圆锥曲线几何性质之离心率的求法.ppt
高考二轮微专题之圆锥曲线离心率课件(共18张PPT)

学习目标
总纲:建立关于一个, , 的方程(或不等式),然后再解方程或不等
Байду номын сангаас
式,要注意的是建立的方程或不等式应该是齐次式.一般建立方程有两种
1 利用圆锥曲线的定义解决;○
2 利用题中的几何关系来解决问题。
办法:○
方法1:利用焦半径取值范围建立不等式
方法1:利用定义法求离心率
方法2:利用几何关系求离心率
1
中点 A 在第一象限,且cosθ= .若|AB|=|AF1|,则双曲线 C 的离心率为
4
设1 = = ,又1 − 2 = 2,
所以2 = − 2,2 = 2,
又1 − 2 = 2,1 = 4;
1
1 2 = 2, 1 2 = ,
方法3:定义法+几何关系结合
方法2:利用角度的余弦值建立不等式
方法3:利用已知的角度关系建立不等式
方法4:利用点与圆锥曲线的位置关系建立不等式
方法5:利用方程有根建立不等式
策略一:定义法求离心率
情景导入
例 1(2021 年南京二模 7)已知双曲线
的左、右焦点
分别为 F1,F2,过点 F2 作倾斜角为 θ 的直线 l 交双曲线 C 的右支于 A,B 两点,其
情景导入
x2 y 2
练 2(2020 年湖南永州市高三三模 11 题)已知双曲线 C : 2 2 1 a 0, b 0 的左、右顶点分别为 A ,
a
b
B ,左焦点为 F , P 为 C 上一点,且 PF x 轴,过点 A 的直线 l 与线段 PF 交于点 M (异于 P , F ),与
a
b
左右两个焦点,且 PF1 PF2 0 ,线段 PF2 的垂直平分线恰好是该双曲线的一条渐近线,则离心率为
椭圆中离心率问题(共19张PPT)

3、致胜秘诀: 理清算理耐心算,成功就在不远处!
典例剖析
根据直角三角形中斜边与直角边的不等 关系,得到关于a,c的齐次不等式.
典例剖析
典例剖析
根据椭圆的范围(点坐标分量的有界性), 得到关于a,c的齐次不等式.
典例剖析
设线法
建立离心率和某个 变量的(函数)关系 式,求值域.
典例剖析
设点法
根据曲线的范围,得到 关于e的不等式.
典例剖析
典例剖析
典例剖析
利用椭圆的定义和勾股定理建立 线段之间的关系,从而得到关于 a,c的齐次等式.
典例剖析
椭圆的第一定义和第二定义
典例剖析
典例剖析
解法提炼
求椭圆离心率的值: (1)解题方向:建立关于a,c的齐次等式. (2)实现策略
几何转化:利用椭圆的定义寻找线段之间的等量关系ห้องสมุดไป่ตู้ 方程思想:利用点在椭圆上,将点的坐标代入椭圆方程.
椭圆中离心率问题
高三 数学
考点概述
离心率是圆锥曲线的一个重要知识点,同时也是圆锥 曲线的重要几何性质.纵观近几年江苏高考,求离心率的 值或范围的题目屡见不鲜.这节课以椭圆为例,复习求椭 圆离心率的值或范围的一些方法.
典例剖析
通过将条件中的直角转化为向量 数量积等于零,找到曲线上点的 坐标满足的关系式,从而得到关 于a,c的齐次等式.
典例剖析
解法提炼
求椭圆离心率的范围: (1)解题方向:建立关于a,c的齐次不等式. (2)实现策略
几何性质:利用圆锥曲线的范围(如点坐标或焦半径的范围) 建立不等关系求解.
函数思想:根据条件建立离心率和其他变量的函数关系式, 然后利用函数求值域的方法求解离心率的范围.
圆锥曲线离心率的求法(已整理)

圆锥曲线离心率的求法进修目的1.控制求解椭圆.双曲线离心率及其取值规模的几类办法;2.造就学生的剖析才能.懂得才能.常识迁徙才能.解决问题的才能; 进修重难点重点:椭圆.双曲线离心率的求法;难点:经由过程回归界说,联合几何图形,树立目的函数以及不雅察图形.设参数.转化等门路肯定离心率教授教养进程:温习回想:圆锥曲线离心率的概念 一.求离心率探讨一:应用界说直接求a ,c例1.已知椭圆E 的短轴长为6,核心F 到长轴的一个端点的距离等于9,则椭圆E 的离心率等于.演习1:在正三角形ABC 中,点D.E 分离是AB.AC 的中点,则以B.C 为核心,且过D.E 的双曲线的离心率为( )A.53B.3-1C.2+1D.3+1 探讨二:结构关于e 的(a,b,c 的齐次)方程 例2.已知椭圆22221(0)y x a b a b +=>>的上核心为F ,左.右极点分离为12,B B ,下极点为A ,直线2AB 与直线1B F 交于点P ,若22AP AB =,则椭圆的离心率为___________演习2.双曲线x2a2-y2b2=1(a>0,b>0)的左.右核心分离是F1.F2,过F1作竖直角为30°的直线交双曲线右支于M 点,若MF2垂直于x 轴,则双曲线的离心率为( )A.6B.3C.2D.33探讨三:以直线与圆锥曲线的地位关系为布景,设而不求肯定e 的方程例3.椭圆x2 a2 +y2b2 =1(a>b >0),点F 的直线交椭圆于A.B 两点,→OA +→OB 求e?二.求离心率的规模(1.直接依据题意树立,a c 不等关系求解. 例 4.已知双曲线12222=-by a x (0,0>>b a )的半焦距为c,若042<-ac b, 则双曲线的离心率规模是( ) A.521+<<e B522+<<e C.5252+<<-eD.223<<e2.借助平面几何干系树立,a c 不等关系求解 例5.设12F F ,分离是椭圆22221x y a b+=(0a b >>)的左.右核心,若在直线x=2a c 上消失,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值规模是( )A .(02,B .(0C .1)2 D.1)3.应用圆锥曲线相干性质树立,a c 不等关系求解.例6.已知双曲线x2a2-y2b2=1(a>0,b>0) ,F1是左核心,O 为坐标原点,若双曲线上消失点P,使|PO|=|PF1|,则此双曲线的离心率的取值规模是()A .(1,2] B .(1,+∞)C.(1,3) D .[2,+∞)4.应用数形联合树立,a c 不等关系求解 例7.已知双曲线22221(0,0)x y a b a b-=>>的右核心为F,若过点F 且竖直角为60︒的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值规模是 ( )(A )(1,2] (B )(1,2) (C )[2,)+∞ (D )(2,)+∞ 5.应用函数思惟求解离心率 例8.设1>a ,则双曲线22221(1)x y a a -=+的离心率e 的取值规模是A .)2,2( B.)5,2( C.)5,2( D.)5,2(演习 3. 设A1.A2,若在椭圆上消失异于A1.A2的点P ,使得02=⋅PA PO ,个中O 为坐标原点,则椭圆的离心率e 的取值规模是A. B. C.小结:求离心率的症结是列出一个与a,b,c,e有关的等式或不等关系求离心率的症结是列出一个与a,b,c,e有关的等式或不等关系.在此,要活用圆锥曲线的特点三角形.经常应用办法:1.应用曲线变量规模.圆锥曲中变量的变更规模对离心率的影响是直接的,充分应用这一点,可优化解题.2.应用直线与曲线的地位关系.依据题意找出直线与曲线相对的地位关系,列出相干元素的不等式,可敏捷解题.3.应用点与曲线的地位关系.依据某点在曲线的内部或外部,列出不等式,再求规模,是一个主要的解题门路.4.联立方程组.假如有两曲线订交,将两个方程联立,解出交点,再应用规模,列出不等式并求其解.5.三角函数的有界性.用三角常识树立等量关系,再应用三角函数的有界性,列出不等式易解.6.用根的判别式依据前提树立与a.b.c相干的一元二次方程,再用根的判别式列出不等式,可得简解7.数形结正当:解析几何和平面几何都是研讨图形性质的,只不过平面几何只限于研讨直线形和圆.是以,在题设前提中有关圆.直线的问题,或标题中结构出直线形与圆,可以应用平面几何的性质简化盘算. 演习1.如图,双曲线2222 1 (,0)x y a b a b -=>的两极点为1A ,2A ,虚轴两头点为1B ,2B ,两核心为1F ,2F . 若认为12A A 直径的圆内切于菱形1122F B F B ,切点分离为,,,A B C D . 则双曲线的离心率e =;2.设12,F F0)b>的两个核心,P 是C 上一点,若1PF PF +30,则C 的离心率为___. 3.如图,1,F 2C 的公共核心,B A ,分离是1C ,2C 21BF AF 2C ( )A .2B .3B .C .23D .264.设双曲线C :x2a2-y2=1(a>0)与直线l :x +y =1订交于两个不合的点A,B. 求双曲线C 的离心率e 的取值规模。
圆锥曲线离心率的求法

离心率是圆锥曲线的一个几何性质.与圆锥曲线离心率有关的问题主要考查圆锥曲线的定义、性质以及离心率的公式,属于一类基础性的问题.求圆锥曲线离心率的关键是求得圆锥曲线方程中a、b、c的值或关系式.本文重点介绍求圆锥曲线离心率的三种方法,以供大家参考.一、公式法公式法是指运用公式e=c a求出离心率的方法.在解题时,我们可以根据已知条件以及圆锥曲线的标准方程、性质建立与a、c相关的关系式,结合圆锥曲线中a、b、c之间的关系求出a、c的值,然后利用公式e=ca求得离心率的大小.例1.过双曲线C:x2-y2b2=1()b>0的左顶点A作斜率为1的直线l,若直线l与双曲线的两条渐近线分别交于B,C,且||AB=||BC,则双曲线的离心率为____.解:由双曲线的方程可知a=1,∴点A()-1,0,∴直线l方程为y=x+1,∵双曲线C:x2-y2b2=1()b>0知两条渐近线分别为y=bx,y=-bx,∴Bæèöø-1b+1,b b+1,Cæèöø1b-1,b b-1,∵||AB=||BC,∴b2=9,c=b2+1=10,∴e=c a=10.我们首先根据双曲线的方程求出a的值,然后由B、C两点的坐标以及已知条件||AB=||BC建立关于b的式子,求得b、c的值,便可利用离心率公式求得问题的答案.二、齐次式法齐次式法是求圆锥曲线离心率的重要方法之一.齐次式法是指通过构建齐次式来解答问题的方法.有些问题中a、c的值不易直接求出,我们可以结合已知条件构造关于a、c的齐次式,通过解方程得到e=ca的值.例2.已知F1,F2分别是双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点,以线段F1F2为边作正△MF1F2,若MF1的中点在双曲线上,则双曲线的离心率为____.解:结合题意绘制如图的图形,设||OF1=c,MF1的中点为P,∴点P的横坐标为-c2,∵||PF1=12||F1F2=c,由焦半径公式可得||PF1=-2x p-a,∴c=-c a׿èöø-c2-a,化简得c2-2a2-2ac=0,∴e2-2e-2=0,解方程得e1=1+3,e2=1-3()舍去,∴双曲线的离心率为1+3.在解答上题的过程中,需建立关于a、c的齐次式,再将其左右同除以a2,通过整理和化简得到关于e的一元二次方程,解方程便可求得e的值.三、定义法定义法是指利用圆锥曲线的定义求出离心率的方法.一般地,圆锥曲线的定义中都蕴含着a(动点到圆锥曲线上两焦点的距离之和或差)与c(焦点之间的距离)之间的关系.因此在求圆锥曲线的离心率时,我们可以根据圆锥曲线的定义绘制相应的图形,找出a、c对应的线段,建立关系式,便可求得圆锥曲线的离心率.例3.设F1,F2分别是椭圆x2a2+y2b2=1(a>0,b>0)的左,右焦点,点P在椭圆C,线段PF1的中点在y轴上,若∠PF1F2=30∘,则椭圆的离心率为_____.解:∵线段PF1的中点在y轴上,F1F2的中点为点O,∴PF2//y轴,∴PF2⊥F1F2,∵∠PF1F2=30∘,∴在Rt△PF1F2中,||PF1:||PF2:||F1F2=2:1:3,∵2a=||PF1+||PF2,2c=|F1F2∴e=c a=2c2a=||F1F2||PF1+||PF2=.解答本题,需结合题意绘制出图形,通过解直角三角形PF1F2得到||PF1、||PF2、||F 1F2的关系式,结合椭圆的定义求得a与c的值以及e的值.公式法、齐次式法、定义法都是解答圆锥曲线离心率问题的有效方法.其中公式法和定义法是比较常用的方法,齐次式法虽然较为复杂,但能有效地简化运算.(作者单位:广东省惠州市博罗县石湾中学)解题宝典翟勇超38Copyright©博看网 . All Rights Reserved.。
圆锥曲线离心率公开课课件

1.从圆锥曲线本身所具有的不等关系入手,以椭圆为例:
(1)焦半径的取值范围为 a c PF1 a c .
(2)椭圆焦点三角形顶角范围 (3)一般结论:b2 MF1 MF2 a2
2
利用焦点三角形顶得F1MF2 120o,120o F1BF2 180o,
60o
OBF2
90o,e sin OBF2 [
3 ,1). 2
利用焦点三角形顶角范围
一般结论:椭圆 G
: x2 a2
y2 b2
1(a
b
0)
的两焦点为 F1(c, 0), F2 (c, 0)
2b2 ,即 a2
2(a2 c2 ) 所以e
c a
2 ,所以椭圆离心率 2
的取值范围是[ 2 ,1) . 2
一般结论:b2 MF1 MF2 a2
求圆锥曲线离心率值及 范围常见题型与思路
1,直接利用已知条件找关系
2,在焦点三角形中找关系
3,利用条件中平面几何知识,结合 椭圆(双曲线)特殊边,角找关系
23
A. 7
B.4
C. 3
D. 3
解析 因为△ABF2为等边三角形, 所以不妨设|AB|=|BF2|=|AF2|=m, 因为A为双曲线右支上一点, 所以|F1A|-|F2A|=|F1A|-|AB|=|F1B|=2a, 因为B为双曲线左支上一点, 所以|BF2|-|BF1|=2a,|BF2|=4a, 由∠ABF2=60°,得∠F1BF2=120°, 在△F1BF2中,由余弦定理得4c2=4a2+16a2-2·2a·4a·cos 120°,
曲线的离心率求法

圆锥曲线的离心率问题离心率是圆锥曲线的一个重要几何性质,一方面刻画了椭圆,双曲线的形状,另一方面也体现了参数,a c 之间的联系。
一、基础知识: 1、离心率公式:ce a=(其中c 为圆锥曲线的半焦距) (1)椭圆:()0,1e ∈ (2)双曲线:()1,+e ∈∞ 2、圆锥曲线中,,a b c 的几何性质及联系 (1)椭圆:222a b c =+, (2)双曲线:222c b a =+3、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数,,a b c 的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向:(1)利用几何性质:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与a 有关,另一条边为焦距。
从而可求解(2)利用坐标运算:如果题目中的条件难以发掘几何关系,那么可考虑将点的坐标用,,a b c 进行表示,再利用条件列出等式求解,或者带入曲线求解 (3)利用三角形的相似关系 (4)利用点线距离关系4、离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑:(1)题目中某点的坐标是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求。
如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口 (2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可 (3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞ 二、考点一:求离心率 方法一:焦点三角形问题例1(1):设12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P在椭圆C 上,线段1PF 的中点在y 轴上,若1230PF F ∠=,则椭圆的离心率为( )A .3 B .6 C .13 D .16答案:A小炼有话说:在圆锥曲线中,要注意O 为12F F 中点是一个隐含条件,如果图中存在其它中点,则有可能与O 搭配形成三角形的中位线。
高中数学圆锥曲线中离心率的14种求解方法

圆锥曲线是高中数学的一个重要内容,其中离心率的求解是常考知识点之一。
本文将介绍圆锥曲线中离心率的14种求解方法,包括定义法、两点法、点差法、判别式法、参数方程法、切线法、弦长公式法、基本不等式法等。
每种方法都有其适用条件和优缺点,同学们可以根据具体情况选择合适的方法进行解题。
方法一:定义法定义法是通过利用圆锥曲线的定义来求解离心率的。
对于椭圆和双曲线,可以利用椭圆和双曲线的中心和对称性,以及长度的不减性来求解离心率的范围。
这种方法适用于简单的情况,但在复杂的情况下需要结合其他方法进行求解。
方法二:两点法两点法适用于求解椭圆的离心率。
当焦点在x 轴上时,设左、右两个顶点分别为A1、A2,焦距为F1、F2,通过求出丨FA1丨-丨FA2丨来求出离心率e 的范围。
当焦点在y 轴上时,同样利用左右顶点及中心来解题。
这种方法简单直观,但需要学生掌握椭圆的性质。
方法三:点差法点差法适用于求解圆锥曲线的离心率的范围。
通过将圆锥曲线上两个点的坐标进行差分,得到关于离心率的方程,从而求解离心率的值或范围。
这种方法需要学生具有一定的技巧和经验,但对于一些较为复杂的问题,能够得到事半功倍的效果。
方法四:判别式法对于双曲线和抛物线,判别式法是一种常用的求解离心率的简便方法。
通过将圆锥曲线的方程化简为二次方程或一元二次方程,利用判别式小于零得到离心率的范围。
这种方法简单易行,但需要学生具有一定的数学基础和解题技巧。
方法五:参数方程法对于一些较为复杂的圆锥曲线,可以使用参数方程来求解离心率的值或范围。
通过将圆锥曲线转化为参数方程的形式,利用参数的几何意义或结合不等式进行求解。
这种方法能够解决一些较为困难的问题,但需要学生掌握参数方程的相关知识和技巧。
方法六:利用切线法求椭圆离心率根据椭圆的性质,椭圆的左、右焦点到相应准线的距离称为离心率;若过椭圆上某点作坐标轴的垂线,与以该点为起点的直角三角形相似,则此直角三角形的另一顶点在焦点上,此定点即为椭圆的上下顶点;而椭圆上的点到左右顶点的距离之和为定值(2a)。
圆锥曲线中求离心率的值与范围的问题(共28张PPT)

分析:在椭圆内的所有焦点三角形,当顶点 P 与短轴重合时,此时面积最大 Smax b
解析:注意,凡是经过原点的直线与椭圆或双曲线相交于两点时,这两点的位置是对
的,本题目中 ABF2 和 AF1F2 是全等的,因此 SABF2 SAF1F2 故当点 A 位于短轴的交点处时,面积最大 Smax bc
这两个区域内直线斜率的取值范围。
求离心率范围问题
②过焦点的直线与双曲线交点个数问题
例
12:已知双曲线 x2 a2
y2 b2
1的右焦点为
F,若过点
F
且倾斜角为 60
的直线与双曲线
的右支有且只有一个交点,则此双曲线离心率的取值范围为_________.
解析:过双曲线的右焦点可能与右支的交点个数为 1 个或 2 个,取决于这条直线和右渐
2a PF2 PF2
注意 PF2 为焦半径,因此 a c PF2 a c
所以不等关系就能找出来了,解不等式可得 2 1 e 1
离心率范围问题
(2)焦点三角形顶角的取值范围:当 P 点处于 B 位置时,顶角最大,例:
例
10:设
P
是椭圆
x2 a2
y2 b2
1上一点,且 F1PF2
求离心率范围问题
和求离心率的值相似,求解离心率的取值范围问题依旧是需要建立一个不等 关系,且不等关系中含有 a,b, c 或数字的形式,至于如何建立不等关系,可总结为四
种思考方向:
1.从圆锥曲线本身所具有的不等关系入手,以椭圆为例:
(1)焦半径的取值范围为 a c PF1 a c .
求离心率范围问题
例
7:椭圆
x2 a2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.代点法(点在曲线上)构造关于a、c关系求解 例2、(2015年新课标2第11题)
已知A,B为双曲线E的左,右顶点,点M在E上, ∆ABM为等腰三角形,且顶角为120°,则E的离心 率为( D ) ( A) 5 ( B) 2 ( C) 3 ( D) 2
x2 y2 练习、设F是双曲线C: a 2 b 2 1的一个焦点,若
填 空 15 题
2015 卷 I
椭圆的顶点、圆的方程
圆的 标准方程
双曲线性质、点到直线的距离 2017 卷 I 公式、圆的性质
离心率
16
2017 卷 抛物线方程、性质、直线与抛 II 物线位置关系 2018卷 III
距离
16
抛物线方程、性质、直线与抛 物线位置关系 直线斜率
选择、填空中考查频率最高的是离 心率,其次是标准方程、范围距离、最 值,考查的知识点是几何性质的应用( 包括定义、标准方程、焦点、焦点弦、 渐进线等).
双曲线性质、圆的方程、直线与圆 2017 卷 II 的位置关系 离心率
双曲线方程、渐近线、椭圆的几何 2017 卷 III 性质 标准方程
5
10 2017 卷 III 椭圆的性质、直线与圆的位置关系 离心率
表2
2015-2018年圆锥曲线模块的选、填考查情况
主要知识点 抛物线几何性质焦点 双曲线几何性质渐近线 双曲线几何性质离心率 题眼分析 向量数量积 长度计算 渐近线
20 2016卷 II
椭圆的性质、直线与椭圆的位 面积、范围 置关系
表3
2015-2018年圆锥曲线模块的解答题考查情况
题型 题 年份/考卷 主要知识点 题眼分析 号 20 2016卷 III 抛物线方程、性质、直线与抛 面积、轨迹 物线位置关系 20 2017 卷 I 解 答 题 20 2017卷 II 椭圆性质、直线与椭圆位置关 定点 系 椭圆、轨迹方程的求法、平面 轨迹方程 向量坐标运算
双曲线的标准方程、几何性质 11 2016 卷 II 、三角函数 11 2016 卷 III 椭圆的几何性质、三点共线
离心率
离心率
表2
2015-2018年圆锥曲线模块的选、填考查情况
主要知识点 题眼分析 最值
题型 题号 年份/考卷 10 选 择 题 9
2017 卷 I 抛物线定义、焦点弦、基本不等式
表3
2015-2018年圆锥曲线模块的解答题考查情况
主要知识点 题眼分析
题型 题 年份/考卷 号 20 2015 卷 I 20 2015 卷 II 解 答 题 20 2016 卷 I
直线与抛物线位置关系、抛物 切线方程、 线的切线 存在性 椭圆的方程、性质、直线与圆 定值、探究 的位置关系 性 直线与椭圆、轨迹方程 轨迹、面积 范围
3 3
22 22
150 150
14.67% 14.67%
11(双) 5(双) 全国卷 II 12(椭) 2018 全国卷 11(双) III
----19(抛) 16(抛 ) 20(椭) 3 22 150 14.67%
3
22
150
14.67%
由上表数据可看出:近四年高考中 圆锥曲线模块出现的题目呈现稳定的趋 势,分值在22分左右,几乎每年试题中 出现选填位置(双、抛)相对靠后、第 20(19)题都是直线与椭圆曲线的综合题 目,难度系数相对而言比较高,因此称 其为压轴题.
在一点 P ,使 F1PF2 90 ,则该椭圆的离心率 e 的取 值范围为 ;
2 答案:[ 2 ,1)
复习开心 备考快乐
为A,以A为圆心,b为半径做圆A,圆A与双曲线C 的一条渐近线交于M、N两点.若∠MAN=60°,则C 的离心率为________
答案:2 3 3
练3、(2018年新课标2第12题) 已知
3 6
2 3
x2 y 2 F1 , F2 是椭圆 C : 2 2 1 (a>0,b>0) a b
的左、右焦点,A是C的左顶点,点P在过A且斜率 为
F1F2 P 120 的直线上, PF1F2 为等腰三角形,
1 3
,则C的离心率为( D )
A.
1 B. 2
C.
1 D. 4
练4、(2018年新课标3第11题) 已知
F1 , F2
x y 是双曲线E: 2 2 1 的左,右焦 a b
2
2
点,O是坐标原点.过F2作C的一条渐近线的垂线,垂 足为P,若 PF1 6 OP ,则C的离心率为( C )
2x
,则离心率为________
答案:
3
练习:若 m 是 2 和 8 的等比中项,则圆锥
2 y 2 x 曲线 1 的离心率是 m
.
3 答案: 5或 2
策略二:构造
a, c 的关系式求离心率
根据题设条件,借助 a , b, c 之间的关系,沟通
a、c 的关系(特别是齐次式),进而得到关于 e
从题数与所占比重来看,几乎是两 小一大,各种曲线都会涉及到;出现只 有两道的年份,这样的差别是增加了直 线与方程、圆与方程等知识的题,使其 平面解析几何在整个高考卷中的比重趋 于稳定.
从题型与内容上看,椭圆在整个圆 锥曲线模块占的比重最大,年年都考; 双曲线、抛物线考查频率相差无几. 可见,新课标对椭圆的考查大于抛物线 与双曲线,尤其是双曲线的考查要求显 著降低,这一现象正符合新课标的要求.
答案: 1
3
练习、(2016年新课标2第11题) 已知
F1 , F2
1 sin MF2 F1 点,点M在E上,MF1与x轴垂直, 3
x y 是双曲线E: 2 2 1 的左,右焦 a b
2
2
,则 E
的离心率为( A ) ( A) 2
3 ( B) 2
( C) 3
( D) 2
3.题目已知等量关系建立a,c齐次式方程来求解
20 2017卷 III 直线与抛物线位置关系、直线 直线、圆方 与圆的方程 程
表3
2015-2018年圆锥曲线模块的解答题考查情况
题型 题 年份/考卷 主要知识点 题眼分析 号 19 2018 卷 I 椭圆性质、直线与椭圆位置关 直线方程、 系 直线斜率 19 2018卷 II 解 答 题 抛物线焦点弦、圆的切线 直线方程、 圆的方程
题型(题号/内容)
题
合计
试卷
所占
年份
考卷
选择题
全国卷 I 全国卷 II 2017
填空题
解答题
数
3 3
分值
22 22
总分
150 150
比重
14.67% 14.67%
10(抛) 15(双) 20(椭) 9(双) 16(抛) 20(椭)
全国卷 5(双、椭) III 10(椭)
全国卷 I 8(抛)
---
20(抛) 19(椭)
14(椭) 20(抛) --20(椭)
2015 全国卷 II 11(双) 5(双) 全国卷 I --20(椭) 3 22 150 14.67%
10(抛) 2016
全国卷 II 11(双) 全国卷 III 11(椭) ----20(椭) 20(抛) 2 2 17 17 150 150 11.33% 11.33%
( A) 5
( B) 2
( C) 3
( D) 2
4.构造辅助圆(几何法)判断离心率取值范围
F2 是椭圆的两个焦点, 例 5: 已知 F1 、 满足 MF1 MF2 0
的点 M 总在椭圆内部,则椭圆 C 离心率 e 的取值范围 为 ;
2 (0, ) 答案: 2
练 习 : 已 知 M 是 以 F1 、 F2 为 焦 点 的 椭 圆
(C) 2 1
(D) 3 1
2.借助圆锥曲线的定义构造a,c的关系求解
x2 y 2 例 4: F1 和 F2 分别是双曲线 2 2 1 的两个焦点, a b
A 和 B 是以 O 为圆心,以 OF1 为半径的圆与该双曲 线左支的两个交点,且 F1 AB 是等边三角形,则双 曲线的离心率是 ;
表2
2015-2018年圆锥曲线模块的选、填考查情况
主要知识点 题眼分析
题型 题号 年份/考卷
5
2015 卷 I
向量数量积、双曲线性质
双曲线标准方程、几何性质
取值范围
离心率
11 2015 卷 II
选
择 题 5 10 双曲线几何性质、一元二次不 2016 卷 I 等式 2016 卷 I 抛物线及圆的几何性质 取值范围 距离
x2 y 2 C : 2 2 1 a b 0 上一点,若 F1MF2 为钝角, a b
则椭圆 C 离心率 e 的取值范围为
.
2 答案:( 2 ,1)
5.利用曲线中变量的范围求离心率的范围
x2 y 2 例 6:以 F1 、 F2 为焦点椭圆 C : 2 2 1 a b 0 上存 a b
20 2018卷 III 直线与椭圆位置关系、椭圆几 点差法求斜 何性质 率、长度关 系
解答题中第(1)问通常是简单性 质的应用;第(2)问则是直线与圆锥曲 线的综合应用,如定值定点问题、范围 问题、轨迹问题、探究存在性问题.尽管 题型基本趋于稳定,但又稳中求新.
题型归类及评析 纵观 2015-2018年高考全国卷,从整 体结构来看变化不大;从知识的角度去 分析,既突出了以教材为核心,又突出 本质特征且与其它领域的知识交叉甚广 ;从思想方法上看,考查了学生分类讨 论、数形结合等多种思想方法.
例4、(2017年新课标2第9题)
若双曲线
x2 y2 2 1(a>0,b>0)的一条渐近 2 a b
线被圆 x 2 2 y 2 4 所截得的弦长为2,则的离心 率为( A ) A. 2 B. 3 C. 2 D.2 3