高速切削技术的特点

合集下载

《高速切削》课件

《高速切削》课件
《高速切削》PPT课件
本PPT课件将介绍高速切削的定义、原理、分类、技术、应用、注意事项以及 未来发展,为您展示全面的高速切削知识。
什么是高速切削?
高速切削的定义
高速切削是指在高速运动下切削金属材料的加工方 法。
高速切削的优点
高速切削具有高效率、高精度和优质表面等优点。
高速切削的原理
1 原理介绍
高速切削技术的趋势 和前景
高速切削技术正朝着更高效率、 更高精度和更环保的方向发展。
ቤተ መጻሕፍቲ ባይዱ
高速切削的未来发展
高速切削未来将在各行各业中得 到更广泛的应用和进一步的优化。
高速切削注意事项
1 高速切削的注意事项
高速切削过程中需注意刀具选择、润滑和安全等方面。
2 如何安全进行高速切削
安全进行高速切削需遵循正确的操作规程和戴好个人防护装备。
3 如何保证高速切削的质量
保证高速切削质量需要注意刀具磨损和加工参数等关键因素。
高速切削发展前景
高速切削的发展历程
高速切削技术经历了多年的发展 与创新。
高速切削利用切削工具对工件进行高速运动切削,实现金属材料的加工。
2 高速切削的工作过程
高速切削的工作过程包括进给运动、主轴转动和切削速度等因素。
3 高速切削的工作原理
高速切削通过防振、刀具材料和润滑等措施,提高切削效率和质量。
高速切削的分类
高速切削分类介绍
高速切削可分为铣削加工和车削 加工两种主要类型。
CNC技术在高速切削加工中起到关 键作用,实现自动化加工。
高速切削的应用
1
高速切削在现代制造中的应用
高速切削广泛应用于航空、汽车、船舶等
高速切削的优势和局限性
2

高速切削技术研究

高速切削技术研究

高速切削技术研究第一部分高速切削技术的定义与特点 (2)第二部分高速切削刀具材料与磨损机理 (4)第三部分高速切削机床的选型与应用 (7)第四部分高速切削参数优化方法 (10)第五部分高速切削过程的热控制技术 (13)第六部分高速切削加工精度与表面质量 (15)第七部分高速切削在典型零件加工中的应用 (17)第八部分高速切削技术的发展趋势与挑战 (20)第一部分高速切削技术的定义与特点高速切削技术是一种先进的制造工艺,它通过使用高转速的刀具和优化的切削参数来提高材料去除率、加工精度和表面质量。

该技术的核心在于实现高效率、高质量和高精度的加工过程。

在高速切削过程中,刀具以极高的速度旋转(通常超过每分钟数千转),同时进给速度也相应提高。

这种高速旋转产生的离心力有助于减小切削力和切削热,从而延长刀具寿命并减少工件的热变形。

此外,由于切削力的降低,高速切削还可以减少振动,进一步提高加工精度。

高速切削技术的优势主要体现在以下几个方面:1.高效率:与传统切削相比,高速切削可以显著提高材料去除率,缩短加工时间。

研究表明,高速切削可以提高生产效率达 30%至50%。

2.高精度:高速切削过程中的低切削力可以减少工件的振动,从而提高加工精度。

此外,由于切削热的影响较小,工件的热变形也得到了控制。

3.高质量表面:高速切削产生的切削热较低,这有助于减少工件的烧伤和裂纹,从而获得更好的表面质量。

4.刀具寿命延长:高速切削可以降低切削力,减少刀具磨损,从而延长刀具的使用寿命。

5.节能减排:高速切削技术可以实现更高的材料去除率,从而减少能源消耗和碳排放。

然而,高速切削技术也存在一些挑战,如刀具成本较高、对机床性能要求较高等。

因此,在实际应用中,需要根据具体加工需求和技术条件,合理选择切削参数和刀具,以确保高速切削技术的有效性和经济性。

总之,高速切削技术作为一种先进的制造工艺,具有高效率、高精度、高质量表面等优势,但在实际应用中需充分考虑其成本和设备要求。

刀具高速切削加工技术特点

刀具高速切削加工技术特点

刀具高速切削加工技术特点
高速切削加工技术中的“高速”是一个相对概念,对于不同的加工方法和工件材料与刀具材料,高速切削加工时应用的切削速度并不相同。

通常把切削速度比常规高出5~10倍甚至以上的切削加工叫作高速切削或超高速切削。

以德国达姆施塔特工业大学H.Schulz教授提出的铣削速度范围比较具有代表性:铝合金1000~7000m/min,铸铁800~3000m/min,钢500~2000m/min,钛合金100~1000m/min,镍基合金50~500m/min。

传统硬质合金类刀具加工铝合金壳体切削速度一般在150~300m/min之间,而聚晶石(PCD)类刀具的切削速度能达到2000m/min以上,实现高速切削。

高速切削加工时,高切削速度在材料剪切区短时释放大量热能。

因此,随着切削速度的增加,切削的剪切区、切屑压缩区和变形区内材料的单位切削力反而下降。

总切削力和必需的切削功率同样下降。

高速切削工艺典型的小切削深度结合高进给速度和高主轴转速,将降低切削刃切入工件的时间,或称接触时间。

刀具监控系统在高速切削加工过程中还应该考虑的一个问题是刀柄与机床主轴锥孔的连接方式,常用的锥柄有BT、HSK、CAT及CAPITO等多种形式,但是在高速切削时HSK因其的双面接触过定位结构可以保证刀尖很高的跳动要求,,特别适合高转速工况。

第 1 页共 1 页。

先进制造工艺--高速切削技术

先进制造工艺--高速切削技术

第三讲1.高速切削技术高速切削的产生背景和发展史高速切削(HSM或HSC)通常指高主轴转速和高进给速度下的立铣,它是20世纪90年代迅速走向实际应用的先进加工技术,在航空航天制造业、模具加工业、汽车零件加工、以及精密零件加工等得到广泛的应用。

高速铣削技术既可用于铝合金、铜等易切削金属,也可用于淬火钢、钛合金、高温合金等难加工材料,以及碳纤维塑料等非金属材料。

例如,在铝合金等飞机零件加工中,曲面多且结构复杂,材料去除量达高达90%~95%,采用高速铣削可大大提高生产效率和加工精度;在模具加工中,高速铣削可加工淬火硬度大于HRC50的钢件,因此许多情况下可省去电火花加工和手工修磨,在热处理后采用高速铣削达到零件尺寸、形状和表面粗糙度要求。

高速切削概念始于1931年德国所罗门博士的研究成果:“当以适当高的切削速度(约为常规速度的5~10倍)加工时,切削刃上的温度会降低,因此有可能通过高速切削提高加工生产率”。

60多年来,人们一直在探索有效、适用、可靠的高速切削技术,但直到20世纪90年代该技术才逐渐在工业实际中推广应用。

高速切削最早在飞机制造业和模具制造l受到很大的重视。

为使飞机的零部件满足很高的可靠性要求,大部分重要零件都是在整块铝合金坯件卜铣削而成,既可减少焊缝,又可提高零件的强度和抗振性。

但常规铣削效率很低,从而导致了高的生产成本和长的交货时间。

高速切削是克服这方面问题的最好解决方案。

汽车工业中,模具制造是产品更新换代的关键。

新车型定型后,模具制造周期的长短直接影响到产品的上市时间,也关系到市场竞争的成败。

所以在80年代美国、欧洲和日本的政府都出巨资推动高速切削在模具制造中的应用研究,90年代初高速切削已进入工业化应用。

图16 高速切削在生产应用中的发展历程图17 采用高速切削后产品质量提高的历程a一硬质合金切钢 b一硬质合金切铸铁c—CBN切铸铁图16是德国宝马公司(BMW)采用高速切削的历程。

《高速切削加工》课件

《高速切削加工》课件

03 高速切削加工的关键技术
高速切削加工的刀具技术
刀具材料
01
高速切削加工需要使用高硬度、高耐磨性的刀具材料,如硬质
合金、陶瓷和金刚石等。
刀具涂层技术
02
涂层技术能够提高刀具表面的硬度和耐磨性,降低摩擦系数,
提高切削效率。
刀具几何形状
03
高速切削加工需要采用特殊的刀具几何形状,如小前角、大后
角和短刀刃等,以减小切削力、切削热和刀具磨损。
在高速切削加工中,降低能耗、减少废弃 物排放和提高资源利用效率成为重要的发 展趋势,符合可持续发展的要求。
高速切削加工面临的挑战与对策
高温与热变形
高速切削加工过程中产生的高温可能导致 刀具磨损、工件热变形等问题,需采用新 型刀具材料、强化冷却技术等手段解决。
振动与稳定性
高速切削加工过程中的振动可能影响加工 精度和表面质量,应优化机床结构、提高 刚性和阻尼性能。
模具型腔加工
高速切削加工技术在模具制造业 中广泛应用于模具型腔的加工, 如注塑模、压铸模等,能够快速 准确地完成复杂型面的加工。
模具钢材料加工
高速切削加工技术能够高效地加 工各种模具钢材料,如H13、 SKD61等,提高加工效率,减少 热量的产生和材料的变形。
高速切削加工在航空航天制造业的应用
航空发动机制造
高速切削加工的工艺参数
1 2 3
切削速度
提高切削速度可以提高加工效率,但同时也需要 选择合适的刀具和材料,以避免刀具磨损和工件 热变形。
进给速度
进给速度的提高可以增加材料去除率,但过高的 进给速度可能导致刀具磨损和工件表面质量下降 。
切削深度
适当的切削深度可以提高加工效率,但过大的切 削深度可能导致刀具磨损和工件表面质量下降。

金属加工工艺中的先进切削技术研究

金属加工工艺中的先进切削技术研究

金属加工工艺中的先进切削技术研究在当代制造业领域,金属加工工艺一直扮演着重要的角色。

随着科学技术的不断发展和创新,先进切削技术正成为金属加工工艺中的关键环节。

本文将对金属加工工艺中的先进切削技术进行研究和探讨。

1. 先进切削技术的定义与意义先进切削技术是指结合现代工程学、材料科学、机械力学等相关学科的知识与理论,在金属加工工艺中应用创新技术,追求高效、精密和经济的切削加工方式。

其意义在于提高金属加工的效率、加工质量和降低成本,从而推动整个制造业的发展。

2. 先进切削技术的发展趋势(1)超硬刀具技术:超硬刀具具有高硬度、高热稳定性和耐磨性等特点,能在高速切削中保持较长的切削时间和良好的切削性能。

(2)高速切削技术:高速切削技术能够提高金属切削的效率,缩短加工时间,减少加工成本,并减小加工过程中的振动和热变形。

(3)微细切削技术:随着精度要求的提高,对微细切削技术的需求也日益增长。

微细切削技术能够实现微细加工,获得更高的精度和表面质量。

(4)复合切削技术:复合切削技术将多种切削工艺结合起来,综合利用各种切削方式的优势,以提高加工效率和加工质量。

3. 先进切削技术的应用案例(1)高速铣削技术在航空制造中的应用:高速铣削技术能够加工各种难加工材料,高效完成复杂的造型零件加工任务,提高航空制造中的加工效率。

(2)微铣削技术在精密电子制造中的应用:微铣削技术能够获得非常小的加工尺寸和高精度的加工表面,满足精密电子产品对加工精度和表面质量的要求。

(3)刀路优化技术在汽车制造中的应用:刀路优化技术能够通过优化刀具轨迹和加工参数,提高汽车零部件的切削效率,减少加工时间和成本。

(4)超硬刀具技术在模具制造中的应用:超硬刀具能够实现高速、高效的精细加工,提高模具制造的效率和加工质量。

4. 先进切削技术的挑战虽然先进切削技术带来了诸多优势,但也面临一些挑战。

首先,先进切削技术的引入需要大量的技术投入和设备更新,因此成本较高。

高速切削简介

高速切削简介
2021/7/16
高速切削加工切屑形成特征 文献2
2021/7/16
高速切削加工切屑形成特征 文献2
从连续光滑的切削到周期性的锯齿状切屑,是随着切削速度增大而变化 过渡,这是高速切削加工中最基本又富有挑战性的问题。本文中,用临 界切削速度对切屑流起因的显式表达式,用材料性能,未变形切屑厚度 与刀具前角三者来表达,并基于尺寸分析和数值模拟。实验对于各种金 属材料在宽范围的切削厚度与刀具前角下,切屑由连续到锯齿状,给出 临界切削速度合理的预测。更有趣的是,发现,由于由雷诺数对湍流流 动的控制,对锯齿形切屑的流动模式的转变是由雷诺数主导。此外,材 料的性能对锯齿形切屑的影响进行系统的研究,其发展趋势和Recht经典 2021/7模/16 型吻合。
➢ 1931年德国物理学家C. J. Salomom在“高速切削原理 ”一文中给出了著名的“Salomom曲线”——对应于一 定的工件材料存在一个临界切削速度,此点切削温度最 高,超过该临界值,切削速度增加,切削温度反而下降 。
2021/7/16
➢ Salomom的理论与实验结果,引发了人们极大的兴趣, 并由此产生了“高速切削(HSC)”的概念。
2021/7/16
2021/7/16
高速钻孔
表面和内侧倒棱
高速加工中心 1台1轴1工序(3万件/月) 柔性(零件、孔数、孔径、孔型可变)
汽车轮毂螺栓孔高速加工实例
电极制造
1毛坯 → 2粗铣 → 3半精铣 → 4热处理 →5电火花加工→6精铣 →7手工磨修 a)传统模具加工的过程
1硬化毛坯→ 2粗铣 → 3半精铣 → 4精铣 →5手工磨修 b)高速模具加工的过程
切削热大部分由 切屑快速带走
避免积屑瘤的产 生
接触区 高速切削的剪切角 常规切削的剪切角

先进制造技术 第2章 高速切削技术2-1

先进制造技术 第2章 高速切削技术2-1



萨洛蒙在l924一1931年间,进行了一系列的高速切削实验: 在非黑色金属材料,如铝、铜和青铜上,用特大直径的刀 盘进行锯切,最高实验的切削速度曾达到14000m/min, 在各种进给速度下,使用了多达20齿的螺旋铣刀。l931年 申请了“超极限速度”专利,随后卖给了“Krupp钢与工 具制造厂”。 萨洛蒙和他的研究室实际上完成了大部分有色金属的切削 试验研究,并且推断出铸铁材料和钢材的相关曲线。 萨洛蒙理论提出了一个描述切削条件的区域或者是范围, 在这个区域内是不能进行切削的。萨洛蒙没有提出可靠的 理论解释,而且他的许多实验细节也没有人知道。
刀具磨损曲线
三、高速切削切屑形成

高速切削试验表明,工件材料及 性能对切屑形态 有决定性影响。
低硬度和高热物理性能的工件材料(铝合金、低碳钢、未 淬硬钢等)易形成连续带状切屑。 高硬度和低热物理性能的工件材料(钛合金钢、未淬硬钢 等)易形成锯齿状切屑。

切削速度对切屑形态有重要影响。对钛合金,在 (1.5~4800)m/min的切削速度范围内形成锯齿状 切屑,随切削速度的增加,锯齿程度(锯齿的齿 距)在增加,直至成为分离的单元切屑。
不同切削速度下车削45钢件的切削形态。

一方面,切削速度增加,应变速度加大,导致脆 性增加,易于形成锯齿状切屑;另一方面,切削 速度增加,切屑温度增加,导致脆性降低,不易 形成锯齿状切屑;
绝热剪切理论(Adiabatic Shear Theory) 周期脆性断裂理论(Periodic brittle fracture theoty)

萨洛蒙(Salomon)曲线
1600
切削温度/℃

1200
青铜
铸铁 硬质合金980℃ Stelite合金850℃ 高速钢650℃ 碳素工具钢450℃
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高速切削技术的特点
高速切削针对不同金属材料的工件,当切削速度到达某一特定值时,切削温度不但不会升高反而会降低,产品的质量也会改善,生产效率也会大幅度提高。

高速切削与加工材料、加工方式、刀具及切削参数等有很大的关系。

一般认为,高速切削的切削速度是常规切削速度的5~10倍,铝合金1 500~5 500m/min;铜合金900~5 000m/min;钛合金100~1 000m/min;铸铁750~4 500m/min;钢600~800m/min。

各种材料的高速切削进给速度范围为2~25m/min。

高速切削之所以得到工业界越来越广泛地应用,是因为它相对传统加工具有显著的优越性,具体说来有以下特点:
1.可提高生产效率
高速切削加工允许使用较大的进给率,比常规切削加工提高5~10倍,单位时间材料切除率可提高3~6倍。

当加工需要大量切除金属的零件时,可使加工时间大大减少。

2.降低了切削力
由于高速切削采用极浅的切削深度和窄的切削宽度,因此切削力较小,与常规切削相比,切削力至少可降低30%,这对于加工刚性较差的零件来说可减少加工变形,使一些薄壁类精细工件的切削加工成为可能。

3.提高了加工质量
因为高速旋转时刀具切削的激励频率远离工艺系统的固有频率,不会造成工艺系统的受迫振动,保证了较好的加工状态。

由于切削深度、切削宽度和切削力都很小,使得刀具、工件变形小,保持了尺寸的精确性,也使得切削破坏层变薄,残余应力小,实现了高精度、低粗糙度加工。

从动力学角度分析频率的形成可知,切削力的降低将减小由于切削力产生的振动(即强迫振动)的振幅;转速的提高使切削系统的工作频率远离机床的固有频率,避免共振的发生;因此高速切削可大大降低加工表面粗糙度,提高加工质量。

4.加工能耗低,节省制造资源
由于单位功率的金属切除率高、能耗低以及工件的在制时间短,从而提高了能源和设备的利用率,降低了切削加工在制造系统资源总量中的比例,符合可持续发展的要求。

5.简化了加工工艺流程
常规切削加工不能加工淬火后的材料,淬火变形必须进行人工修整或通过放电加工解决。

高速切削则可以直接加工淬火后的材料,在很多情况下可完全省去放电加工工序,消除了放电加工所带来的表面硬化问题,减少或免除了人工光整加工。

由于高速切削的特点决定了高速切削可以节省切削液、刀具材料和切削工时,从而可极大限度地节约自然资源和减少对环境的污染,提高生产率和产品质量,因此,高速切削在工业生产尤其是规模较大的汽车企业和与之相关的模具制造业上的应用具有"燎原"之势。

相关文档
最新文档