型三个重要方面。本文从这三个方面简单介绍了结构非线 性动力反应分析方法。 关键词 非线性;动力分析;模型 结构抗震设计方法经历了静力阶段、反应谱阶段和动力阶段。从本质上说,前二者所采用的方法均为静力法,且只能进行弹性分析。动力阶段的形成建立在计算机的普及和数值分析方法的出现基础之上,其分析方法称为时程分析法。时程分析法本质上是一种计算机模拟分析方法,能够计算出结构地震反应的全过程,该方法的突出优势在于能模拟出结构进入非弹性阶段的受力性能。 时程分析法的出现促进了结构非线性地震反应分析的发展。它主要包括结构分析模型、单元模型和恢复力模型三个重要方面,下面从这三个方面进行简单介绍。 1 结构分析模型 结构的模型化是非线性动力反应分析的第一步,结构模型的模拟应着重于其动力特性的模拟。因此体系恢复力、质量、阻尼模型的准确性是模拟精度的前提。目前的结构分析模型可分为以下几类: 1.1 层间模型 考虑到框架结构质量的分布规律,很容易形成以楼层为单元的多质点体系的思路,故将这种模型称之为层间模型。在研究框架结构动力反应时,层间模型中采用得最多的是层间剪切型模型。该模型假定框架结构层间变形以剪切变形为主,忽略其它形式变形的影响,故而比较适用于高跨比不大、层数不多的框架。为了进一步拓宽此模型的适用范围,在此模型基础上又发展了层间剪弯型模型,使之能适用于层数较多和高跨比较大的框架。 但是层间模型在实际使用中却存在比较大的困难,这主要反映在如何具体确定层间的剪切刚度及弯曲刚度的问题上,而且这二者之间又是耦合在一起的。这一问题层间模型自身是无法解决的。目前,层间模型只是对于常见的层数不多且平面布置十分简单、规则、对称并且能简化为平面结构的框架有一定的实用性,也就是说对于这类框架通常能根据经验进行适当的假设后进行简单推导得到层间单元刚度。 1.2 杆系模型 杆系模型是将整体结构离散为梁、柱单元进行分析。杆系分析模型的出现不仅解决了层间模型所面临的层间刚度无法确定的困难,而且它还解决了层间模型所固有的另外两个缺陷。其一,如果说层间模型从宏观(层单元)角度展示了结构总体动力反应规律,那么由于框架各杆进入非弹性阶段的先后次序不同所造成的整个框架动力反应规律的不同,则是层间模型所不能解释、反映的。其二,无论从抗震研究还是设计角度来看,框架结构的梁、柱构件在地震作用下的反应规律到底如何也是人们所关心的,因为结构的设计最终要落实到构件的设计。如柱端弯矩增大系数应如何取值等,这些问题采用层间模型是无法回答的,从这个角度看也必须将框架结构细化到至少是构件层次才有可能解决这些问题。 杆系分析模型分为两大类,平面杆系分析模型与空间杆系分析模型。目前,平面杆系分析模型的研究相对较为成熟,国内外已开始将注意力转向空间杆系分析模型的研究上。 2 单元模型 对于杆系分析模型,目前用于模拟单元滞回性能的模型已有很多,这些单元分析模型可采取分类的方式加以比较考察。这些模型大致可分为两大类若干小类。 2.1 集中塑性铰模型 单分量模型是集中塑性铰模型中最简单的一类,该模型将杆单元的非弹性性能用非线性弹簧反映,而不对非弹性变· 109·第23卷第4期 攀枝花学院学报 2006年8月V o l .23.N o .4 J o u r n a l o f P a n z h i h u a U n i v e r s i t y A u g .2006

(完整版)线性分析与非线性分析的区别

线性分析在结构方面就是指应力应变曲线刚开始的弹性部分,也就是没有达到应力屈服点的结构分析 非线性分析包括状态非线性,几何非线性,以及材料非线性,状态非线性比如就是钓鱼竿,几何比如就是物体的大变形,材料比如就是塑性材料属性。

2.非线性行为的原因 引起结构非线性的原因很多,主要可分为以下3种类型。 (1)状态变化(包括接触) 许多普通结构表现出一种与状态相关的非线性行为。例如,一根只能拉伸的电缆可能是松弛的,也可能是绷紧的;轴承套可能是接触的,也可能是不接触的;冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变而突然变化。状态改变或许和载荷直接有关(如在电缆情况中),也可能是由某种外部原因引起的(如在冻土中的紊乱热力学条件)。接触是一种很普遍的非线性行为,接触是状态变化非线性类型中一个特殊而重要的子集。(2)几何非线性 结构如果经受大变形,其变化的几何形状可能会引起结构的非线性响应。如图5.2所示的钓鱼杆,在轻微的载荷作用下,会产生很大的变形。随着垂向载荷的增加,杆不断弯曲导致动力臂明显减少,致使杆在较高载荷下刚度不断增加。 (3)材料非线性

非线性的应力-应变关系是结构非线性的常见原因。许多因素可以影响材料的应力-应变性质,包括加载历史(如在弹-塑性响应状况下)、环境状况(如温度)、加载的时间总量(如在蠕变响应状况下)等。 3.非线性结构分析中应注意的问题 (1)牛顿-拉普森方法 ANSYS程序的方程求解器可以通过计算一系列的联立线性方程来预测工程系统的响应。然而,非线性结构的行为不能直接用这样一系列的线性方程来表示,需要一系列的带校正的线性近似来求解非线性问题。 一种近似的非线性求解是将载荷分成一系列的载荷增量。可以在几个载荷步内或者在一个载荷步的几个子步内施加载荷增量。在每一个增量的求解完成后,继续进行下一个载荷增量之前,程序调整刚度矩阵以反映结构刚度的非线性变化。遗憾的是,纯粹的增量近似不可避免地随着每一个载荷增量积累误差,最终导种结果失去平衡,如图5.3a所示。 ANSYS程序通过使用牛顿-拉普森平衡迭代克服了这种困难,在某个容限范围内,它使每一个载荷增量的末端解都达到平衡收敛。图5.3b描述了在单自由度非线性分析中牛顿-拉普森平衡迭代的使用。在每次求解前,NR方法估算出残差矢量,这个矢量是回复力(对应于单元应力的载荷)和所加载荷的差值。之后,程序使用非平衡载荷进行线性求解,并且核查收敛性。如果不满足收敛准则,则重新估算非平衡载荷,修改刚度矩阵,获得新解,持续这种迭代过程直到问题收敛。 几何非线性分析 随着位移增长,一个有限单元已移动的坐标可以以多种方式改变结构的刚度。一般来说这类问题总是非线性的,需要进行迭代获得一个有效的解。 大应变效应 一个结构的总刚度依赖于它组成单元的方向和刚度。当一个单元的节点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变。首先,如果这个单元的形状改变,它的单元刚度将改变,如图5.9a所示;其次,如果这个单元的取向改变,它的单元刚度也将改变,如图5.9b所示。小变形和小应变分析假定位移小到足够使所得到的刚度改变无足轻重。这

网壳屈曲分析

w w w.M i d a s U s e r.c o m

例题单层网壳屈曲分析 2 例题. 单层网壳屈曲分析1、概要 此例题将介绍利用MIDAS/Gen做网壳屈曲分析的整个过程,以及查看分析结果的方法。 该例题的建模利用MIDAS/Gen建模助手中的网壳建模助手,这里不再做介绍。通过该例题希望用户能够了解做网壳屈曲分析的一般步骤和过程。 此例题的步骤如下: 1.打开建好的网壳模型 2.输入荷载工况并施加单位荷载 3.定义屈曲分析控制数据 4.运行分析找到结构基本屈曲模态的屈曲向量 5.考虑规范规定的初始缺陷调整模型 6.给模型施加实际荷载 7.运行结构分析 8.查看屈曲模态和临界荷载系数

2、分析模型与荷载工况 本例题网壳的几何形状、边界条件以及所使用的构件如图1所示。荷载只考虑屋盖作用雪荷载的情况,遇到屋盖作用多种荷载的情况,只需按同样的方法加载即可。(该例题数据仅供参考),荷载组合可以在后处理模式中输入。 荷载工况 1 – 自重 荷载工况 2 – 屋面恒荷载 2kN 荷载工况 3 – 屋顶活荷载 2kN 图1. 分析模型 3

例题单层网壳屈曲分析 4 3、输入各种荷载 设定荷载工况 在输入荷载之前先设定荷载工况。 1.点击主菜单荷载>静力荷载工况 2.在对话窗口中输入如图2所示的荷载工况 图2. 输入荷载工况 在极限状态 设计法中屋面 活荷载与普通 层的活荷载的 荷载分项系数 不同,故荷载 工况也需单独 输入。

5 输入自重 构件的材料和截面被定义后,程序将根据其体积和比重自动计算结构的自重。通过在自重指令中输入系数可以定义其作用方向。 输入自重的步骤如下。 1. 在功能列表(图3的 )中选择自重 2. 在荷载工况名称选择栏选择‘自重’ 3. 在自重系数的Z 中输入‘-1’ 4. 在操作 选择栏点击键 图3. 输入自重

浅谈网壳结构的稳定性分析

浅谈网壳结构的稳定性分析 浅谈网壳结构的稳定性分析 【摘要】稳定性是网壳结构(尤其是单层网壳结构)分析设计中的关键问题。在设计网壳结构时,除了按常规设计规范验算网壳结构构件强度、稳定性及结构刚度外,还应该进行结构整体稳定性以及对初始缺陷的敏感性验算[2]。本文对影响网壳稳定性的因素和研究方法做了综述,从而有助于设计人员对网壳稳定性的研究。 【关键词】网壳;稳定性;缺陷 网壳结构的稳定性能可能从其荷载-位移全过程曲线中得到完整的概念。结构的失稳(屈曲)类型分为两种:一种是极值点屈曲,另一种是分枝点屈曲,其中分枝点屈曲又分为稳定分枝点屈曲和不稳定分枝点屈曲。 网壳结构根据不同的曲面形式对初始缺陷的敏感程度不同。对初始缺陷敏感的网壳,结构稳定承载力会因为初始缺陷的存在而降低,同时,初始缺陷还会导致分枝屈曲问题转化极值点屈曲问题。分枝点屈曲只发生在理想完善的结构,实际结构都是有初始缺陷的,所以其失稳都极值点屈曲而不是分枝点屈曲。 网壳失稳模态有很多种类型,通常有两种分类方法:一种是根据网壳结构失稳时,结构失稳的变形范围可以分为局部失稳和整体失稳;另一种是根据结构失稳时,构件是否发生塑性变形可以分为弹性失稳和塑性失稳。 局部失稳就是结构在荷载作用下失稳时,如果只有某个或某些局部区域结构偏离了初始平衡位置的失稳变形,而其他区域没有发生偏离初始平衡位置的变形。结构的局部失稳又可以分为局部节点失稳和局部杆件失稳,局部节点失稳主要表现为结构局部一个或多个节点偏离了其初始平衡位移,这种节点的偏离平衡位置有两种,第一种是节点仍在它初始平衡位置上,但节点已经出现了绕某个自身轴的转动变形,这样的转动变形有可能会造成连接在此节点上的杆件弯曲变形。第二种是节点偏离了它的初始平衡位置。局部失稳一般容易发生在结

网壳结构是曲面型的网格结构

网壳结构是曲面型的网格结构, 它不仅具有受力合理、刚度 大、重量轻、覆盖面积大、造价低等优点, 且兼有杆系结构和薄壳网壳结构应用范围广,既可用于中、小跨度的民用和工业建筑,也可用于大跨度或超大跨度的 各种建筑。在建筑平面上能适应各种形状 网壳目前在我国多用于仓库、商场和展览馆等建筑中 结构的固有特性, 结构型式丰富, 造型美观, 既可以突出结构美, 同时又具有艺术表现力, 是一种国内外颇受关注、有广阔发展前景的空间结构。近50多年来,网壳结构受到重视和飞速发展,主要原因是:第一,钢筋混凝 土薄壳施工时需要大量的模板,制作困难,劳动量大,费用高,高空浇筑或吊装 费工费时。而网壳结构在施工时,采用的是在工厂中预制的构件,重量轻,安装 简易。第二,建筑构件的工业化为网壳结构的发展注入了强大的生命力,特别是 发明了多种节点体系和自动化程度较高的生产方法,既提高了生产效率,降低了

成本,又保证了安装精度。实际的网壳结构不可避免的具有各种缺陷,属于缺陷敏感结。从实用角度 考虑, 关于与杆件特性有关的一些缺陷, 如杆件的初弯曲、初始内 应力、杆件对结点初始偏心等, 在按规范规定选择杆件截面时实 际上已作了适当考虑。这样设计出来的网壳结构, 杆件稳定性与 整个网壳稳定性的耦合作用不是一个主要因素。对网壳稳定性 来说, 曲面形状的安装偏差, 即各结点位置的偏差就成为起主要 影响作用的初始缺陷因素。采用一致缺陷模态法来研 究这一因素的影响, 即认为初始缺陷按最低阶屈曲模态分布时 可能具有最不利影响。对这一方法的合理性和有效性进 行过仔细论证。当采用这一方法进行分析时, 即使遇到分枝点的 情形, 均能自动完成正确的平衡路径跟踪。事实上, 初始缺陷通 常使分枝问题转化为极限问题。 缺陷是相对于计算模型的理想结构而言的,任何不符合理想模型的地方均可称之为缺陷。因而, 实际结构中缺陷的种类繁多。概括起来,网壳结构的缺陷有以下几类。 1)材料性能的缺陷 材料性能的缺陷是指计算模型所用材料的物理性能与实际结构所用材料性能之间的差异。例如 材料的应力一应变关系,为了计算的方便,常把实际的曲线关系简

非线性分析中的ansys

首页 | SCI期刊点评 | 中文期刊点评 | 搜索 | 论文范文 | 小木虫论坛 首页 >> 仿真模拟 >> 查看话题站内搜索 非线性分析中的ansys跟踪显示 作者: sd9366(站内联系TA) 发布: 2012-09-09 在论坛中看到虫友对在非线性分析中,如何根据ansys的跟踪显示来判断收敛这个问题问的较多,收集整理了一些资料,希望对网友有所帮助。:tiger24: 在ansys output windows 有 force convergenge valu 值 和 criterion 值, 当前者小于后者时,就完成一次收敛。 非线性计算是一个迭代计算的过程,曲线表示两次迭代之间的误差,图中分别表示力和位移在迭代过程中的每次迭代之间的误差 两条线的意思分别是: F L2: 不平衡力的2范数 F CRIT: 不平衡力的收敛容差, 如果前者大于后者,说明没有收敛,要继续计算。 U为位移。 当然,如果若以弯矩M为收敛准则,那么就对应 M L2 和 M CRIT。 图中那两条线,紫的是残差力,即({F} - {Fnr}),蓝的是收敛准则,当残差在准则以下时,求解收敛。 建议不要使用位移收敛准则,因为位移收敛准则是个相对量。

ANSYS的非线性收敛准则 CNVTOL, Lab, VALUE, TOLER, NORM, MINREF ANSYS中,非线性收敛准则主要有力的收敛,位移的收敛,弯矩的收敛和转角的收敛。一般用力的控制加载时,可以使用残余力的2-范数控制收敛;而位移控制加载时,最好用位移的范数控制收敛。 When SOLCONTROL,ON, TOLER Defaults to 0.005 (0.5%) for force and moment, and 0.05 (5%) for displacement when rotational DOFs are not present. When SOLCONTROL,OFF, defaults to 0.001 (0.1%) for force and moment. 收敛精度一般可放宽至 5%,以提高收敛速度。 加快收敛的方法有一下几种: 1可以增大荷载子步数,nsubst,nsbstp,nsbmn,carry 2修改收敛准则,cnvtol,lab,value,toler,norm,minref 3 打开优化的非线性默认求解设置和某些强化的内部求解算法, solcontrol,key1,key2,key3,vtol(一般情况下,默认是打开的) 4重新划分网格,网格的单元不宜太大或太小, 一般在5~10厘米左右 5 检查模型的正确性 关于ansys中收敛准则(cnvtol)理解 ansys中依据缺省的收敛准则,程序将对不平衡力SRSS与VALUE*TOLER的值进行比较;而VALUE的缺省值是在SRSS和MINREF中取较大值。 下面的命令流: cnvtol,f,5000,0.0005,0 cnvtol,u,10,0.001,2 如果不平衡力(独立的检查每一个自由度)小于等于5000*0.0005(也就是2.5),并且如果位移的变化小于等于10*0.001时,认为子步是收敛的。 ANSYS中收敛准则,程序默认力与位移共同控制,并且收敛的控制系数好像是0.001。这样的收敛精度一般很难使塑性分析收敛,对于一般的塑性分析收敛问题,前几个荷载步(弹性阶段)用力与位移共同控制,进入塑性后用力控制或位移控制,也可以先用力后用位移控制(位移控制比较容易收敛),至于控制系数取多少,自己

相关文档
最新文档