二次函数专题复习导学案
二次函数复习课导学案

第二十六章二次函数复习课导学案【中考考点透析】1、熟练掌握二次函数的一般式和顶点式,能确定其三要素并画出草图。
2、熟练掌握函数的平移规律。
3、能将二次函数的一般式转化为顶点式。
4、熟知二次函数的性质(增减性、对称性、最值等)5、理解二次函数与一元二次方程的关系6、能够用待定系数法求二次函数的解析式。
7、能够建立二次函数模型解决实际问题8、体会数形结合、分类讨论、平移变换、建模等数学思想一、知识回顾(做题并反思各考查了本章中的哪些知识?你是如何解决的?)1.下列函数一定是二次函数的是 ( )A .232y x =+B .221y ax x =++C .22(1)y x x =--D .212y x =- 2.二次函数2(1)3y x =-+的图像顶点坐标是( ) A .(-1,3) B .(1,3) C .(-1,-3) D .(1,-3)3.22y x =-的图像向左平移3个单位,再向下平移2个单位,得到新图像的表达式( )A .22(3)2y x =---B .22(2)3y x =--+C . 22(3)2y x =-++D .22(3)2y x =-+-4.抛物线223y x x =-+的顶点坐标是 ,对称轴是 ;当x 时,y 随x 增大而减小,当x 时,y 随x 增大而增大;当x 时,函数有最 值,其最值为 。
5.抛物线2(0)y ax bx c a =++≠与x 轴的两个交点坐标为(-2,0),(1,0),则关于x 的一元二次方程20ax bx c ++=的两根为 。
6.抛物线228y x x =--与x 轴有 个交点。
7、函数2y ax bx c =++的图像如图所示,对称轴为直线1x =,根据这个图像,你能得到哪些结论?二、综合应用8、当m为何值时,函数22(2)m y m x-=-是二次函数(A .2± B .2 C .-2 D .09、抛物线2y x bx c =++上有两点(3,0)和(-5,0),则此抛物线的对称轴是直线( ) A .4x = B .3x = C .5x =- D .1x =-变1:抛物线2y x bx c =++上有两点(3,5)和(-5,5),则此抛物线的对称轴是直线( ) 变2:抛物线2y x bx c =++上有两点(3,7)和(-5,7),则此抛物线的对称轴是直线( ) 10、如图,抛物线26y x x =--与x 轴交于A 、B 两点,与y 轴交于点C ,在对称轴右侧的抛物线上是否存在点M 使得23AMO COB S S ∆∆=,若存在求出M 的坐标,若不存在请说明理由。
九年级 二次函数 导学案17个

1NO.1《函数与它的表示法》导学案学习目标:1.熟练掌握函数表示方法,会求自变量取值范围,并能解决生活中的函数问题。
2.体会函数建模思想在实际生活中的应用,3.感受数学在生活中的魅力.预习案出函数图象. (2).据估计这种上涨的情况还会持续2小时,预测再过2小时水位高度将达到多少米?【归纳】__________________________________________叫做函数解析式或______________ _________________________叫做解析法___________________________叫做列表法 __________________________________________叫做图像法 【探究点二】2、如图,一辆汽车在行驶中,速度v 随时间t 变化的情况如图所示.(1)在这个问题中,速度v 与时间t 之间的函数关系是 用哪种方法表示的?_______________(2)时间t 的取值范围是什么?______________________。
(3)当时间t =______,汽车行驶的速度最大,最大速度是______; 当时间t =______时,速度为0?当t__________时,汽车的行驶速度逐渐增加?当t__________时,汽车的行驶速度逐渐减少?当t__________时,按匀速运动行驶?【典型例题】3、一根蜡烛长20cm,每小时燃掉4cm.(1)写出蜡烛剩余的长度y (cm )与燃烧时间x (h )之间的函数解析式.(2)求自变量x 可以取值的范围;(3)蜡烛点燃2h 后还剩多长?4、求下列函数中自变量x 的取值范围(1) y=3x+2 335x -(2)y =(3)4y ()探究案1、等腰三角形ABC 的周长为10cm,底边BC 长为y (cm), 腰AB 长为x (cm ) (1)写出y 与x 之间的函数解析式; (2)指出自变量x 可以取值的范围.2的正方形ABCD 的一边BC 上,有一动点P 从B 点运动到C 点,设PB=x ,四边形APCD 的面积为y 。
二次函数复习教案-【通用,经典教学资料】

二次函数复习教案一、教材分析二次函数时描述现实世界变量之间的重要数学模型,也是某些单变量最优化问题的数学模型,还是一种非常基本的初等函数,对二次函数的研究学习和复习,将为学生进一步学习函数,利用函数性质解决实际应用问题奠定基础积累经验。
在前面学习中,学生已经通过大量丰富有趣的现实背景,运用由简入繁从特殊到一般的研究方法从多方面探索研究了二次函数的概念、性质以及实际应用。
因为二次函数考查的知识点比较多,因此,在复习中,应注重学生对基本概念性质的掌握情况,通过大量不同实际问题,促使学生分析问题、解决问题意识和能力的的提高以及函数模型的进一步加深巩固。
二、学生情况分析初三的学生,已经具备一定的生活经验和有效学习方法,思维比较开阔,能独立思考和探索中形成自己的观点,他们能迅速利用周围的小组合作,共同探讨解决学习中的问题。
在复习课中,学生需要掌握二次函数的基本概念、性质以及有条理的思考和语言表达能力。
三、教学目标1、能根据具体问题,选取表格、表达式、图像这三种方式中适当的方法表示变量之间的二次函数关系2、会作二次函数的图象,并能根据图像对二次函数的基本性质进行分析表达。
3、能根据二次函数的表达式确定二次函数的开口方向、对称轴和定点坐标。
4、能利用二次函数解决实际问题,并能对变量的变化趋势进行预测。
四、教学理念和方式创设一种师生交往的互动、互惠的教学关系,师生之间彼此平等、互教互学,形成一个真正的“学习共同体”。
在这个过程中,教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求的新的发展,从而达到共识、共享、共进实现教学相长和共同发展。
教师在教学中是组织者、引导者、合作者;建立和谐的、民主的、平等的的师生关系。
整个过程学生是学习的主人,他们在教师的指导下进行主动的、富有个性的学习;教师应充分利用现实情景与先进教学技术,增加教学过程的趣味性,充分调动学生的积极性。
五、教学媒体选用为使教学活动有序高效进行,本节课通过多媒体辅助教学,将一些重难点进行分化演示,加深学生的理解掌握。
二次函数导学案(全章)

第1课时 二次函数的概念【进修目的】1.阅历摸索,剖析和树立两个变量之间的二次函数关系的进程,进一步体验若何用数学的办法描写变量之间的数目关系;2.摸索并归纳二次函数的界说;3.可以或许暗示简略变量之间的二次函数关系. 【进修重点】控制二次函数的概念并能应用概念解答相干的题型. 【课时类型】概念课 【进修进程】 一.进修预备1.函数的界说:在某个变更进程中,有两个变量x 和y,假如给定一个x 值,响应地就肯定了一个y 值,那么我们称是的函数,个中是自变量,是因变量.2.一次函数的关系式为y=(个中k.b 是常数,且k≠0);正比例函数的关系式为y =(个中k 是的常数);反比例函数的关系式为y=(k 是的常数).二.解读教材——数学常识源于生涯3.某果园有100棵橙子树,每一棵树平均结600个橙子.现预备多种一些橙子树以进步产量,但是假如多种树,那么树之间的距离和每一棵树所接收的阳光就会削减.依据经验估量,每多种一棵树,平均每棵树就会少结5个橙子.假设果园增种x 棵橙子树,那么果园共有棵橙子树,这时平均每棵树结个橙子,假如果园橙子的总产量为y 个,那么y=.4.假如你到银行存款100元,设人平易近币一年按期储蓄的年利率是x,一年到期后,银行将本金和利钱主动按一年按期储蓄转存.那么你能写出两年后的本息和y(元)的表达式(不斟酌利钱税)吗?. 5.可否依据适才推导出的式子y=5x2+100x+60000和y=100x2+200x+100猜测出二次函数的界说及一般情势吗?一般地,形如y =ax2+bx+c(a,b,c 是常数,a ≠0)的函数叫做x 的二次函数.它就是二次函数的一般情势,例1 下列函数中,哪些是二次函数?(1)2321x y +-=(2)112+=x y(3)x y 222+= (4)251t t s ++=(5)22)3(x x y -+= (6)210r s π=即时演习:下列函数中,哪些是二次函数?(1)2x y =(2)252132+-=x x y (3))1(+=x x y (4)1132--=)(x y (5)cax y -=2(6)12+=x s 三.发掘教材6.对二次函数界说的深入懂得及应用 例2 若函数1232++=+-kx x y k k 是二次函数,求k 的值.剖析:x 的最高次数等于2,即k23k+2=2,求出k 的值即可.解:即时演习:若函数1)3(232++-=+-kx x k y k k 是二次函数,则k 的值为.四.反思小结1.我们经由过程不雅察.思虑.合作,交换,归纳出二次函数的概念,并从中领会函数的建模思惟.2.界说:一般地,形如y=ax²+bx+c(a,b,c 是常数,a≠0)的函数叫做x 的二次函数.3.二次函数y=ax²+bx+c(a,b,c 是常数,a≠0)的几种不合暗示情势:(1) y=ax² (a≠0); (2) y=ax²+c (a≠0且c≠0); (3) y=ax²+bx (a≠0且b≠0).4.二次函数界说的焦点是症结字“二”,即必须知足自变量最高次项的指数为_____,且______项系数不为_____的整式. 【达标测评】1.下列函数不属于二次函数的是( ) A .y=(x -1)(x+2)B .y=21(x+1)2 C .y=2(x+3)2-2x2 D .y=1-3x22.在边长为6 cm 的正方形中央剪去一个边长为x cm(x<6)的小正方形,剩下的四方框形的面积为y,则y 与x 之间的函数关系是.3.用总长为60m 的篱笆围成矩形场地,场地面积S(m²)与矩形一边长a(m)之间的关系式是,它是函数.4.正方形的边长是5,若边长增长x,面积增长y,则y 与x 之间的函数表达式为.5.当m=时,22)2(--=m x m y 是二次函数;若函数m m x m y --=2)2(是二次函数,则m= .6.已知函数y=ax2+bx +c (个中a,b,c 都是常数):当a 时,它是二次函数;当a,b 时,它是一次函数;当a,b,c 时,它是正比例函数. 7.若函数y=(k2-4)x2+(k+2)x+3是二次函数,则k.,【进修难点】可以或许应用描点法作出函数的图象,并能依据图象熟悉和懂得二次函数y =ax2的性质. 【进修进程】 一.进修预备1.正比例函数y=kx(k≠0)是图像是. 2.一次函数y=kx+b(k≠0)的图像是. 3.反比列函数y=k x(k≠0)的图像是.4.当我们还不懂得一种函数图像的外形时,只能用描点法研讨,描点法的一般步调是:,,. 二.解读教材5.试作出二次函数y =x2的图象.(1)画出图象:①列表:(留意选择恰当的y值)②描点:(在右图坐标系中描点)③连线:(应留意用滑腻的曲线衔接各点) (2)依据图像,进行小结:①y=x2的图像是,且启齿偏向是 .②它是对称图像,对称轴是轴.在对称轴的左侧(x>0),y 随x 的增大而;在对称轴的右侧(x<0),y 随x 的增大而.③图像与对称轴有交点,称为抛物线的极点,的最低点,此时,坐标为(,).④因为图像有最低点,所以函数有最值,当x=0.小结:①y=x2的图像是,且启齿向 .②对称轴是,在对称轴阁下的增减性分离是:在对称轴左侧,y 随x 的增大 ,在对称轴的右侧,y 随x 的增大.③极点坐标是:(,),且从图像看出它有最点,所以函数有最值.当x=0时,.7.变式练习2作出y =2x2,y =0.5x2的图像.三.发掘教材8.依据上面的图象,从图象的启齿偏向.对称轴.增减性.极点坐标.最同时,a 决议图象在统一向角坐标系中的启齿偏向,|a|越小图象启齿. 9.例 已知:抛物线102-+=m m mx y ,当x>0时,y 随x 的增大而增大,求m 的值.10.已知抛物线y=ax2经由点A (2,8),(1)求此抛物线的函数解析式;(2)断定点B (1, 4)是否在此抛物线上;(3)求出此抛物线上纵坐标为6的点的坐标. 四.反思小结二次函数的y =ax2(a≠0)的图象与性质:五个方面懂得:,,,,. 【达标测评】1.抛物线y=2x2的极点坐标是,对称轴是,在侧,y 跟着x 的增大而增大;在侧,y 跟着x 的增大而减小.当x=时,函数y 的值最小,最小值是.抛物线y=2x2的图象在方(除极点外).2.函数y =x2的极点坐标为,若点(a,4)在其图象上,则a 的值是. 3.函数y =x2与 y =x2的图象关于对称,也可以以为y =x2 是函数y=x2的图象绕扭转得到的.4.求出函数y=x+2与函数y =x2的图象的交点坐标.5.若a>1,点(a1,y1),(a,y2),(a+1,y3)都在函数y =x2的图象上,断定y1,y2,y3的大小关系是.; 【进修难点】懂得二次函数y =ax2与y =ax2+k 的关系. .小结:①y=2x2+1的图像是,且启齿向.②对称轴是,在对称轴阁下的增减性分离是:在对称轴左侧,y随x的增大而;在对称轴的右侧,y随x的增大而.③极点是:(,),且从图像看它有最点,则函数y有最值,即当x=时y有最值是.3.在统一向角坐标系中,作出二次函数y=②对称轴是,当a>0时,在对称轴左侧,y随x侧,y随x的增大而. 且函数y当x=0时ymin=.当a<时,在对称轴左侧,y随x的增大而,在对称轴的右侧,y随x 的增大而.且函数y当x=0时ymax=.③极点坐标是(,).④y=x2的极点坐标是( , ),y=x2+2的极点坐标是( , )所以y=x2向平移个单位即可以得到y=x2+2.y=x22的极点坐标是( , )所以y=x2+2向平移个单位即可以得到y=x22.4.变式练习1二次函数y=54x2+3的图像是线,启齿向,极点坐标是,对称轴是;当x>0时,y随x的增大而.当x=时,y有最值为.三.发掘教材抛物线y=ax2+k可以由抛物线y=ax2经由向上(k>0)或向下(k<0)平移|k|个单位得到.5.函数y=2x2的图像向下平移3个单位,就得到函数;函数y=4+32x2的图像可以看作函数y=3x2的图像向平移个单位而得到.2的图像有一个6.已知:二次函数y=ax2+1的图像与反比列函数y=kx公共点是(1,1).(1)求二次函数及反比例函数解析式;(2)在统一坐标系中画出它们的图形,解释x取何值时,二次函数与反比例函数都随x的增大而减小.四.反思小结:1.填表回想2.抛物线y=ax2+k 可以由抛物线y=ax2经由向(k>0)或向 (k<0)平移个单位得到.【达标测评】1.抛物线y=x25可以看作是抛物线经由向平移个单位得到.2.抛物线y=x2+4 的启齿向,对称轴是,在对称轴左侧,y随x的增大而,在对称轴的右侧,y随x的增大而;极点坐标是,当x=时,y有最值为. 3.抛物线y=3x2上有两点A(x,27),B(2,y),则x=,y=.4.抛物线y=3x2与直线y=kx+3的交点为(2,b),则k=,b=.第4课时二次函数y=a(xh)2和y=a(xh)2+k的图象与性质【进修目的】1.可以或许作出函数y=a(xh)2和y=a(xh)2+k的图象,并能懂得它与y=ax2的图象的关系,懂得a,h,k对二次函数图象的影响;2.可以或许准确说出二次函数的极点式y=a(xh)2+k图象的启齿偏向.对称轴和极点坐标.【进修重点】可以或许作出函数y=a(xh)2和y说出y =a(xh)2+k 【进修进程】一.进修预备1.说出下列函数图象的启齿偏向,对称轴, (1)y=2x² (2)y=2x²+12.请说出二次函数y=ax²+c 与y=ax²的关系.3.我们已知y=ax²,y=ax²+c 的图像及性质,如今同窗们可能想探讨y=ax²+bx 的图像,那我们就着手绘图像.列表.描点.连线. 二.解读教材4.由进修预备可知,我们假如知道一条抛物线的极点坐标,那么绘图像就比较简略,所以我们可以先配成完整平方法构造.如今我们画二次函数y=3(x1)2+2不雅察后得到:二次函数y =3x2,y=3(x1)2,y=3(x1)2+2的图象都是抛物线.并且外形雷同,启齿偏向雷同,只是地位不合,极点不合,对称轴不合,将函数y =3x2的图象向右平移1个单位,就得到函数y=3(x1)2的图象;再向上平移2个单位,就得到函数y=3(x1)2+2的图象.三.发掘教材5.抛物线的极点式y=a(xh)2+k在前面的进修中你发明二次函数y=a(xh)2+k中的a,h,k 决议了图形什么?用本身的说话整顿得:即时演习:直接说出抛物线x+1)²,y=0.5(x+1)²1 的启齿偏向.对称轴.极点坐标.6.例已知:抛物线y=a(xh)2+kx=2时,函数有最大值3,求a,h,k的值.即时演习已知抛物线的极点坐标是(3,5)且经由点A(2,5),请你求出此抛物线的解析式.7.例二次函数()2221y x=-+的极点坐标是,把它的图像向右平移2个单位再向下平移2个单位此时得到的抛物线极点坐标为,它的解析式为.四.反思小结1.一般地,平移二次函数y=ax2的图象即可得到二次函数为y=ax2+c,y =,右正左负)2y=的图象是轴对称图形,对称轴为x=h,极点坐标为, a>0时,启齿向上,有最小值k; a<0时,启齿向下,有最大值k.【达标测评】y = axh )2= a( x–h )2 + ky1.指出下面函数的启齿偏向,对称轴,极点坐标,最值.(4) y=2(x2)2+5 (5) y=0.5(x+4)2+2 (6) y=0.75(x3)22.函数y= x2的图象向平移个单位得到y=x2+3的图象;再向平移个单位得到y =(x1)2+3的图象.,;【进修重点】会用公式求二次函数c bx ax y ++=2的极点坐标,对称轴. 【进修难点】懂得用配办法推导公式的进程. 【课时类型】公式轨则进修 一.进修预备2.二次函数25(3)2y x =--的极点坐标是,对称轴是. 二.解读教材3.公式推导——二次函数c bx ax y ++=2图象的极点坐标,对称轴公式.由上一节课,我们看到一个二次函数经由过程配方化成极点式k h x a y +-=2)(来研讨了二次函数中的a.h.k 对二次函数图象的影响.但我以为,如许的恒等变形运算量较大,并且轻易出错.那么这节课,我们就研讨一般情势的二次函数图象的作法和性质.例1 求二次函数c bx ax y ++=2图象的极点坐标,对称轴. 解:c bx ax y ++=2=2()b c a x x a a++ =222[2()()]222b b b c a x x a a a a++-+ =224()24b ac b a x a a-++二次函数c bx ax y ++=2的极点坐标是(24,24b ac b a a--),对称轴是直线2bx a=-. 4.公式应用——用公式求函数c bx ax y ++=2的极点坐标,对称轴.(1)分离用配办法,公式法肯定下列二次函数的极点坐标,对称轴并比较其解值.①221213y x x =-++ ②2252y x x =-+ 5.现实操纵——画二次函数c bx ax y ++=2的图象 (2)已知:二次函数2463y x x =-+①指出函数图象的极点坐标,对称轴.②画出所给函数的草图,并研讨它的性质.三.发掘教材——二次函数c bx ax y ++=2的性质6.抛物线c bx ax y ++=2(0a ≠)经由过程配方可变形为y=224()24b ac b a x a a-++(1)启齿偏向:当0a >时,启齿向;当0a <时,启齿向. (2)对称轴是直线;极点坐标是.(3)最大(小)值:当0a >,2bx a=-时,ymin=244ac b a -;当0a <,2bx a =-时,ymax=. (4)增减性:当0a >时,对称轴左侧(2b x a<-),y 随x 增大而;对称轴右侧(2bx a>-),y 随x 增大而;当0a <时,对称轴左侧(2b x a<-),y 随x 增大而;对称轴右侧(2bx a>-),y 随x 增大而;【达标测评】依据公式法指出下列抛物线的启齿偏向.极点坐标,对称轴.最值和增减性.①422+-=x x y ②1422++-=x x y ③221y x x =-++④2516y x x =-+题.【进修进程】 一.进修预备1.已学二次函数的哪两种表达式? 2.分化因式:x22x3;3.解方程:x2 2x3=0 二.解读教材4.一元二次方程的两根x1,x2在哪里?在坐标系中画出二次函数y= x2 2x3的图象,,你发明了什么?再找一个一元二次方程和二次函数试一试吧! 5.二次函数的两根式(交点式) 二次函数)0(2≠++=a c bx ax y 的另一种表达式:叫做二次函数的两根式又称交点式. 演习:将下列二次函数化为两根式: (1)y=x2+2x15; (2)y= x2+x2;(3)y=2x2+2x12;(4)y=3(x1)23 (5)y=4x2+8x+4; (6)y=2(x3)2+8x 三.发掘教材6.抛物线)0(2≠++=a c bx ax y 与x 轴是否有交点?例 你能应用 a.b.c 之间的某种关系断定二次函数)0(2≠++=a c bx ax y 的图象与x 轴何时有两个交点,何时一个交点,何时没有交点吗?即时练习:(1)已知二次函数y=mx22x+1的图象与x 轴有两个交点,则k 的取值规模为.(2)抛物线y=x2(m4)xm 与x 轴的两个交点y 轴对称,则其极点坐标为. (3)抛物线y=x2(a+2)x+9与x 轴相切,则a=.7.弦长公式:抛物线与xAB ).例 求抛物线y= x2 2x3与x 轴两个交点间的距离. 总结:已知抛物线)0(2≠++=a c bx ax y 与x B (x2,0),那么抛物线的对称轴x=,AB=21x x -=221)(x x -=.即时练习:抛物线y=2(x2)(x +5)的对称轴为,与x 轴两个交点的距离为.四.反思小结——二次函数与一元二次方程的关系常识点1.二次函数y=ax2+bx +c 的图象与x 轴的交点有三种情形,,,交点横坐标就是一元二次方程ax2+bx +c=0的.常识点2.二次函数y=ax2+bx +c 的图象与x 轴的弦长公式:. 【达标测评】1.抛物线y=9(x4)(x +6)与x 轴的交点坐标为.2.抛物线y=2x2+8x +m 与x 轴只有一个交点,则m=.3.二次函数y=kx2+3x -4的图象与x 轴有两个交点,则k 的取值规模. 4.抛物线y=3x2+5x 与两坐标轴交点的个数为( )A .3个B .2个C .1个D .0个5.与x 轴不订交的抛物线是( )A .y=3x24 B .y=2x26 C .y=x26 D .y=31(x+2)216.已知二次函数y=x2+mx +m -2.求证:无论m 取何实数,抛物线总与x 轴有两个交点.7.抛物线y=mx2+(3-2m)x +m -2(m≠0)与x 轴有两个不合的交点. (1)求m 的取值规模; (2)断定点P(1,1)是否在此抛物线上? 8.二次函数y=x2-(m -3)x -m 的图象如图所示.(1)试求m 为何值时,抛物线与x 轴的两个交点间的距离是3? (2)当m 为何值时,方程x2-(m -3)x -m=0的两个根均为负数? (3)设抛物线的极点为M,与x 轴的交点P.Q,求当PQ 最短时△MPQ 的面积.第7课时 刷图练习【进修目的】据二次函数系数a.b.c 画出抛物线的须要前提:启齿偏向.对称轴.极点坐标与坐标轴的交点坐标.【进修重点】二次函数一般式与极点式.交点式的互化;找特别点的坐标.【候课朗读】 【进修进程】 一.进修预备1.二次函数的一般式为:y=(个中0a ≠,a.b.c 为常数);极点式为:y=,它的极点坐标是,对称轴是;交点式为:(个中1x ,2x 是0y =时得到的一元二次方程20ax bx c ++=的根).2.函数2y ax bx c =++(0a ≠)中,a 肯定抛物线的启齿偏向:当a >0时,当a <0时;a 和b 肯定抛物线的对称轴的地位:当a .b 同号时对称轴在y轴的侧;当a .b 异号时对称轴在x 轴的侧;(可记为“左同右异” )c 肯定抛物线与的交点地位:当c >0时交于y 轴的半轴;当c <0时交于y 轴的负半轴. 二.浏览懂得3.界说:抛物线的草图:能大致表现抛物线的启齿偏向.对称轴.极点坐标.与y 轴的交点.x 轴上的两根为整根的抛物线叫抛物线的草图. 4.在抛物线的三种解析式的图象信息:教授教养跋文x一般式能直接表现启齿偏向.与y 轴的交点;极点式能直接表现启齿偏向.对称轴.极点坐标;两根式能直接表现启齿偏向.与x 轴的两个交点.是以,它们各有好坏,个中以极点式为最佳. 5①1,a b ==偶,例1 作出函数242y x x =-+解:242y x x =-+②1,a b ==奇,例2 作出函数253y x x =-+解:∴552212b a --=-=⨯③1a ≠(公式法) 例3 作出函数2241y x x =-+的大致图象.解:∵4124b a -=-=, 24816148ac b a --==-,∴则大致图象是:(在空白处绘图)即时演习:在右边空白处作出函数222y x x =-+-④两根式(先转化为一般式,再转换成极点式)例4 作出函数()()212y x x =-+的大致图象. 解:()()212y x x =-+219222x ⎛⎫=-- ⎪⎝⎭ 则大致图象是:6.含有参数的抛物线中的图象信息 例5作出函数22y x x m =-+-的大致图象.即时演习:在右边空白处画出函数y=-x2+n 的大致图象. 变式练习:画出函数y=-x2+mx+3的大致图象.x三.巩固练习:作出下列函数的大致图象 ①232y x x =-+- ②244y x x =-- ③221y x =+ ④()()1122y x x =-+:轴是__________,极点坐标是. 二.典例示范例 1 已知函数2y ax bx c =++的图象如图所示,1x =为该图象的对称轴,依据图象信息,你能得到关于系数a b c 、、解:由图可得:⑴a >0; ⑵1-<c <0; ⑶123b a -=,即又2ba-<1而a >0则得b -<2a ,∴2a+b>0;⑷由⑴⑵⑶得abc >0;⑸斟酌1x =时y <0,所以有a b c ++<0; ⑹斟酌1x =-时y >0,所以有a b c -+>0;⑺斟酌2x =时y >0,所以有42a b c ++>0,同理2x =-时,42a b c -+>0; ⑻图象与x 轴有两个交点,所以24b ac ->0.例2 如图是二次函数2y ax bx c =++图像的一部分,图像过点A ()3,0-,对称轴1x =-,给出四个结论: ①2b >4ac ,②20a b +=,③0a b c -+=,④5a <b ,个中( )A.②④B.①④C.②③D.①③剖析:由图象可以知道a <0;抛物线与x 轴有两个交点,∴24b ac ->0,即2b >4ac ;又对称轴1x =-,即12ba-=-,∴2a b =,b <0; ∴20a b -=,a 、b 均为负数,5a <b ;当1x =-时,∴a b c -+>0;综上,准确的是①④,故选B.例3 如图所示的抛物线是二次函数223y ax x a =-+_____.剖析:由图象可知:a <0;当0x =时1y =,即21a =,∴1a =±,但是a <0,故1a =-.三.巩固练习1.抛物线2y ax bx c =++如图所示,则( )A.a >0,b >0,c >0B.a >0,b <0,c <0C.a >0,b >0,c <0D.a >0,b <0,c >02.已知二次函数2y ax bx c =++的图像如图所示,下列结论中准确的个数是( )①a b c ++<0,②a b c -+>0,③abc >0,④2b a =A.4个B.3个C.2个D.1个3x c +的部分图像如图所示,则c0,当x_____时,y 随x 4ax b +则关于抛物线23y ax bx =-+(1x =;③当a <0时,其极点的纵坐标的最小值为3, ) A.0 B.1 C.2 D.35.已知二次函数()20y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值规模是( )A.-1<x <3B.x >3C.x <1D.x >3或x <16.抛物线c bx ax y ++=2的图象与x 轴的一个交点是()2,0-,极点是()1,3,下列说法中不准确的是( )A.抛物线的对称轴是1x =B.抛物线启齿向下C.抛物线与x 轴的另一个交点是()2,0D.当1x =时,y 有最大值是3 7.已知二次函数的图象如图所示,则这个二次函数的表达式为( ) A.223y x x =-+ B.223y x x =--223y x x =+-2第第第3题8.在直角坐标系中画一个二次函数y=ax2+bx+c的图象,且知足b<0,c<0..9.已知y=x2+ax+a1的图象如图所示,则a的取值规模是.10.据图抛物线y=ax2+bx+c肯定式子符号:①a0,②b0,③c0,④b24ac0,⑤a+b+c0,⑥ab+c0.11.若函数y=ax2+bx+c的对称轴x=1如图所示,则下列关系成立的是:()A.abc>0B.a+b+c<0C.a2>abacD.4acb2>0;2.控制已知极点及一点或对称轴或函数的最值,用极点式求函数的表达式.3.控制已知两根及一点,用两根式求函数解析式.【进修重点】用一般式.极点式求函数的表达式.【进修难点】用极点式和两根式求函数的表达式.【进修进程】一.进修预备:1.已知一次函数经由点(1,2),(1,0),则一次函数的解析式为 . 2.二次函数的一般式为,二次函数的极点式,二次函数的两根式(或交点式)为.二.办法探讨(一)——已知三点,用一般式求函数的表达式.3.例1 二次函数的图象经由(0,2),(1,1),(3,5)三点,求二次函数的解析式.4.即时演习已知抛物线经由A(1,0),B(1,0),C(0,1)三点,求二次函数的解析式.三.办法探讨(二)——已知极点及一点或对称轴或函数的最值,用极第5题第6题第7题第点式求出函数的解析式.5.例2 已知抛物线的极点坐标为(2,3),且经由点(1,7),求函数的解析式.解:设抛物线的解析式为2()y a x h k =-+.把极点(-2,3),即h=2 , k=3 代入表达式为 再把(-1,7)代入上式为 解得4a =所以函数解析式为24(2)3y x =++ 即241619y x x =++6.即时演习(1)抛物线经由点(0,-8),当1x =-时,函数有最小值为-9,求抛物线的解析式.(2)已知二次函数2()y a x h k =-+,当2x =时,函数有最大值2,其过点(0,2),求这个二次函数的解析式.四.办法探讨(三)——已知两根及一点或对称轴或函数的最值,用两根式求出函数的解析式.7.例3 已知抛物线经由(-1,0),(3,0),且过(2,6)三点,求二次函数的表达式.解:设抛物线的解析式为12()()y a x x x x =--把抛物线经由的(-1,0),(3,0)两点代入上式为: 再把(2,6)带入上式为6(21)(3)a x =+- 解得2a =-所以函数的解析式为2(1)(3)y x x =-+- 即2246y x x =-++8.即时演习已知抛物线经由A (2,0),B (4,0),C(0,3),求二次函数的解析式.五.反思小结——求二次函数解析式的办法 1.已知三点,求二次函数解析式的步调是什么?2.用极点式求二次函数的解题思绪是:已知极点及一点或对称轴或函数的最值,用极点式求解析式比较简略.3.用两根式求二次函数的解题思绪是:已知两根及一点或对称轴或函数的最值,用两根式求解析式比较简略. 【达标测评】求下列二次函数的解析式:1.图象过点(1,0).(0,2)和(2,3). 2.当x=2时,y 最大值=3,且过点(1,3).3.图象与x 轴交点的横坐标分离为2和4,且过点(1,10)第10课时 求二次函数的解析式(二)【进修目的】1.懂得二次函数的三种暗示方法;2.会灵巧地应用恰当的办法求二次函数的解析式.【进修重点】灵巧地应用恰当的办法求二次函数的解析式. 【进修进程】 一.进修预备1.函数的暗示方法有三种:法,法,法. 2.二次函数的表达式有:.,.二.典范例题——用恰当的办法求出二次函数的表达式3.例1 已知抛物线2(0)y ax bx c a =++≠与x 轴的两个交点的横坐标是-1,3,极点坐标是(1,-2),求函数的解析式(用三种办法) 4.即时演习:用恰当的办法求出二次函数的解析式.一条抛物线的外形与2y x =雷同,且对称轴是直线12x =-,与y 轴交于点(0,1),求抛物线的解析式.5.例 2 已知如图,抛物线b ax ax y ++-=22与x 轴的一个交点为A(1,0),与y 轴的正半轴交于点C.⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点CO=3时,求抛物线的解析式.6.即时演习:已知直线y=2x4与抛物线y=ax2+bx+c 的图象订交于A (2,m ),B(n,2)两点,且抛物线以直线x=3为对称轴,求抛物线的解析式.三.反思小结——求二次函数解析式的办法1.已知三点或三对x.y 的对应值,通经常应用2(0)y ax bx c a =++≠. 2.已知图象的极点或对称轴,通经常应用2()(0)y a x h k a =-+≠. 3.已知图象与x 轴的交点坐标,通经常应用12()()(0)y a x x x x a =--≠. 四.巩固练习1.已知二次函数图象的极点坐标为C(1,0),该二次函数的图象与x 轴教授教养跋文交于A.B 两点,个中A 点的坐标为(4,0). (1)求B 点的坐标(2)求这个二次函数的关系式;2.如图,在平面直角坐标系中,直线y =-x交于点C ,抛物线2(0)y ax x c a =+≠经由A B C ,,(1)求过A B C ,,三点抛物线的解析式并求出极点F (2)在抛物线上是否消失点P ,使ABP △出P 点坐标;若不消失,请解释来由.【进修重点】用“数形联合”的思惟懂得公式,并能应用公式解决现实问题.【进修难点】剖析和暗示现实问题中变量之间的二次函数关系. 【进修进程】一.进修预备1.二次函数y=ax2+bx+c 的图像是一条____________,它的对称轴是直线x=-ab2,极点是______________. 2.二次函数y=2x2+3x1的图象启齿______,所以函数有最_______值,即当x=时,ymax =_________. 二.解读教材3.例1某商经营T 恤衫,已知成批购置时的单价是5元.依据市场查询拜访,发卖量与发卖单价知足如下关系:在一段时光内,单价是15元时,发卖量是500件,而单价每下降1元,就可以多售200件.问发卖价是若干时,可以获利最多?剖析:若设发卖单价为x(x≤15)元,所获利润为y元,则:(1)发卖量可以暗示为______________________________;(2)发卖额可以暗示为____________________________;(3)发卖成本可以暗示为____________________________;(4)所获利润可暗示为y=_________________________.解:设____________________依据题意得关系式:y=____________________,即y=.∵a=<0,∴y有最值.即当x=_______________=______________时,ymax=_________________=__________________.答:办法小结:解决此类问题的一般步调是:(1)设——设出问题中的两个变量(即设未知数);(2)列——用含变量的代数式暗示出等量关系,列出函数解析式;(3)自——找出自变量的取值规模;(4)图——作出函数图像(留意自变量的取值规模);(5)最——在自变量的取值规模内,取函数的最值;(6)答——依据请求作答.4.即时演习某市肆购置一批单价为20元的日用品,假如以单价30元发卖,那么半月内可以售出400件.据发卖经验,进步发卖单价会导致发卖量的削减,即发卖单价每进步一元,发卖量响应削减20件.若何进步发卖价,才干在半月内获得最大利润?三.发掘教材5.例2某商经营T恤衫,已知成批购置时的单价是5元.依据市场查询拜访,发卖量与发卖单价知足如下关系:在一段时光内,单价是15元时,发卖量是500件,而单价每下降1元,就可以多售于10元,问发卖价是若干时,可以获利最多?6.即时演习求二次函数y= x22x3在2≤x≤0时的最大.最小值.四.反思小结1.二次函数是解决现实问题中“最值”问题类较好的数学模子;2.留意解决此类问题的一般步调——“设”,“列”,“自”,“图”,“最”,“答”. 【达标测评】1.某市肆购置一批单价为8元的商品,假如以单价10元发卖,那么天天可以售出100件.据发卖经验,发卖单价每进步1元,发卖量响应削减10件.将发卖价定为若干,才干使天天获得最大利润?最大利润是若干?2.某观光社组团旅游,30人起组团,每人单价800元,每团乘坐一辆准载50人的大客车.观光社对超出30人的团赐与优惠,即每增长一人,每人的单价下降10元.你能帮忙盘算一下,当一个观光团的人数是若干时,观光社可以获得最大营业额?=ab ac 442-解决现实问题中的最大(小)值问题.【进修重点】 应用二次函数的有关常识解决现实问题. 【进修进程】一.进修预备1.函数y=ax2+bx+c(a≠0)中,若a>0,则当x=ab2时,y( )=;若a<0,则当x=时,y( )=.2.在二次函数y=2x28x+9中当x=时,函数y 有最值等于.3.如图,在边BC 长为20cm,高AM 为16cm 的△ABC 它的一边FG 在△ABC 的边BC 上,E.F 分离在AB.AC 请用x 的代数式暗示EH.解:∵矩形EFGH, ∴EH∥BC∴ △AEH∽___________.x D E CBA 又∵BC 上的高AM 交EH 于T. ∴AMAT =_______,即1616x=________. ∴EH=.二.解读教材4.在上题图中,若要使矩形EFGH 获得最大面积,那么它的长和宽各是若干?最大面积是若干?解:设矩形面积为y,而EF=x,EH=,则y==.∵a=45<0 则y 有最_______值.∴当x=______时,则y 最大值=______________.此时EH=.答:.5.想一想:活动4经由过程设EH 为xcm 能解决问题吗?(试一试吧!)6.即时演习:(1)在Rt△的内部作内接矩形ABCD,个中AB 和AD 分离在两条直角边上,点C 在斜边上.①设矩形ABCD 的边AB =x m,那么AD 边的长度若何暗示?②设矩形的面积为y m2,当x 取何值时,y 的值最大?最大值是若干? 解:(2)将(1)题变式:其它前提和图形都不变,设AD 边的长为x m,则问题又如何解决呢? 三.发掘教材:7.在Rt△QMN 的内部作内接矩形ABCD,点A 和D 分离在两直角边上,BC 在斜边MN 上.①设矩形的边BC=xm,则AB 边的长度若何暗示?②设矩形的面积为ym2,当x 取何值时,y 的最大值是若干?8.即时演习 如图,某村修一条沟渠,横断面是等腰梯形,底角∠C=120°,两腰与下底AD 的和为4m.当沟渠深(x )为何值时,横断面积(S )最大?最大值为若干? 解:四.反思小结:经由过程进修上节和本节解决问题的进程,你能总结一下解决此类问题的根本思绪吗?应用类似三角形性质和矩形面积公式列出二次函数,应用其性质解决.40m30m D N OABCM。
二次函数知识点归纳(导学案)

函数专题复习 —— 二次函数一、二次函数概念:1.二次函数的概念:一般地,形如 的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而 可以为零.二次函数的定义域(自变量取值范围)是 . 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是 ,右边是关于自变量x 的 ,x 的最高次数是 .⑵ a b c ,,是常数,a 是 ,b 是 ,c 是 . 例:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:例1:抛物线3)2(2+-=x y 的对称轴是( )A. 直线3-=xB. 直线3=xC. 直线2-=xD. 直线2=x例2:抛物线322+-=x x y 的对称轴是 例3:二次函数322+-=x x y 的最小值是( )A. 1B. 2C. 3 D .-2三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数基础上“h 值正 移,h 值负 移;k 值正 移,k 值负 移”.概括成八个字“ 加 减, 加 减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上平移m 个单位,c bx ax y ++=2变成向下平移m 个单位,c bx ax y ++=2变成⑵c bx ax y ++=2沿X 轴平移:向左平移m 个单位,c bx ax y ++=2变成向右平移m 个单位,c bx ax y ++=2变成例1:把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是532+-=x x y ,则有( )A. 3=b ,7=cB. 9-=b ,15-=cC. 3=b ,3=cD. 9-=b ,21=c四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中h = ,k = .例1:将二次函数322+-=x x y 配方成k h x y +-=2)(的形式,则y =______________________五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点: , , , , . 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口 ,对称轴为 ,顶点坐标为 . 当2b x a <-时,y 随x 的增大而 ;当2b x a >-时,y 随x 的增大而 ;当2bx a =-时,y 有最小值 . 2. 当0a <时,抛物线开口 ,对称轴为 ,顶点坐标为 . 当2b x a <-时,y 随x 的增大而 ;当2b x a >-时,y 随x 的增大而 ;当2b x a=-时,y 有最大值 . 七、二次函数解析式的表示方法1. 一般式: (a ,b ,c 为常数,0a ≠);2. 顶点式: (a ,h ,k 为常数,0a ≠);3. 交点式: (0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). (也称两根式) 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点 即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系1. 二次项系数a : 二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口 ,a 的值越大,开口 ,反之a 的值越小,开口 ; ⑵ 当0a <时,抛物线开口 ,a 的值越小,开口 ,反之a 的值越大,开口 .总结起来,a 决定了抛物线开口的 ,a 的 决定开口方向, 的大小决定开口的大小. 2. 一次项系数b : 在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下, 当0b >时,02b a -<,即抛物线的对称轴在y 轴 侧;当0b =时,02ba -=,即抛物线的对称轴就是 ; 当0b <时,02ba->,即抛物线对称轴在y 轴的 侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02b a ->,即抛物线的对称轴在y 轴 侧;当0b =时,02ba-=,即抛物线的对称轴就是 ; 当0b <时,02ba-<,即抛物线对称轴在y 轴的 侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 3. 常数项c : ⑴ 当0c >时,抛物线与y 轴的交点在x 轴 方,即抛物线与y 轴交点的纵坐标为 ;⑵ 当0c =时,抛物线与y 轴的交点为坐标 ,即抛物线与y 轴交点的纵坐标为 ; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴 方,即抛物线与y 轴交点的纵坐标为 . 总结起来,c 决定了抛物线与y 轴交点的位置.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用 ;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用 ;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用 ;4. 已知抛物线上纵坐标相同的两点,常选用 .例1 二次函数2y ax bx c =++的图像如图1,则点),(ac b M 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限例2 已知二次函数y=ax 2+bx+c (a ≠0)的图象如图2所示,• 则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等; ③4a+b =0;④当y=-2时,x 的值只能取0. 其中正确的个数是( )A .1个B .2个C .3个D .4个例3请你写出函数2)1(+=x y 与12+=x y 具有的一个共同性质:_____ __________.例4已知二次函数的图象开口向上,且与y 轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:_____________________.例5已知二次函数c bx ax y ++=2,且0<a ,0>+-c b a ,则一定有( )A. 042>-ac bB. 042=-ac bC. 042<-ac bD. ac b 42-≤0例6二次函数c bx ax y ++=2的图象如图所示,若c b a M ++=24c b a N +-=,b a P -=4,则( )A. 0>M ,0>N ,0>PB. 0<M ,0>N ,0>PC. 0>M ,0<N ,0>PD. 0<M ,0>N ,0<P 九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达.1. 关于x 轴对称:2y ax bx c =++关于x 轴对称后,得到的解析式是 ;()2y a x h k =-+关于x 轴对称后,得到的解析式是 ;2. 关于y 轴对称:2y ax bx c =++关于y 轴对称后,得到的解析式是 ;()2y a x h k =-+关于y 轴对称后,得到的解析式是 ;3. 关于原点对称:2y ax bx c =++关于原点对称后,得到的解析式是 ; ()2y a x h k =-+关于原点对称后,得到的解析式是 ;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是 ;()2y a x h k =-+关于顶点对称后,得到的解析式是 .5. 关于点()m n ,对称: ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. 十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当 时的特殊情况。
二次函数(导学案)九年级数学上册同步备课系列(人教版)(解析版)

22.1.1二次函数学习目标:1)从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,经一步体验如何用数学的方法去描述变量之间的数量关系。
2)理解二次函数的概念,掌握二次函数的形式。
学习重点:二次函数的概念和解析式。
学习难点:用数学的方法去描述变量之间的数量关系。
1)学习过程一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.目前,我们已经学习了哪种类型的函数?问题一正方体的六个面是全等的正方形,设正方体的棱长为a,表面积为S,则S与a之间有什么关系?问题二n个球队参加比赛,每两队之间进行一场比赛。
比赛的场次数m与球队数有什么关系?问题三某工厂一种产品现在的年产量是20吨,计划今后两年增加产量。
如果每一年都比上一年的产量增加x倍,那么两年后,这种产品的产量y与x之间的关系应怎样表示?观察这三个式子你发现了什么?等号左边是函数,右边是关于自变量x的二次式,x的最高次数是22)归纳小结一般地,形如�=ax2+푏 +�(a、b、c是常数,a≠0)的函数叫做二次函数。
二次函数的特殊形式:1)当b=0时,y=ax2+c2)当c=0时,y=ax2+bx3)当b=0,c=0时,y=ax23)自我测试(基础)1.一台机器原价100万元,若每年的折旧率是x,两年后这台机器约为y万元,则y与x 的函数关系式为()A.y=100(1﹣x)B.y=100﹣x2C.y=100(1+x)2D.y=100(1﹣x)2【详解】解:根据题意知y=100(1﹣x)2,故选:D.2.线段AB=5.动点以每秒1个单位长度的速度从点出发,沿线段AB运动至点B,以线段AP为边作正方形APCD,线段PB长为半径作圆.设点的运动时间为t,正方形APCD周长为y,⊙B的面积为S,则y与t,S与t满足的函数关系分别是()A.正比例函数关系,一次函数关系B.一次函数关系,正比例函数关系C.正比例函数关系,二次函数关系D.反比例函数关系,二次函数关系【详解】解:依题意:AP=t,BP=5-t,故y=4t,S=(5-t)2故选择:C3.下列函数表达式中,一定为二次函数的是()A.y=2x﹣5B.y=ax2+bx+c C.h=t22D.y=x2+1x【详解】解:A.是一次函数,故此选项错误;B.当a≠0时,是二次函数,故此选项错误;C.是二次函数,故此选项正确;D.含有分式,不是二次函数,故此选项错误;故选:C.4.对于y=ax2+bx+c,有以下四种说法,其中正确的是()A.当b=0时,二次函数是y=ax2+c B.当c=0时,二次函数是y=ax2+bxC.当a=0时,一次函数是y=bx+c D.以上说法都不对【详解】A.当b=0,a≠0时.二次函数是y=ax2+c,故此选项错误;B.当c=0,a≠0时,二次函数是y=ax2+bx,故此选项错误;C.当a=0,b≠0时.一次函数是y=bx+c,故此选项错误;D.以上说法都不对,故此选项正确.故选D.5.设a,b,c分别是二次函数y=﹣x2+3的二次项系数、一次项系数、常数项,则()A.a=﹣1,b=3,c=0B.a=﹣1,b=0,c=3C.a=﹣1,b=3,c=3D.a=1,b=0,c=3【详解】解:二次函数y=﹣x2+3的二次项系数是a=﹣1,一次项系数是b=0,常数项是c=3;故选:B.6.y=mx m2+1是二次函数,则m的值是()A.m≠0B.m=±1C.m=1D.m=﹣1【详解】解:∵y=mx m2+1是二次函数,∴m≠0且m2+1=2,解得:m=±1.故选:B.7.已知函数y=m−2x m2−2+2x−7是二次函数,则m的值为()A.±2B.2C.-2D.m为全体实数【详解】解:∵函数y=m−2x m2−2+2x−7是二次函数∴m-2≠0,m2−2=2,解得:m=-2.故选:C.4)巩固练习(提高)8.一个二次函数y=(k−1)x k2−3k+4+2x−1.(1)求k的值.(2)求当x=3时,y的值?【详解】解:(1)依题意有k2−3k+4=2k−1≠0,解得:k=2,∴k的值为2;(2)把k=2代入函数解析式中得:y=x2+2x−1,当x=3时,y=14,∴y的值为14.5)本节课的收获、体会及存在问题。
二次函数的复习教案
二次函数的复习教案教案标题:二次函数的复习教案教案目标:1. 复习学生对二次函数的基本概念和性质的理解。
2. 强化学生对二次函数图像、顶点、轴对称性和零点的掌握。
3. 提高学生解决与二次函数相关的实际问题的能力。
教学时长:2个课时教学步骤:第一课时:1. 导入(5分钟)- 通过提问引起学生对二次函数的兴趣,例如:你知道什么是二次函数吗?它有哪些特点?2. 复习基本概念(15分钟)- 提醒学生二次函数的一般形式为f(x) = ax^2 + bx + c,并解释a、b、c的含义。
- 回顾二次函数的图像特点,如开口方向、顶点位置等。
- 强调二次函数的轴对称性和零点的概念。
3. 图像练习(20分钟)- 展示几个不同形态的二次函数图像,要求学生根据图像特点判断函数的开口方向、顶点和轴对称性。
- 给学生一些简单的二次函数,要求他们画出对应的图像,并标出顶点和轴对称线。
4. 零点练习(15分钟)- 提供一些二次函数的方程,要求学生解方程求出零点。
- 引导学生思考零点与图像的关系,例如:零点在图像上对应什么位置?第二课时:1. 复习顶点和轴对称线(10分钟)- 提醒学生顶点是二次函数图像的最高点或最低点,轴对称线通过顶点并将图像分为两部分。
2. 实际问题解决(20分钟)- 提供一些与实际问题相关的二次函数,要求学生解决问题。
- 引导学生将问题转化为二次函数的方程,并解方程求出答案。
3. 总结(10分钟)- 回顾本节课所学内容,强调二次函数的重要性和应用。
- 鼓励学生通过做更多的练习来巩固所学知识。
教学方法和教学资源:1. 教学方法:- 提问法:通过提问引导学生思考和回忆所学知识。
- 演示法:展示二次函数图像和实际问题,帮助学生理解和解决问题。
2. 教学资源:- PowerPoint幻灯片或白板,用于展示图像和问题。
- 二次函数练习题,包括图像练习和实际问题练习。
评估方法:1. 课堂表现评估:- 观察学生在课堂上的参与度和回答问题的准确性。
人教版九年级数学上册第22章二次函数《复习课》导学案
人教版九年级数学上册第22章二次函数《复习课》导学案第二十二章复课1.知道二次函数的概念、图象和性质,能根据解析式判断抛物线的开口方向、对称轴、顶点坐标和函数的增减性.2.知道抛物线与对应的一元二次方程的关系,会用待定系数法求二次函数的解析式.3.能够运用二次函数解决一些实际问题,从中体会数学建模思想.4.重点:二次函数解析式的求法,二次函数的图象、性质和应用.◆体系构建◆核心梳理1.一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.2.二次函数y=ax2+bx+c(a≠0)与一元二次方程的关系:(1)当b2-4ac>时,抛物线与x轴有2个交点,对应的一元二次方程有两个不相等的实数解;(2)当b2-4ac=时,抛物线与x轴有1个交点,对应的一元二次方程有两个相等的实数解;(3)当b2-4ac<时,抛物线与x轴无交点,对应的一元二次方程无实数解.3.填表:特征函数启齿偏向对称轴极点坐标(0,0)(0,k)(h,0)(h,k)最值最小值最大值最小值k最大值k最小值最大值最小值k最大值k最小值y=ax2y=ax2+ky=a(x-h)2y=a(x-h)2+k a>时启齿向上a<时开口向下a>时开口向上a<时启齿向下a>时启齿向上a<时启齿向下a>时开口向上a<时开口向下a>时启齿向上y轴y轴x=hx=hy=ax2+bx+ca<时开口向下x=-(-,)最大值专题一:二次函数的概念、图象和性质1.二次函数y=ax2+bx+c的图象如图所示,那么abc,b2-4ac,2a+b,a+b+c这四个代数式中,值为正数的有(B)A.4个B.3个C.2个D.1个2.二次函数y=ax2+bx+c与一次函数y=ax+c在同一坐标系中的图象可能是(C)3.如图,已知二次函数y 1=ax2+bx+c与一次函数y2=kx+m的图象相交于A(-2,4),B(8,2),则能使y1>y2成立的x的取值范围是x<-2或x>8.【方法归纳交流】根据抛物线的开口方向判断a的正负;根据抛物线与y轴的交点判断c的值;若抛物线的对称轴在y 轴左侧,则a与b同号,若抛物线的对称轴在y轴右侧,则a与b异号;根据抛物线与x轴交点的个数判断b2-4ac的符号.专题二:求抛物线的顶点和对称轴4.求抛物线y=x2-4x+5的开口方向、对称轴及顶点坐标.(用两种方法)解:(1)y=(x2-8x+10)=[(x2-8x+16)-16+10]=(x-4)2-3,所以抛物线的开口向上,对称轴是x=4,顶点坐标是(4,-3).(2)对称轴:x=-=4,y最小==-3,顶点坐标为(4,-3).【方法归纳交流】求抛物线的顶点和对称轴一般有两种方法:配方法和公式法.专题三:抛物线的平移5.申明抛物线y=-3x2-6x+8通过如何的平移,可获得抛物线y=-3x2.解:配方:y=-3x2-6x+8=-3(x2+2x-)=-3[(x2+2x+1)-1-]=-3(x+1)2+11,∴抛物线的顶点坐标是(-1,11),∴把抛物线y=-3x2-6x+8先向右平移1个单位长度,再向下平移11个单位长度得到y=-3x2.6.如图,抛物线y=ax2-5ax+4a与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.解:(1)把C(5,4)代入y=ax2-5ax+4a,得25a-25a+4a=4。
《二次函数》的复习教学设计
《二次函数》的复习教学设计数学《二次函数》优秀教案篇一一、教材分析本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。
主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。
在具体探究过程中,从特殊的例子出发,分别研究a0和a0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。
二、学情分析本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。
三、教学目标(一)知识与能力目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;2、能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。
(二)过程与方法目标通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。
(三)情感态度与价值观目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;2、在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。
四、教学重难点1、重点通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。
2、难点二次函数y=ax2+bx+c(a≠0)的图像的性质。
五、教学策略与设计说明本节课主要渗透类比、化归数学思想。
对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。
六、教学过程教学环节(注明每个环节预设的时间)(一)提出问题(约1分钟)教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。
《二次函数》的复习教学设计
《二次函数》的复习教学设计复习教学设计:二次函数一、教学目标:1.理解二次函数的定义及其特点;2.掌握二次函数的图像、顶点、轴、对称轴等性质;3.能够根据二次函数的特点解决实际问题。
二、教学内容:1.二次函数的定义和基本形式;2.二次函数的图像和性质;3.二次函数的最值、零点及其应用。
三、教学步骤:步骤一:导入新知1.导入教学话题:“二次函数”,以回顾前几节课所学内容,引发学生对二次函数的认识和兴趣。
2.提问:“你能简单回忆一下二次函数是什么吗?”让学生简单复述二次函数的定义。
步骤二:概念及定义讲解1. 讲解二次函数的定义和基本形式,即f(x) = ax^2 + bx + c,其中a、b和c为实数。
2.引导学生理解a、b和c对二次函数图像的影响,如a决定了抛物线的开口方向和宽度,b决定了抛物线的位置偏移,c决定了抛物线与y轴的交点位置。
步骤三:图像及性质讲解1.讲解二次函数图像的性质,包括图像的开口方向、顶点、对称轴等。
2.通过示例分析,引导学生找出二次函数的顶点、对称轴及其它特征,让学生能够根据函数表达式确定图像的形状。
步骤四:实例分析及概念巩固1.给出一些具体的函数表达式,引导学生根据图像的特征进行分析,并求出对应的顶点、对称轴、开口方向等。
2.提问:“当a为正数时,抛物线的开口方向是向上还是向下?当a为负数时又怎样?”让学生总结出结论。
3.给出一些特殊情况的函数表达式,让学生分析并给出对应的图像和性质。
步骤五:最值、零点及应用讲解1.讲解二次函数的最值和零点,包括二次函数最值的判断和求解,以及二次函数零点的判断和求解。
2.引导学生通过实例分析,掌握解二次函数实际问题的方法和步骤。
3.给出一些实际问题,让学生通过建立等式或不等式解决,加深对二次函数的运用和理解。
步骤六:巩固练习1.布置相应的练习题,让学生通过计算和绘图巩固所学内容。
2.引导学生将练习题的解答和图像进行对比,分析解题方法和图像的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题复习:二次函数综合题训练导学案【复习要点】二次函数综合题的特点:二次函数综合题是初中数学中知识覆盖面最广,综合性最强,解题方法灵活。
近几年的中考综合题多以二次函数背景结合初中几何知识,综合考察学生的数学思想和数学解题方法,此类题必须认真审题、正确分析理解题意.解题过程中常用到的数学思想方法有转化、数形结合、分类讨论. 【学习过程】 一、存在性问题错误!未指定书签。
例题1如图,抛物线y =ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上,其中A (-2,0),B (-1, -3).(1)求抛物线的解析式;(2)点M 为y 轴上任意一点,当点M 到A 、B 两点的距离之和为最小时,求此时点M 的坐标; (3)在第(2)问的结论下,抛物线上的点P 使S △P AD =4S △ABM 成立,求点P 的坐标.图2【对应训练】如图,抛物线21y ax bx =++与x 轴交于两点A (-1,0),B (1,0),与y 轴交于点C . (1)求抛物线的解析式;(2)过点B 作BD ∥CA 与抛物线交于点D ,求四边形ACBD 的面积;(3)在x 轴下方的抛物线上是否存在一点M ,过M 作MN ⊥x 轴于点N ,使以A 、M 、N 为顶点的三角形与△BCD 相似?若存在,则求出点M 的坐标;若不存在,请说明理由.二、最直问题例题2矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线与BC边相交于点D。
(1)求点D的坐标;(2)若抛物线经过D、A两点,试确定此抛物线的表达式;(3)P为x轴上方(2)中抛物线上一点,求△POA面积的最大值;(4)设(2)中抛物线的对称轴与直线OD交于点M,点Q为对称轴上一动点,以Q、O、M为顶点的三角形与△OCD相似,求符合条件的Q点的坐标。
【对应训练】如图,在直角坐标系中,点A的坐标为(-2,0),线段OA绕原点O顺时针旋转120°后得到线段OB.(1)直接写出点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.三、判断点的位置的问题例题3已知:函数y=ax2+x+1的图象与x轴只有一个公共点.(1)求这个函数关系式;(2)如图所示,设二次..函数y=ax2+x+1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;(3)在(2)中,若圆与x轴另一交点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2+x+1上,若在抛物线上,求出M点的坐标;若不在,请说明理由.【对应训练】矩形OABC 在平面直角坐标系中位置如图13所示,A C 、两点的坐标分别为(60)A ,,(03)C -,,直线34y x =-与BC 边相交于D 点.(1)求点D 的坐标;(2)若抛物线294y ax x =-经过点A(3)设(2)中的抛物线的对称轴与直线OD 交于点M ,点P 为对称轴上一动点,以P O M 、、为顶点的三角形与OCD △相似,求符合条件的点P 的坐标.答案详解例1解释:(1)、因为点A、B均在抛物线上,故点A、B的坐标适合抛物线方程∴403a ca c+=⎧⎨+=-⎩解之得:14ac=⎧⎨=-⎩;故24y x=-为所求(2)如图2,连接BD,交y轴于点M,则点M就是所求作的点设BD 的解析式为y kx b =+,则有203k b k b +=⎧⎨-+=-⎩,12k b =⎧⎨=-⎩,故BD 的解析式为2y x =-;令0,x =则2y =-,故(0,2)M -(3)、如图3,连接AM ,BC 交y 轴于点N ,由(2)知,OM=OA=OD=2,90AMB ∠=︒ 易知BN=MN=1,易求AM BM ==122ABM S =⨯=V ;设2(,4)P x x -,依题意有:214422AD x -=⨯g ,即:2144422x ⨯-=⨯g解之得:x =±0x =,故 符合条件的P 点有三个:123((0,4)P P P --例1对应训练解释:(1)把A (1,0)- B (1,0)代入21y ax bx =++得:1010a b a b -+=⎧⎨++=⎩ 解得:10a b =-⎧⎨=⎩ 21y x ∴=-+(2)令0x =,得1y = ∴()0,1C∵OA=OB=OC=1 ∴∠BAC=∠ACO=∠BCO=∠ABC =45o∵BD ∥CA , ∴∠AB D=∠BA C 45=︒过点D 作DE ⊥x 轴于E ,则∆BDE 为等腰直角三角形 令OE k = ()0k >,则1DE k =+ ∴(),1D k k --- ∵点D 在抛物线21y x ∴=-+上 ∴ ()211k k --=--+解得12k =,21k =-(不合题意,舍去) ()2,3D -- ∴DE=3(说明:先求出直线BD 的解析式,再用两个解析式联立求解得到点D 的坐标也可)∴四边形ACBD 的面积S =12AB •OC +12AB •DE 112123422=⨯⨯+⨯⨯= (说明:也可直接求直角梯形ACBD 的面积为4)(3)存在这样的点M∵∠ABC=∠ABD=45o∴∠DBC=90o∵MN ⊥x 轴于点N , ∴∠ANM=∠DBC =90o在Rt △BOC 中,OB=OC=1 有2在Rt △DBE 中,BE=DE=3 有BD=32设M 点的横坐标为m ,则M ()2,1m m -+ ①点M 在y 轴左侧时,则1m <-(ⅰ) 当∆A MN ∽∆CDB 时,有AN MNBC BD=∵21,1AN m MN m =--=-即 2=解得:1m =-(舍去) 22m =- 则()2,3M --(ⅱ) 当∆AMN ∽∆DCB 时,有AN MNBD BC= 2=解得11m =-(舍去) 223m =(舍去)② 点M 在y 轴右侧时,则1m > (ⅰ) 当∆AMN ∽∆DCB 时,有AN MNBD BC= ∵21,1AN m MN m =+=-∴ 2=解得11m =-(舍去) 243m = ∴47,39M ⎛⎫-⎪⎝⎭(ⅱ) 当∆A MN ∽∆CDB 时,有AN MNBC BD=即 2=解得:11m =-(舍去) 24m = ∴()4,15M -∴M 点的坐标为()()472,3,,,4,1539⎛⎫----⎪⎝⎭例2解释:(1)由题知,直线与BC 交于点D (x ,3)把y=3代入中得,∴D(4,3)(2)∵抛物线经过D(4,3)、A(6,0)两点把分别代入中得:解之得:∴抛物线的解析式:(3)因△POA底边OA=6∴当有最大值时,点P须位于抛物线的最高点,∴抛物线顶点恰为最高点的最大值(4)抛物线的对称轴与x轴的交点,符合条件∵CB∥OA,,该点坐标为过点O作OD的垂线交抛物线的对称轴于点∵对称轴平行于y轴在和中∵点位于第四象限O因此,符合条件的点有两个,分别是例2对应训练解释:(1)点B的坐标(1(2)设抛物线的解析式为y=ax(x+2)把B(1=a×1×(1+2)解得a∴2 y x =(3)如图,抛物线的对称轴是直线x=-1,当点C位于对称轴与线段AB的交点时,△BOC的周长最小. 设直线AB为y=kx+b∴20k b k b ⎧+⎪⎨-+=⎪⎩,解得k b ⎧=⎪⎪⎨⎪=⎪⎩∴ 直线AB为y =当x =-1时,y =,∴ 点C 的坐标为(-1(4)如图,过P 作y 轴的平行线交AB 于D.2221()()213212PAB PAD PBD D P B A S S S y y x x x x x x ∆∆∆=+=--⎡⎤⎫=+-+⨯⎢⎥⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦=⎫=+⎪⎝⎭当x =-12时,△PAB,此时P(-12,例3解释:(1)当a = 0时,y = x +1,图象与x 轴只有一个公共点当a ≠0时,△=1- 4a =0,a = 14 ,此时,图象与x 轴只有一个公共点.∴函数的解析式为:y =x +1 或`y =14x 2+x +1…… (2)设P 为二次函数图象上的一点,过点P 作PC ⊥x轴于点C .∵y =ax 2+x +1 是二次函数,由(1)知该函数关系式为:y =14x 2+x +1,则顶点为B (-2,0),图象与y 轴的交点 坐标为A (0,1)∵以PB 为直径的圆与直线AB 相切于点B ∴PB ⊥AB 则∠PBC =∠BAO∴Rt △PCB ∽Rt △BOA∴AOBC OB PC ,故PC =2BC ,设P 点的坐标为(x ,y ),∵∠ABO 是锐角,∠PBA 是直角,∴∠PBO 是钝角,∴x <-2∴BC =-2-x ,PC =-4-2x ,即y =-4-2x , P 点的坐标为(x ,-4-2x )∵点P 在二次函数y =14 x 2+x +1的图象上,∴-4-2x =14x 2+x +1解之得:x 1=-2,x 2=-10 ∵x <-2 ∴x =-10,∴P 点的坐标为:(-10,16)(3)点M 不在抛物线y =ax 2+x +1 上由(2)知:C 为圆与x 轴的另一交点,连接CM ,CM 与直线PB 的交点为Q ,过点M 作x 轴的垂线,垂足为D ,取CD 的中点E ,连接QE ,则CM ⊥PB ,且CQ =MQ∴QE ∥MD ,QE =12MD ,QE ⊥CE ∵CM ⊥PB ,QE ⊥CE PC ⊥x 轴 ∴∠QCE =∠EQB =∠CPB∴tan ∠QCE = tan ∠EQB = tan ∠CPB =12CE =2QE =2×2BE =4BE ,又CB =8,故BE =85 ,QE =165∴Q 点的坐标为(-185 ,165) 可求得M 点的坐标为(145 ,325) ∵14(145)2+(145)+1 =14425 ≠325∴C 点关于直线PB 的对称点M 不在抛物线y =ax 2+x +1 上例3对应训练解释:解:(1)点D 的坐标为(43)-,(2)抛物线的表达式为23984y x x =-(3)抛物线的对称轴与x 轴的交点1P∵OA CB ∥, ∴1POM CDO ∠=∠. ∵190OPM DCO ∠=∠=°, ∴1Rt Rt POM CDO △∽△∵抛物线的对称轴3x =,∴点1P 的坐标为1(30)P ,过点O 作OD 的垂线交抛物线的对称轴于点2P . ∵对称轴平行于y 轴,∴2P MO DOC ∠=∠.∵290P OM DCO ∠=∠=°,∴21Rt Rt P M O DOC △∽△.∴点2P 也符合条件,2OP M ODC ∠=∠.∴121390PO CO P PO DCO ==∠=∠=,°,∴21Rt Rt P PO DCO △≌△.∴124PP CD ==.∵点2P 在第一象限 ∴点2P 的坐标为2P (34),, ∴符合条件的点P 有两个,分别是1(30)P ,,2P (34),。