隧道涌水量预算
隧道涌水量预测计算方法探讨

隧道涌水量预测计算方法探讨[摘要]从2种隧道涌水量计算方法的基本原理出发,讨论了其计算步骤、公式及适用条件。
选择合适的计算方法预测涌水量,有助于预警和制定施工对策。
以杭长铁路高岭隧道工程为例,采用水均衡法对隧道进行涌水量预测,然后对其涌水量进行评价和提出相应的工程建议,为工程的顺利实施提供了技术支持。
【关键字】高岭隧道;涌水量;预测;水均衡法1.引言有关隧道涌水量预测的研究已有近半个世纪,提出和发展了很多方法,但迄今为止无论是隧道正常涌水量,还是最大涌水量,都是依季节变化的,预测时误差较大,尚无成熟的理论和公认的准确计算方法。
隧道涌水量预测方法归纳起来主要有:(1)水均衡法;(2)水文地质比拟法。
本文详细介绍了上述2种隧道涌水量预测方法的基本原理、计算步骤和计算公式,并以杭长铁路高岭隧道为例,对隧道的涌水量进行了预测,然后对其涌水量进行评价和提出相应的工程建议,为今后深入研究打下基础。
2.水均衡法水均衡法指在一定范围内,水在循环过程中保持平衡状态,收入和支出相等,查明隧道施工段水的补给、排泄之间的关系,从而获得施工段的涌水量。
水均衡法适用于地下水的形成条件较简单的施工地段,可宏观地、近似地预测隧道的正常涌水量和最大涌水量;水均衡法预测涌水量时,常分为地下径流模数法和大气降雨入渗法。
2.1地下径流模数法概念:指利用一个流域岩溶区内地下径流模数和补给面积,推求出该流域暗河径流总量,或以此评价地质与水文地质条件相似的邻区暗河流域暗河径流量的方法。
计算公式如下:(1)式中,Q为隧道通过含水体地段的涌水量(m3/d);M为地下径流模数(L/s·km2);F为隧道通过含水体地段集水面积(km2)。
2.2大气降雨入渗法概念:通过大气降雨与地下水的关系,来反映最终下渗到达地下水的水量的方法。
计算公式如下:(2)式中,Q为隧道通过含水体地段的涌水量(m3/d);η为岩溶水滞后系数,一般取0.15~0.60;α为降雨入渗系数,碳酸盐岩取0.307;X为日降雨量(mm);F为隧道通过含水体地段集水面积(km2)。
隧道涌水量预测方法及其分析

承压或潜 水含水 层 无 5 限深掌子面涌水量 (平 Q = 4 Krs 面) 承压或潜 水含水 层 无 πKrs 6 限深时掌 子面涌 水 量 Q = 2 (半圆形 ) πKM s 承压含水 层有限 降 深 4 Q = 7 ( 15 ~ 20m ) 时掌子面 π M - 1 + 2 ln 3 R r 2 M 涌水量 (平面 ) πKM sr 承压含水 层有限 降 深 2 Q = 8 ( 15 ~ 20m ) 时掌子面 3 R M + r ln - 1 2 M 涌水量 (半圆形 ) 承压或潜 水含水 层 隧 KH2 gL 9 道两侧边 墙单位 长 度 q = R 进水 说明 : q为两侧隧道单位长度涌水量 ; H g、 h s、 h g 分别为隧道以及 潜水位高度 ; R、 R s、 R g分别为影响半径 ; H为隧道顶板至河水面高度 ;
式中 : Q t 为隧道掌子面非稳定流涌水量 ; T 为导水系数 ; R 为距开挖面的距离 ;ξ 为 ( r处 ) 水位降深 ; P 为开挖面上水 的自喷压力 ; W 为水的比重 ; S 为储水系数 ; t为涌水经历的时
110
四川建筑 第 27 卷 6 期 200 7 1 12
© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved.
9H 9n
r2
= Q ( t > 0)
( 7)
= z ( Βιβλιοθήκη > 0) = H2 ( r, z) ∈Ω
Γ =0
[收稿日期 ] 2007 - 01 - 19 [作者简介 ] 陶玉敬 ( 1982 ~ ) , 男 , 河南信阳人 , 硕士研
隧道涌水量的预测

隧道涌水量的预测摘要:通过对隧道工程地质勘察,以不同方法计算的隧道涌水量,经分析对比,确定隧道最大涌水量,对隧道的设计、施工起到超前预防作用。
关键词:隧道涌水量,水文地质试验,渗透系数,汇水面积,降水入渗系数1前言隧道涌水量的计算,是工程地质勘察过程中非常重要的一环,尤其对于长-特长隧道,其数值的大小,直接关系到设计、施工所采取的涌、排水措施。
本文通过工程地质勘察过程中不同隧道涌水量计算的实例,讨论了隧道涌水量预测过程中需要注意的几个问题。
2水文地质试验水文地质试验是隧道涌水量计算的关键一环,应根据水文地质条件和场地条件,选用抽水、压水、注水及提水试验等方法。
下面仅就各种试验时应注意的问题介绍如下:2.1抽水试验1、稳定流抽水试验的水位降深次数,一般进行3次,当勘探孔的出水量较小或试验时出水量已达到极限时,水位降深可适当减少,但不得少于2次。
2、当出水量和动水位与时间关系曲线只在一定范围内波动,且没有持续上升或下降趋势时,判断为抽水试验稳定。
2.2压水试验1、压水试验宜采用自上而下的分段压水方法,同一工程中试验段长度应保持一致。
2、试验段长度一般为5m,最长不得超过10m。
3、压水试验宜采用3个压力阶段,一般采用0.3Mpa、0.6 Mpa、1.0 Mpa。
4、压水试验中,每10min宜观测一次压水流量,每一压力阶段在流量达到稳定后延续1.5-2.0h即可结束。
2.3注水试验注水试验一般采用钻孔常水头注水法。
1、采用清水向孔内注水,当水位升高到设计的高度后,控制水头、水量保持稳定。
2、注水试验应进行3次水位升高,每次水位升高宜采用2、4、6m,间距不宜小于1m。
2.4提水试验提水试验采用定水位降深法。
1、单位时间内提水次数应均匀,提出的水量大致相等,并达到水位水量相对稳定。
2、水位水量每隔30min测定一次,计算出出水量,出水量波动值为±10%,水位波动范围10-20cm,即为稳定。
3、提水试验延续时间,应在水位、水量相对稳定后在进行4h即可结束。
隧道涌水量预测的计算方法研究_张雷

隧道涌水量预测的计算方法研究
张 雷1 ,赵 剑2 ,张和平3
(1. 惠州市城乡建筑工程有限公司 ,广东惠州 516001 ;2. 重庆交通大学 ,重庆 400074 ; 3. 珠海市公路局香洲分局 ,广东 珠海 519000)
4 比拟法 比拟法应用类似的隧道水文地质资料来计算 ,
立足于勘探区与借以比拟的施工区条件一致 。因 此 ,这种方法的预测精度取决于试验段和施工段的 相似性 ,两者越相似则精度越高 ,反之则越差 。比拟
收稿日期 :2006 - 08 - 25
12 2 公 路 交 通 技 术 2007 年
洪水期与枯水期的地下径流模数可以 适用 于 岩 溶 区 隧 道 涌
相差数十到百倍 ,季节性要求高 。
水量预测 。
非线性理论方法
首先对隧道标高附近及其以上庞大空
间范围内的水进行系统识别与划分 。
根据各个系统与隧道的空间关系及其
它相关信息 ,确定系统向隧道供水的 可能尚属探索性阶段 。
3 解析法 雅各布和洛曼 (1952) 提出了一种解析法 。解析
法是利用地下水动力学原理计算隧道涌水量 。在地 下水运动学中有以裘布衣公式 (1875) 为代表的稳定 流理论和以泰斯公式 (1935) 为代表的非稳定流理 论 。根据这 2 大理论 ,人们研究出了许多隧道涌水 量预测的经验公式 ,比较常见的有 ,日本的佐藤邦明 公式 、落合敏郎公式 ,前苏联的科斯嘉可夫 (A·H·K. OCTΠ: IKOB) 公式 、吉林斯基 ( H·K·FnpnHcKn) 公式 、 福希海默 ( Forcheimer ·F) 公式以及我国的经验 公 式[6 - 10] 。在基岩地区应多用解析法 ,如秦岭隧道[11] 上就运用了解析法 。该法经过了水文地质模型概 化 ,简化了水文地质条件 ,具有快速实用的特点 。
岩溶地区隧道涌水量估算

岩溶地区隧道涌水量估算岩溶区隧道的涌水预测是长期以来困扰生产实践的难题,其原因主要有:岩溶地下水赋存极不均一,很难确定隧道内确切的涌水部位及水量大小;勘察精度不够,无动态观测资料及试验资料较少,不能正确描述地质条件及水动力场特征;难以确定合理的计算方法和各类参数。
本次隧道涌水预测是根据隧址区岩溶发育特征、地下岩溶管道系统的分布、地下水补径排特点及各含水岩组富水性等特征,通过采用地下径流模数法和大气降水入渗法、结合地区经验,估算隧道涌水量。
标签:隧道涌水测量1概况隧道长2000m左右、最大埋深近200m。
中山、溶蚀峰丛洼地地貌区,亚热带湿润季风气候,隧址区内无水库、堰塘。
可溶性碳酸盐岩分布广泛,地表溶沟、溶槽、石牙、溶孔、溶穴、溶管、峰丛、洼地、溶丘及溶蚀沟谷等发育,地下岩溶形态则有落水洞、地下河、溶洞等。
突水、突泥对隧道工程建设影响甚大。
隧址区位于向斜东翼,向斜轴近乎南北向,两翼岩层倾角约40°左右,近乎对称。
轴部地层为三叠系巴东组及白垩系组成,白垩系不整合覆盖于巴东组之上。
隧址区内无断裂。
区内裂隙发育,一般为张性裂隙,张开宽1~35cm不等,面裂隙率在1.5~3条/m2之间;裂隙发育走向在N45°~65°W、N50°~60°E、N75°~80°E。
2水文地质条件2.1隧址区岩溶发育规律溶沟、溶槽、石牙、溶孔、溶穴、溶管在地表随处可见,落水洞口多呈圆形或椭圆形,直径在1~5m之间,普遍发育深度5~15m,少数深不见底,底部多充填黏土夹碎石,以缝状为主,竖井状较少。
漏斗多见于斜坡地带或洼地周边缓坡地带,受地形影响多呈斜歪状和碟状,主要受层面、地形和裂隙控制发育而成,深度多为1~3m。
隧址区岩溶发育具有以下规律和特征:①岩溶发育的呈层性,岩溶的发育与地壳的上升、停顿和岩溶水的变迁密切相关,故不同岩溶期发育着不同的岩溶形态,从而形成了区域上岩溶发育的呈层性特点;②岩溶发育深度与侵蚀基准面的一致性,河流和泉是调查区当地侵蚀基准面,各水平岩溶出口标高基本与最低侵蚀基准面一致;③岩溶发育方向具有与岩层走向一致性的特点,区内岩层走向N4°~9°W,倾向西,主要发育一组东西走向裂隙,地表落水洞多呈串珠状沿岩层走向分布,区内最大溶槽走向南北。
隧道涌水量预测计算方法探讨

a nd Pu t s f o r wa r d c o r r e s po ndi ng S ugge s t i o ns o f e ng i ne e r i ng, a nd t he pr o vi d es a be t t e r t e c hni c al s up por t f o r t he s mo o t h
Di s c us s o n m  ̄ho d f o r p r e di c t i ng a mo unt o f wa t e r gu s hi n g i n t unne l
3 . 水文 地质 比 拟法 水文 地 质比拟法 是建立在 水文地 质条件相 似的 基础上 , 以既 有工
工 技术
隧道涌水量预测计算方法探讨
杨超
广州诚 安路桥检测有限公司 广东广州
5 1 0 4 2 0
一般 取0 . 1 5 - 0 . 6 0 ; 。 [ 为降雨入渗系数 , 碳 酸盐 岩取0 . 3 0 7 ; X 为日 【 摘 要J从2 种隧道涌水量 计算方 法的基本原理出发, 讨论了 其计 系数, mm) ; F 为隧 道通过含水体地段集水面 积 ( k m ) 。 算步 骤、 公 式及适 用条件。 选择合适的计算方法预测涌水量, 有助于预警和 降雨量 ( 另外, 在 圈定集水面 积时, 综合考虑岩 性 ( 岩 性控制富水性 ) 、 构 造 制 定施工对策。 以杭长铁路 高岭 隧道工程 为例, 采用水均衡 法对隧道进行 涌# , - - 1 - 预测 , 然后对其涌水量进行 评价 和提 出 相应的工程建议 , 为工程的 ( 构造控 制富水 地段 ) 、 地 形地 貌 ( 地形 地貌 影响补 给条件 ) 及隧 道位 置、 埋 藏深 度等有关因素。 当隔水体与隧 道中心线 的距离小于可能影 响 顺 利 实施 提 供 了 技 术 支持 。 宽 度时, 该侧的集 水面积 边界 以隔水体为界。 反之 , 大于可能 影响 宽度 【 关键 字l 高岭 隧道; 涌水量; 预测 ; 水均衡 法 时, 采用其它方法确 定。
土门关隧道涌水量预测及治理措施

土门关隧道涌水量预测及治理措施张可【摘要】对土门关隧道开展现场地质调绘、钻探、抽水试验等综合水文地质勘察,将该隧道分为进口弱富水区、太阳沟流域中等富水区以及出口弱富水区三个水文地质单元,运用大气降水法、地下水径流模数法、地下水动力学法对其涌水量进行预测.经综合分析及计算,三个水文地质单元的预测涌水量分别为283 m3/d、2243 m3/d、171 m3/d,预测总涌水量值为2697 m3/d.隧道在通过断层破碎带、节理密集带时,存在发生突水、突泥的可能性,并据此提出相应的治理措施.【期刊名称】《铁道勘察》【年(卷),期】2017(043)004【总页数】4页(P35-38)【关键词】断层破碎带;涌水量预测;地质复杂隧道【作者】张可【作者单位】兰州铁道设计院有限公司,甘肃兰州 730000【正文语种】中文【中图分类】U212.23地下水引发的水害是影响隧道施工和运营安全最重要的因素;地下水活动和作用往往是导致隧道事故的主要因素,可能造成隧道工期的延误、人员伤亡以及经济的巨大损失。
因此,隧道涌水量的计算及预测显得尤为重要。
土门关隧道系新建兰州至合作铁路途经甘南州和临夏州分界处土门关的单线隧道,隧道起迄里程为DK112+230~DK114+315,全长2 085 m,设计为单面坡,隧道最大埋深约274 m。
1.1 地形地貌隧址区属于青藏高原东北缘大夏河中山峡谷区,区内群山巍峨,峡谷悠长狭窄,水流湍急,地形起伏大,相对高差可达500~800 m;乔木、灌木丛生,植被发育;隧道洞身地表穿过太阳沟,沟谷断面呈V形(如图1)。
1.2 地层岩性隧道洞身地层以三叠系下统下部岩组钙质板岩、砂岩等为主,进出口有坡洪积砂质黄土、角砾土、碎石土等第四系覆盖层以及洞身穿越逆断层时所经过的断层角砾。
1.3 地质构造隧址区属于秦岭褶皱系,在地史长河内经历了多期构造运动,形成多个地质构造体系,各种构造体系之间存在多种复合、归并、利用关系,造成断裂、褶皱、不整合接触带、节理等构造现象发育,地质构造复杂。
降雨入渗法涌水量计算

二、涌水量的预测拟采用大气降水渗入量法对隧道进行涌水量计算1.大气降水渗入法(DK291+028-DK292+150段)Q = 2.74*α*W*AQ—采用大气降水渗入法计算的隧道涌水量(m3/d)α—入渗系数W—年降雨量(mm)A—集水面积(km2)参数的选用:α—入渗系数选用0.16;W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。
A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.33km2最大涌水量为:Q= 2.74*α*W*A = 2.74*0.16*1496.88*0.33= 216.56(m3/d),平均每延米每天涌水量为:0.19(m3/m.d)。
正常涌水量为:Q= 2.74*α*W*A= 2.74*0.16*508.7*0.33=73.59(m3/d),平均每延米每天涌水量为:0.07(m3/m.d)。
2. 大气降水渗入法(DK292+150-DK293+440段)Q = 2.74*α*W*AQ—采用大气降水渗入法计算的隧道涌水量(m3/d)α—入渗系数W—年降雨量(mm)A—集水面积(km2)参数的选用:α—入渗系数选用0.18;W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。
A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.79km2最大涌水量为:Q= 2.74*α*W*A = 2.74*0.18*1496.88*0.79= 583.23(m3/d),平均每延米每天涌水量为:0.45(m3/m.d)。
正常涌水量为:Q= 2.74*α*W*A = 2.74*0.18*508.7*0.79= 198.2(m3/d),平均每延米每天涌水量为:0.15(m3/m.d)。
3.大气降水渗入法(DK293+440- DK293+870段)Q = 2.74*α*W*AQ—采用大气降水渗入法计算的隧道涌水量(m3/d)α—入渗系数W—年降雨量(mm)A—集水面积(km2)参数的选用:α—入渗系数选用0.12;W—隧址多年平均降雨量为508.7mm,最大年降雨量为1496.88mm(月平均最大降雨量×12)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
隧道涌水量预测
准确预测隧道涌水量一直是国内外隧道建设的难点,目前尚无成熟的方法。
为了使我们的预测尽可能接近实际,进行了大量的水文地质调查与测试,采集了较丰富的数据,拟采用多种方法进行预测。
考虑各段含水带渗透系数的差异,采取分段预测隧道涌水量。
并根据水文地质条件选用三种不同方法(公式)分别计算,以便比较。
8.2.1 竖井比拟法
裂隙网络具分段独立性,含水体上、下部均有隔水边界。
设单个竖井居各段裂隙发育系统之中,完全可以达到疏干目的。
又因在不同地段内均有代表性抽水试验孔,按钻孔涌水量曲线方程推求各段隧道底板的涌水量,然后比拟成竖井涌水量,将会较为接近实际。
本次根据ZK28-3、ZK29-1、CZK53-1、CZK53-2抽水试验Q~S曲线曲线方程下推预测涌水量如下表8.2.1:
隧道涌水量预测(一)表8.2.1
8.2.2 地下水动力学法
考虑隧道在长期排水的情况下,位于无限厚的潜水含水带中,按有限含水厚度计算涌水量。
采用潜水非完整式水平巷道公式:
Q =]
)
(2)(4cos )(4ln[kS
)(22121212
2
212
1R R R R лb R R лb R H R H
kb +-++
+
式中:H 1=H 2 R 1=R 2
Q —预测涌水量(m 3/d );
H —由隧道路肩起算的含水层厚度(m ); R —隧道排水影响宽度(m ); b —隧道宽度(m ); S —降深(m );
k —隧道围岩渗透系数(m/d )。
隧道涌水量预测(二) 表8.2.2
8.2.3 降水入渗系数法
采用的计算公式为:
Q=2.74×α×ω×A
其中:Q—计算涌水量(m3/d);
α—入渗系数;
ω—年降水量(mm);
A—隧道集水面积(k㎡)。
中条山大部分基岩裸露,地表裂隙发育,有利于大气降水入渗。
但地形陡峭,大气降水易排走不易补给地下水,冲沟地段地势低平有利地下水入渗,根据有关经验数据,中条山混合花岗片麻岩和片岩地区的综合入渗系数取0.20。
Q=2.74×0.20×600×3.08=1013(m3/d)。