在设计地下室外墙时须考虑土的侧压力、水压力、消防车荷载分项系数的取值

合集下载

结构经济性的设计规定

结构经济性的设计规定

结构经济性的设计规定结构经济性的设计规定1.荷载1.1 消防车通道的楼面活荷载,有覆土时按消防车轮压折合成等效均布荷载(规范给的是直接行驶于楼面值)。

按消防车轮压取活荷载后,还可按本文第1.2条进行活荷载折减。

第1.1条应经第三方审核认可后再实施(双方确认覆土时轮压折算公式)。

1.2 汽车(非消防车)通道及停车库楼面梁的活荷载折减系数[见《荷规》第4.1.2-3条](1)按单向板布置时,其活荷载应按次梁、主梁分开折减计算:次梁计算时,活荷载折减系数按0.8取值;主梁计算时,活荷载折减系数按0.6取值,但是平行次梁的主梁,活荷载仍按0.8折减。

(2)按双向板布置时,其活荷载是一次折减计算:主次梁计算时,板活荷载折减系数均按0.8取值。

1.3 一般楼面梁活荷载折减系数(1)住宅,办公楼等楼面梁[见《荷规》第4.1.2-1条]当梁从属面积超过25m2时,活荷载折减系数按0.9取值。

(1)会议室,商场等楼面梁[见《荷规》第4.1.2-2条]时当梁从属面积超过50m2时,活荷载折减系数取0.9。

1.4 人防等效静载的折减多层地下室时,可考虑地下各层楼盖对冲击波的衰减作用,每层衰减按15%取值。

例:人防顶板上面另有n层地下室楼板时,人防等效静载×(1-n×15%)。

第1.4条应经过第三方审核认可后再实施。

1.5 地下室底板上垂直荷载直接由底板下地基土承受,不再传递到基础梁及承台(淤泥质土或扰动土时,换填500厚中粗砂或好素土密实处理)。

这也是桩基不考虑水平承载力和偏心受压的构造要求之一。

1.6 活荷载的不利布置(1)高层建筑:楼面活荷载≤4.0 KN/m2时,不考虑活荷载不利布置(《高规》第5.1.8条)。

(2)多层建筑:《技术措施》第2.8.1条要求楼面活荷载>2.0 KN/m2或跨度相差太大时,应考虑活荷载的不利布置。

(附注:非“强条”,由设计者自己掌握。

)(3)活荷载不利布置时,仅考虑本梁的弯矩及剪力增大,不考虑把增大的剪力传至到主梁或柱。

北京地区建筑设计技术细则(结构专业)

北京地区建筑设计技术细则(结构专业)

荷载的取值
1:一般民用建筑的地下室顶板(正负零处)的活荷载取4KN/m2
2:地下水以下的土容重,可近似取11KN/m3计算。

3:在计算地下室外墙时,一般民用建筑的室外地面活荷载可取5 KN/m2,当地下一层顶板之上有覆土或其他填充物时,消防车压力应按照覆土厚度折合,不应直接取35或20KN/m2
4:停车库的荷载a停放小轿车的停车库,其楼板的活荷载按荷载规范取GB50009-2001表4.1.1中取值b停放较大型的车的停车库,其楼面的活荷载应按车辆实际轮压重量考虑,并按最不利的轮压荷载组合另加2 KN/m2的均布荷载考虑。

不论停放任何车辆,在设计时其活荷载均不应另乘以动力系数。

5:当悬挑结构的悬挑长度≥6m;大跨度结构的跨度≥24m时,应考虑竖向地震的作用。

6:计算地下室外墙之侧向压力时。

盈建科专题12地下室计算

盈建科专题12地下室计算

地下室计算一、地下室和上部结构整体建模共同计算一般应将地下室和其上的上部结构各层共同建立完整的计算模型进行计算分析。

上部结构和地下室组成一个受力体系,具有共同的位移场,相互协调变形。

共同作用分析可以较准确地得到上部结构对地下室变形的影响,同样也可以较准确地反映地下室结构的变形对上部结构的影响。

一般情况下地下室都有侧土约束,因此需要考虑地下室回填土侧向约束对整体结构水平位移的影响。

另外,规范对于地下室的很多要求、地下室本身的计算等常需要在整体模型中得到体现。

二、地下室的计算参数将地下室建入整体模型后,需要在计算参数的几处设置地下室相关的参数:一是在结构总体信息页中设置地下室层数、嵌固端所在层号等;二是在地下室信息页填写地下室回填土的侧向约束、侧向水土压力等地下室相关参数。

1、结构总体信息页嵌固端所在层号一般和地下室层数相同。

但是当地下一层的刚度不够大、不能起到嵌固作用时,可能比地下室层数小。

嵌固端所在层号影响底层柱内力调整、嵌固层梁柱配筋调整、刚重比计算等。

在楼层组装时,应正确输入地下室各层的底标高。

软件可根据用户输入的地下室层数,给出每层的层名称,如地下1层、地下2层等。

这些信息的输入还有助于基础部分的设计。

2、计算控制信息页这里设置有选项“地下室是否按照刚性楼板假定计算”,软件隐含将地下室部分的各层按照强制刚性板假定计算。

有的地下室结构不适合按照强制刚性板假定计算,如板柱结构的地下室层,若计算时不能考虑楼板的面外刚度,计算模型与实际不符。

此时可将这样的楼层设置为弹性楼板3,并在此处的选项中取消对地下室按照强制刚性板假定计算。

3、地下室信息页如图3.6.1,这是有关地下室计算的重要参数,主要填写“土层水平抗力系数的比例系数(m值)。

m值可按《建筑桩基技术规范》(JGJ94-2008)表5.7.5中取值。

同时软件在对话框中给出m值的常见取值范围。

地下室部分特殊的荷载就是地下室外墙的侧向土、水压力。

贵州地区地下室结构设计浅谈

贵州地区地下室结构设计浅谈

贵州地区地下室结构设计浅谈发布时间:2021-05-20T15:13:47.440Z 来源:《建筑实践》2021年40卷第4期作者:王媛[导读] 建筑地下室的设计非常复杂王媛贵州省城乡规划设计研究院摘要:建筑地下室的设计非常复杂,地下部分的结构设计工作往往会成为整个结构设计工作的重中之重。

在建筑物的地下室部分往往包含有车库、车道板,各种设备机房、消防水池、等多种功能性用房,有些还含有人防地下室,在商业综合体的地下室甚至还会设置影院、超市等,功能非常复杂。

由于其下部与基础相连,上部承接建筑物主体部分,结构受力复杂,场地条件、上部结构类型、基础选型都会对其造成很大影响,需要精心设计,寻求最合理经济的结构体系。

功能复杂性势必带来荷载多样化,各种荷载的合理取值,合理组合也需要仔细甄别考量,各种工况都考虑到。

由于地下室的各种复杂要素,计算下来土建造价会远远高于上部主体结构,出于对成本的控制要求,也需要设计师对规范要求深入准确的理解,该考虑的荷载一律不能遗漏,但是可以折减可以优化的,应按照规范做相应的调整,兼顾结构安全与经济性。

关键词:结构设计;地下室;山区1.场地贵州山区的地质条件往往会比较复杂,地势高差大,岩土构成差异大,特有的喀斯特地貌岩溶发育强,地表水汇集后对建筑物影响大。

所以在设计时,应充分考虑场地的稳定性、环境边坡、水文地质条件等。

结构设计之初就应对选址深入分析研究,如果遇到不利和危险地段,积极与业主单位进行沟通,阐明危害性,供业主决策。

山地建筑的场地勘察应有场地稳定性评价、边坡稳定性评价和防治方案建议,根据现场实际条件设置安全可靠的边坡工程,先治坡后建房。

建于山地上的建筑,应根据抗震规范估计不利地段对设计地震动参数可能产生的放大作用,考虑水平地震影响系数最大值的增大系数(1.1~1.6)。

做总图设计时尽量不高挖深填,而是随地势打造出局部的平整环境,避免出现吊脚、掉层的结构,保证高层建筑的塔楼范围的基底能位于同一水平面上,降低设计难度,也争取结构的规则性,对抗震有利。

地下室外墙配筋规范要求

地下室外墙配筋规范要求

地下室外墙配筋规范要求篇一:地下室外墙规定地下室外墙设计为了满足抗渗要求,地下室外墙(以下简称外墙)的厚度一般不应小于250mm,混凝土强度等级常用C20~C30。

1.荷载:竖向荷载有上部及各层地下室顶板传来的荷载和外墙自重;水平荷载有室外地坪活荷载、侧向土压力、地下水压力、人防等效静荷载。

(1)室外地坪活荷载:一般民用建筑的室外地面(包括可能停放消防车的室外地面),活荷载可取5kN/m2。

有特殊较重荷载时,按实际情况确定。

(京院技措2.0.6)地面活荷载对外墙产生的压力为沿墙高度方向的均布荷载Px, Px=qx.Ka= qx/3, qx为地面活荷载(2)水压力:水位高度可按最近3~5年的最高水位确定,不包括上层滞水。

(京院技措3.1.8)(3)土压力: a. 当地下室采用大开挖方式,无护坡桩或连续墙支护时,地下室外墙承受的土压力宜取静止土压力,土压力系数K0,对一般固结土可取K0=1-sinφ(φ为土的有效内摩擦角),一般情况可取0.5。

(京院技措2.0.16) b. 当地下室施工采用护坡桩或连续墙支护时,地下室外墙土压力计算中可以考虑基坑支护与地下室外墙的共同作用,或按静止土压力乘以折减系数0.66近似计算,Ka=0.5x0.66=0.33,相当于主动土压力。

(京院技措2.0.16) c. 地下水位以下土的容重,可近似取11kn/m2。

(京院技措2.0.5)实际上,风荷载和地震区地面运动使土压力超过静态土压力而有所增加,但其对外墙平面外产生的内力较小,可以不予考虑。

2.荷载设计值:以前的算法地面活荷载取1.4外,其他包括水压力均取1.2。

现依据《建筑结构荷载规范,当活荷载占总荷载之比值不大于20%时,γG=1.35, γQ=1.40,ΨC=0.7,综合分析后外墙各项荷载分项系数均取1.30。

3.计算简图:(1)地下室无横墙或横墙间距大于层高2倍时,其底部与刚度很大的基础底板或基础梁相连,可认为是嵌固端;顶部的支座条件应视主体结构形式而定。

地下室外墙的计算

地下室外墙的计算

地下室外墙(挡土墙)的计算1 计算方法1、1计算简图①根据墙板长边与短边支承长度的比例关系,地下室外墙(挡土墙)、窗井外墙按双向板或单向板计算。

②对单层或多层地下室外墙,当基础底板厚度不小于墙厚时,可按底边固结于基础、顶边铰接于地下室顶板的单跨或连续板计算。

当基础底板厚度小于墙厚时,底边按铰接计算。

窗井外墙顶边按自由计算。

墙板两侧根据实际情况按固结或铰接考虑。

③墙板的支承条件应符合实际受力状态,作为墙板支座的基础与内墙(或扶壁柱),其内力与变形应满足设计要求。

1、2计算荷载图一地下室外墙压力分布地下室外墙承受竖向荷载与水平荷载。

竖向荷载包括地下室外墙自重、上部建筑(结构构件与围护构件)竖向荷载、地下室各层楼板传递的竖向荷载。

水平荷载包括土压力(地下水位以下为土水混合压力)、地下水压力、室外地面活荷载引起的侧压力、人防外墙等效静荷载。

2计算中需注意的问题2.1《全国民用建筑工程设计技术措施/结构/地基与基础》(2009年版)[1]第5、8、11条与《北京市建筑设计技术细则-结构专业》(2005版)[2]第2、1、6条对室外地面活荷载,建议取5kN/m2(包括可能停放消防车的室外地面)。

该规定适用于有上部结构的地下室外墙,且当考虑消防车时消防车重不超过30吨。

其出发点就是行车道距离建筑物外墙总就是有一定距离的,即一般情况下汽车不可能紧贴上部建筑外墙行驶(《城市居住区规划设计规范》、《建筑设计防火规范》等对室外行车道距离建筑物外墙的距离有明确规定),消防车更不可能紧贴上部建筑外墙进行消防扑救(因消防云梯车在工作时受云梯高度与仰角的制约必须与建筑物外墙保持一定距离)。

但就是,对于没有上部结构的纯地下车库,或处于上部结构范围之外的地下室外墙,以及消防车重超过30吨的,笼统地按5kN/m2计算就是有问题的,应当根据车道与地下室外墙的位置关系、地下室顶板覆盖层厚度及其应力扩散角、车辆轮压按实际情况计算。

2.2文[1]第5、8、5条计算水压力时,当勘察报告提供了地下室外墙水压力分布时,按勘察报告计算;当勘察报告未提供时,可取历史最高水位与近3~5年的最高水位的平均值(水位高度包括上层滞水),水压力按静止压力直线分布计算。

地下室结构的抗震设计分析

地下室结构的抗震设计分析

地下室结构的抗震设计分析一、几种主要的地下结构抗震设计方法1、静力法。

把地震作用当作等效的静力荷载进行抗震计算。

它通常应用于地下管线、洞道的横截面抗震设计,它把地震时的土压力和结构物以及结构物以上覆土层作为外力考虑。

这种方法的缺陷在于没有考虑土层与结构各自的振动特性及其相互间的关系。

2、反应位移法。

70年代,日本学者从地震观测入手,提出了地下线状结构抗震设计的反应位移法。

其基本原理就是用弹性地基上的梁来模拟地下现状结构,把地震时地基的位移当作已知条件作用在弹性地基上,以求解在梁上产生的应力和变形,从而计算地下结构(隧洞、管道、竖井等)地震反应,公式可以简化为拟静力计算公式,K{U}=Ks{Ug}。

式中的矩阵K包括地下结构的刚度Kt和地基抗力Ks。

本方法的关键是确定地基变位{Ug}和抗力系数Ks,通常将Ks取为对角阵,则Ks相当于文科尔弹簧常数或地基土介质的弹簧常数。

这种方法的理论基础是基于地震时支配地下结构地震反应的地基变形而不是结构物的惯性力。

近年来,大多数地下结构,尤其是地下管线都把这种方法作为其抗震设计方法。

但是,这种方法把不规则地震波的传播看作为同一周期和同一方向的地震波,从而与实际相去甚远;另外该法只适用于线形地下结构的抗震研究,用于大断面地下结构的抗震分析时需要进一步探讨、完善和修改。

3、动力反应分析法。

主要适用于结构物形状和地质条件比较复杂时的地下结构抗震反应分析。

它是采用有限元理论,将地震记录直接输入结构模型求得结构的动力反应。

这种方法不仅可以求得结构受地震作用时反应的最大值,而且也可以观察到结构反应的全过程,同时也使结构的弹塑性反应分析成为可能。

动力反应分析法又可细分为两种:一种是考虑土和结构的相互作用;另一种是不考虑土和结构的相互作用。

前者将土与结构当作由一定的边界条件联系起来的整体系统来考虑,后者即不考虑结构的存在,把自由场的地震位移反应当作相应的结构地震位移反应。

这种方法适用于任意的地下结构类型,同时考虑地基土的具体性质和结构的非线性,缺点是应用不便,难以得到规律性的结论,且其结果需要得到实验或理论解析的验证。

关于地下室外墙应如何计算

关于地下室外墙应如何计算

关于地下室外墙应如何计算关于地下室外墙应如何计算1计算方法1.1计算简图(1)根据墙板长边与短边支承长度的比例关系,地下室外墙(挡土墙)、窗井外墙按双向板或单向板计算.(2)对单层或多层地下室外墙,当基础底板厚度不小于墙厚时,可按底边固结于基础、顶边铰接于地下室顶板的单跨或连续板计算;当基础底板厚度小于墙厚时,底边可按铰接计算或按弯矩平衡计算.不论采用何种计算简图,均应采用适宜的构造做法.窗井外墙顶边按自由计算.墙板两侧根据实际情况按固结或铰接考虑.(3)墙板的支承条件应符合实际受力状态,作为墙板支座的基础和内墙(或扶壁柱),其内力和变形应满足设计要求.1.2计算荷载地下室外墙承受竖向荷载和水平荷载.竖向荷载包括地下室外墙自重、上部建筑(结构构件和围护构件)竖向荷载、地下室各层楼板传递的竖向荷载.水平荷载包括土压力(地下水位以下为土水混合压力)、地下水压力、室外地面活荷载引起的侧压力、人防外墙等效静荷载.2计算中需注意的问题(1)《全国民用建筑工程设计技术措施/结构/地基与基础》(2009年版)第5.8.11条和《北京市建筑设计技术细则-结构专业》(2005版)第2.1.6条对室外地面活荷载,均建议取5kN/m2(包括可能停放消防车的室外地面).该规定对于有上部结构的地下室外墙是适用的,且当考虑消防车时消防车重不超过30吨.其出发点是行车道距离建筑物外墙是有一定距离的,即一般情况下汽车不可能紧贴上部建筑外墙行驶(《城市居住区规划设计规范》、《建筑设计防火规范》等对室外行车道距离建筑物外墙的距离有明确规定),消防车更不可能紧贴上部建筑外墙进行消防扑救(因消防云梯车在工作时受云梯高度和仰角的制约必须与建筑物外墙保持一定距离).对于没有上部结构的地下车库外墙,或处于上部结构范围之外的地下室外墙,以及消防车重超过30吨的,若笼统地按5kN/m2计算就可能因地面荷载取值偏小而引起结构安全问题.这时候应当根据车道与地下室外墙的位置关系、地下室顶板覆盖层厚度及其应力扩散角、车辆轮压分布按实际情况计算.(2)《全国民用建筑工程设计技术措施/结构/地基与基础》(2009年版)第5.8.5条计算水压力时,当勘察报告提供了地下室外墙水压力分布时,按勘察报告计算;当勘察报告未提供时,可取历史最高水位和近3~5年的最高水位的平均值(水位高度包括上层滞水),水压力按静止压力直线分布计算.《北京市建筑设计技术细则-结构专业》(2005 版)第3.1.8条则相对更为简化,要求验算地下室外墙承载力时,水位高度可按最近3~5年的最高水位(水位高度包括上层滞水).当勘察报告缺少对地下水变化规律的描述,或勘察报告依据的场地标高与设计目标的差别可能影响设计结果时,应请勘察单位补充说明.如果勘察报告提供了抗浮设计水位,在计算地下室外墙承载力时应按抗浮设计水位计算.(3)计算地下室外墙土压力时,对采用大开挖方式施工的地下室,当没有护坡桩或连续墙支护时,地下室外墙土压力取静止土压力.《建筑地基基础设计规范GB50007-2011》第9.3.2条的条文说明指出,静止土压力系数宜通过试验测定,当无试验条件时,对正常固结土,静止土压力系数可按表24估算.静止土压力系数K=1-sinφ(φ为土的内摩擦角).当基坑支护采用护坡桩或连续墙时,除考虑支护结构和地下室外墙共同作用的情况外,地下室外墙土压力按静止土压力系数K乘以折减系数0.66计算(《全国民用建筑工程设计技术措施/结构/地基与基础》(2009年版)第5.8.11条,《北京市建筑设计技术细则-结构专业》(2005版)第2.1.16条).例如,北京地区静止土压力系数K一般取0.5,乘以折减系数0.66后即为0.33.(4)计算地下水位以下土对地下室外墙的侧压力时,土的重度应取有效重度:有效重度=饱和重度-水重度(水的重度取10kN/m3).注意,不能用天然重度减去水重度来计算有效重度,这是错误的概念.当勘查报告只提供了土的天然重度而没有提供饱和重度时,可根据报告提供的土粒比重(土粒相对密度)和孔隙比求出饱和重度,即:饱和重度=[(土粒比重-1)/(1+孔隙比)]×水重度,或根据勘察报告提供的其他参数计算有效重度,必要时应请勘察单位补充.有效重度一般在8~13kN/m3,北京地区一般第四纪土的有效重度可取11kN/m3.(5)《全国民用建筑工程设计技术措施/结构/地基与基础》(2009年版)第5.8.11条提出,配筋计算时,地下室外墙的侧向压力分项系数取1.3.这是指在完成荷载组合之后,对其荷载效应乘以该分项系数,适用于仅考虑水平荷载的情况.从受力状态上讲,地下室外墙属于压弯构件,同时存在水平荷载和竖向荷载.一般情况下,地下室外墙计算时可以忽略竖向荷载作用,是因为竖向荷载引起的效应在荷载效应组合中所占比例很低,对配筋结果的影响很小.但是对于地下室外墙上部有较大荷载的情况,例如地下室外墙与上部结构剪力墙相连的情况,当竖向荷载较大已经不可忽略时,仍应按恒、活荷载效应的比例确定具体分项系数,按压弯构件计算,并与按纯弯计算的结果比较,选较大值作为配筋设计的依据.(6)计算地下室外墙配筋时,如果考虑地下室外墙扶壁柱的支承作用,就必须考虑按外墙传递的荷载计算扶壁柱的内力和变形.当扶壁柱与上部结构框架柱相连时,扶壁柱的内力要考虑上部结构的整体作用.当上部结构的柱距较大时,可在地下室外墙加设扶壁柱,用以减小墙板的跨度,进而减小扶壁柱承担的水平荷载.当扶壁柱承担较大的上部结构传递的竖向荷载时,应按压弯构件计算.当扶壁柱承担的竖向荷载较小时,例如仅地下室设置的扶壁柱,可按底端固结、顶端连续的竖向单跨梁(或连续梁)计算.(7)对剪力墙结构的地下室挡土墙,应尽可能利用垂直于外墙方向的剪力墙作为外墙板的支座,按双向板计算配筋.对框架结构的地下室挡土墙,按竖向单向板计算配筋较为稳妥.挡土墙配筋可以采用通长钢筋+附加短筋(竖向、水平或两者兼有)的方式,而不必一律通长,可以节约钢材.对平面长度较大的窗井墙,可在其中部设置内隔墙作为窗井墙的支座,根据窗间墙长度确定工字形截面,按底部嵌固于基础、顶部铰接于地下室顶板的竖向梁计算其承载力和变形.图2设有内隔墙的窗井墙(8)根据一般民用建筑工程混凝土结构所处的环境类别,外墙外侧钢筋的混凝土保护层厚度取30mm已经足够,如无特殊需要,不必加厚.对《地下工程防水技术规范》(GB50108-2008)第4.1.7条的规定应慎重对待.设有防水层的人防外墙,混凝土保护层厚度取30mm.(2009年版全国民用建筑工程设计技术措施-防空地下室)(9)地下室外墙的厚度,当有防水要求时不小于250mm,具体厚度应根据计算确定.当为多层地下室时,其外墙可根据侧向压力、层高的大小,自下而上逐层减小墙厚,以节约混凝土和钢材.如果层高较大且室内有回填土及刚性地坪时,可以利用刚性地坪减小外墙的计算高度.此时,应要求施工时先回填室内,后回填室外,回填土的压实系数不应小于0.94.当有条件时,可在外墙根部设置加腋或地梁,用以减小外墙的计算高度.加腋或地梁的刚度应能约束外墙使之符合计算简图.当地下室外墙计算时确定底部为固结支座(即外墙固结于基础),侧壁底部与相连的基础底板应满足弯矩平衡条件,底板的抗弯能力不应小于侧壁.尤其对窗井外墙、地下车道外墙敞口段,车道侧壁等悬臂构件,要特别注意底板的抗弯能力不应小于侧壁底部.同时,对于地下室顶板开洞部位(如楼梯间、地下车道),地下室外墙顶部没有楼板支撑,应注意计算模型的支座条件和配筋构造要与实际情况相符.(10)由于一般地下室外墙所受弯矩是底部最大,因此一般竖向钢筋置于外层,水平钢筋置于内层,使挡土墙在承受水平荷载时有效高度最大,抗弯能力最高.《混凝土结构施工图平面整体表示方法制图规则和构造详图(现浇钢筋混凝土框架、剪力墙、梁、板)16G101-1》规定地下室外墙的水平筋在内层,但当设计有不同要求时,应按设计要求施工.需要注意的是,当大多数墙板的两侧弯矩相较于底端为大时,就应改变竖向钢筋和水平钢筋的内外位置,保障最大的有效高度.(11)地下室外墙的混凝土强度等级应尽量采用较低等级,以不超过C30为宜.因为混凝土强度等级越高,水泥用量越大,就越容易产生收缩裂缝.当地下室外墙(或扶壁柱)与上部结构剪力墙(或框架柱)相连时,若上部结构剪力墙(或框架柱)的混凝土强度等级高于地下室外墙的混凝土强度等级,应通过计算确定地下室外墙的混凝土强度等级,此时,不应简单地将地下室外墙的混凝土强度等级取与上部结构相同.混凝土强度等级的确定,尚应符合规范规定的环境类别.当地下室有防水要求时,根据相关规范,地下室外墙的抗渗等级应由最大水头与墙厚之比确定,且不应低于P6.3结论地下室外墙(挡土墙)既承担竖向荷载,亦承担水平荷载,经济、合理地设计地下室外墙,对结构安全、投资优化都会产生积极的影响.本文简单地讨论了地下室外墙(挡土墙)计算的相关问题,期待各位同行批评指正.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档