浙江省金华市中考数学真题试题(含答案)

合集下载

浙江省金华市中考数学试卷带答案含答案解析版修订稿

浙江省金华市中考数学试卷带答案含答案解析版修订稿

浙江省金华市中考数学试卷带答案含答案解析版Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】2018年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.在0,1,﹣12,﹣1四个数中,最小的数是( )A .0B .1C .−12 D .﹣1 2.计算(﹣a )3÷a 结果正确的是( ) A .a 2 B .﹣a 2C .﹣a 3D .﹣a 43.如图,∠B 的同位角可以是( )A .∠1B .∠2C .∠3D .∠44.若分式x −3x +3的值为0,则x 的值为( )A .3B .﹣3C .3或﹣3D .05.一个几何体的三视图如图所示,该几何体是( )A .直三棱柱B .长方体C .圆锥D .立方体6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A .16B .14C .13D .7127.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm ,则图中转折点P 的坐标表示正确的是( )A .(5,30)B .(8,10)C .(9,10)D .(10,10)8.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .xxxx xxxxB .xxxx xxxxC .xxxx xxxxD .xxxx xxxx9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.某通讯公司就上宽带网推出A ,B ,C 三种月收费方式.这三种收费方式每月所需的费用y (元)与上网时间x (h )的函数关系如图所示,则下列判断错误的是( )A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.化简(x﹣1)(x+1)的结果是.12.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.对于两个非零实数x,y,定义一种新的运算:x*y=xx+xx.若1*(﹣1)=2,则(﹣2)*2的值是.15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则xx xx的值是.16.如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:√8+(﹣2018)0﹣4sin45°+|﹣2|.18.解不等式组:{x3+2<x2x+2≥3(x−1)19.为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20(8分)(2018金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=12,求⊙O的半径.22.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值最大值是多少(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.如图,四边形ABCD的四个顶点分别在反比例函数y=xx与y=xx(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形若能,求此时m,n之间的数量关系;若不能,试说明理由.24.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2018金华)在0,1,﹣12,﹣1四个数中,最小的数是()A.0 B.1 C.−12D.﹣1【考点】18:有理数大小比较.【专题】1 :常规题型;511:实数.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣12<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3分)(2018金华)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a4【考点】48:同底数幂的除法.【专题】11 :计算题.【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3分)(2018金华)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【考点】J6:同位角、内错角、同旁内角.【专题】1 :常规题型.【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.4.(3分)(2018金华)若分式x−3x+3的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【考点】63:分式的值为零的条件.【专题】11 :计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3分)(2018金华)一个几何体的三视图如图所示,该几何体是()A .直三棱柱B .长方体C .圆锥D .立方体【考点】U3:由三视图判断几何体. 【专题】55:几何图形.【分析】根据三视图的形状可判断几何体的形状. 【解答】解:观察三视图可知,该几何体是直三棱柱. 故选:A .【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3分)(2018金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A .16B .14C .13D .712 【考点】X5:几何概率. 【专题】543:概率及其应用.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°, 所以黄区域所占的面积比例为90360=14,即转动圆盘一次,指针停在黄区域的概率是1 4,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3分)(2018金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【考点】D3:坐标确定位置.【专题】11 :计算题.【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.8.(3分)(2018金华)如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .xxxx xxxxB .xxxx xxxxC .xxxx xxxxD .xxxx xxxx 【考点】T8:解直角三角形的应用. 【专题】552:三角形.【分析】在两个直角三角形中,分别求出AB 、AD 即可解决问题;【解答】解:在Rt △ABC 中,AB=xxxxxx,在Rt △ACD 中,AD=xxxxxx,∴AB :AD=xx xxxx :xx xxxx =xxxxxxxx ,故选:B .【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3分)(2018金华)如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A.55°B.60°C.65°D.70°【考点】R2:旋转的性质.【专题】55:几何图形.【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.(3分)(2018金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A .每月上网时间不足25h 时,选择A 方式最省钱B .每月上网费用为60元时,B 方式可上网的时间比A 方式多C .每月上网时间为35h 时,选择B 方式最省钱D .每月上网时间超过70h 时,选择C 方式最省钱 【考点】E6:函数的图象.【专题】532:函数及其图像;533:一次函数及其应用.【分析】A 、观察函数图象,可得出:每月上网时间不足25 h 时,选择A 方式最省钱,结论A 正确;B 、观察函数图象,可得出:当每月上网费用≥50元时,B 方式可上网的时间比A 方式多,结论B 正确;C 、利用待定系数法求出:当x ≥25时,y A 与x 之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A 的值,将其与50比较后即可得出结论C 正确;D 、利用待定系数法求出:当x ≥50时,y B 与x 之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B 的值,将其与120比较后即可得出结论D 错误. 综上即可得出结论.【解答】解:A 、观察函数图象,可知:每月上网时间不足25 h 时,选择A 方式最省钱,结论A 正确;B 、观察函数图象,可知:当每月上网费用≥50元时,B 方式可上网的时间比A 方式多,结论B 正确;C 、设当x ≥25时,y A =kx+b ,将(25,30)、(55,120)代入y A =kx+b ,得: {25x +x =3055x +x =120,解得:{x =3x =−45,∴y A =3x ﹣45(x ≥25), 当x=35时,y A =3x ﹣45=60>50,∴每月上网时间为35h 时,选择B 方式最省钱,结论C 正确; D 、设当x ≥50时,y B =mx+n ,将(50,50)、(55,65)代入y B =mx+n ,得: {50x +x =5055x +x =65,解得:{x =3x =−100,∴y B =3x ﹣100(x ≥50),当x=70时,y B =3x ﹣100=110<120, ∴结论D 错误. 故选:D .【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2018金华)化简(x ﹣1)(x+1)的结果是 x 2﹣1 . 【考点】4F :平方差公式. 【专题】11 :计算题.【分析】原式利用平方差公式计算即可得到结果. 【解答】解:原式=x 2﹣1, 故答案为:x 2﹣1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(4分)(2018金华)如图,△ABC 的两条高AD ,BE 相交于点F ,请添加一个条件,使得△ADC ≌△BEC (不添加其他字母及辅助线),你添加的条件是 AC=BC .【考点】KB:全等三角形的判定.【专题】1 :常规题型.【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中{∠xxx=∠xxx ∠xxx=∠xxx xx=xx,∴△ADC≌△BEC(AAS),故答案为:AC=BC.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(4分)(2018金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是% .【考点】W5:众数. 【专题】11 :计算题.【分析】根据众数的概念判断即可.【解答】解:这5年增长速度分别是%、%、%、%、%, 则这5年增长速度的众数是%, 故答案为:%.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.14.(4分)(2018金华)对于两个非零实数x ,y ,定义一种新的运算:x*y=x x +xx .若1*(﹣1)=2,则(﹣2)*2的值是 ﹣1 .【考点】2C :实数的运算.【专题】11 :计算题;36 :整体思想. 【分析】根据新定义的运算法则即可求出答案. 【解答】解:∵1*(﹣1)=2, ∴x 1+x −1=2 即a ﹣b=2∴原式=x −2+x 2=−12(a ﹣b )=﹣1故答案为:﹣1【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.15.(4分)(2018金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形①的边GD 在边AD 上,则xx xx 的值是 √2+14.【考点】LB :矩形的性质;IM :七巧板. 【专题】556:矩形 菱形 正方形.【分析】设七巧板的边长为x ,根据正方形的性质、矩形的性质分别表示出AB ,BC ,进一步求出xxxx 的值.【解答】解:设七巧板的边长为x ,则AB=12x+√22x , BC=12x+x+12x=2x , xx xx =12x +√22x 2x =√2+14. 故答案为:√2+14.【点评】考查了矩形的性质,七巧板,关键是熟悉七巧板的特征,表示出AB ,BC 的长.16.(4分)(2018金华)如图1是小明制作的一副弓箭,点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC=60cm .沿AD 方向拉动弓弦的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30cm ,∠B 1D 1C 1=120°.(1)图2中,弓臂两端B 1,C 1的距离为 30√3 cm .(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为 10√5﹣10 cm .【考点】M3:垂径定理的应用;KU:勾股定理的应用;M5:圆周角定理.【专题】559:圆的有关概念及性质.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是x1xx1̂的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15√3∴B1C1=30√3∴弓臂两端B1,C1的距离为30√3(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=120x30 180,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2=√302−202=10√5∴D1D2=10√5﹣10.故答案为30√3,10√5﹣10,【点评】本题考查垂径定理的应用、勾股定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)(2018金华)计算:√8+(﹣2018)0﹣4sin45°+|﹣2|.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】根据零指数幂和特殊角的三角函数值进行计算.【解答】解:原式=2√2+1﹣4×√2 2+2=2√2+1﹣2√2+2=3.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.18.(6分)(2018金华)解不等式组:{x3+2<x2x+2≥3(x−1)【考点】CB:解一元一次不等式组.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式x3+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6分)(2018金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【专题】542:统计的应用.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.20.(8分)(2018金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【考点】N4:作图—应用与设计作图.【专题】13 :作图题.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)(2018金华)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=12,求⊙O的半径.【考点】ME:切线的判定与性质;T7:解直角三角形.【专题】55A:与圆有关的位置关系.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB=√42+82=4√5,∴OA=4√5﹣r,在Rt△ACD中,tan∠1=tanB=1 2,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4√5﹣r)2=r2+20,解得:r=3√5 2.【点评】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.(10分)(2018金华)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值最大值是多少(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【考点】HF:二次函数综合题.【专题】15 :综合题;535:二次函数图象及其性质;558:平移、旋转与对称.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣1 4t2+52t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣1 4,抛物线的函数表达式为y=﹣14x2+52x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣14t2+52t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣14t2+52t)]=﹣12t 2+t+20 =﹣12(t ﹣1)2+412, ∵﹣12<0, ∴当t=1时,矩形ABCD 的周长有最大值,最大值为412;(3)如图,当t=2时,点A 、B 、C 、D 的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD 对角线的交点P 的坐标为(5,2),当平移后的抛物线过点A 时,点H 的坐标为(4,4),此时GH 不能将矩形面积平分;当平移后的抛物线过点C 时,点G 的坐标为(6,0),此时GH 也不能将矩形面积平分;∴当G 、H 中有一点落在线段AD 或BC 上时,直线GH 不可能将矩形的面积平分,当点G 、H 分别落在线段AB 、DC 上时,直线GH 过点P 必平分矩形ABCD 的面积,∵AB ∥CD ,∴线段OD 平移后得到的线段GH ,∴线段OD 的中点Q 平移后的对应点是P ,在△OBD 中,PQ 是中位线,∴PQ=12OB=4,所以抛物线向右平移的距离是4个单位.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.23.(10分)(2018金华)如图,四边形ABCD 的四个顶点分别在反比例函数y=x x 与y=x x(x >0,0<m <n )的图象上,对角线BD ∥y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为4.(1)当m=4,n=20时.①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由.(2)四边形ABCD 能否成为正方形若能,求此时m ,n 之间的数量关系;若不能,试说明理由.【考点】GB :反比例函数综合题.【专题】15 :综合题.【分析】(1)①先确定出点A ,B 坐标,再利用待定系数法即可得出结论; ②先确定出点D 坐标,进而确定出点P 坐标,进而求出PA ,PC ,即可得出结论;(2)先确定出B (4,x 4),进而得出A (4﹣t ,x 4+t ),即:(4﹣t )(x 4+t )=m ,即可得出点D (4,8﹣x 4),即可得出结论. 【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=4x,当x=4时,y=1,∴B (4,1),当y=2时,∴2=4x, ∴x=2,∴A (2,2),设直线AB 的解析式为y=kx+b ,∴{2x +x =24x +x =1, ∴{x =−12x =3,∴直线AB 的解析式为y=﹣12x+3;②四边形ABCD 是菱形,理由如下:如图2,由①知,B (4,1),∵BD ∥y 轴,∴D (4,5),∵点P 是线段BD 的中点,∴P (4,3),当y=3时,由y=4x 得,x=43, 由y=20x 得,x=203, ∴PA=4﹣43=83,PC=203﹣4=83, ∴PA=PC ,∵PB=PD ,∴四边形ABCD 为平行四边形,∵BD ⊥AC ,∴四边形ABCD 是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y=xx=x4,∴B(4,x4),∴A(4﹣t,x4+t),C(4+t,x4+t),∴(4﹣t)(x4+t)=m,∴t=4﹣x 4,∴C(8﹣x4,4),∴(8﹣x4)×4=n,∴m+n=32,∵点D的纵坐标为x4+2t=x4+2(4﹣x4)=8﹣x4,∴D(4,8﹣x4),∴4(8﹣x4)=n,∴m+n=32.【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.24.(12分)(2018金华)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形若存在,求该三角形的腰长;若不存在,试说明理由.【考点】LO :四边形综合题.【专题】152:几何综合题.【分析】(1)①只要证明△ACF ∽△GEF ,推出xx xx =xx xx,即可解决问题;②如图1中,想办法证明∠1=∠2=30°即可解决问题;(2)分四种情形:①如图2中,当点D 中线段BC 上时,此时只有GF=GD ,②如图3中,当点D 中线段BC 的延长线上,且直线AB ,CE 的交点中AE 上方时,此时只有GF=DG ,③如图4中,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点中BD 下方时,此时只有DF=DG ,如图5中,当点D 中线段CB 的延长线上时,此时只有DF=DG ,分别求解即可解决问题;【解答】解:(1)①在正方形ACDE 中,DG=GE=6,中Rt △AEG 中,AG=√xx 2+xx 2=6√5,∵EG ∥AC ,∴△ACF ∽△GEF ,∴xx xx =xx xx, ∴xx xx =612=12, ∴FG=13AG=2√5.②如图1中,正方形ACDE 中,AE=ED ,∠AEF=∠DEF=45°,∵EF=EF ,∴△AEF ≌△DEF ,∴∠1=∠2,设∠1=∠2=x ,∵AE ∥BC ,∴∠B=∠1=x ,∵GF=GD ,∴∠3=∠2=x ,在△DBF 中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt △ABC 中,BC=xx xxx30°=12√3.(2)在Rt △ABC 中,AB=√xx 2+xx 2=√122+92=15,如图2中,当点D 中线段BC 上时,此时只有GF=GD ,∵DG ∥AC ,∴△BDG ∽△BCA ,设BD=3x ,则DG=4x ,BG=5x ,∴GF=GD=4x ,则AF=15﹣9x ,∵AE ∥CB ,∴△AEF ∽△BCF ,∴xx xx =xx xx, ∴9−3x 9=15−9x 9x, 整理得:x 2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD 为=4x=4.如图3中,当点D 中线段BC 的延长线上,且直线AB ,CE 的交点中AE 上方时,此时只有GF=DG ,设AE=3x ,则EG=4x ,AG=5x ,∴FG=DG=12+4x ,∵AE ∥BC ,∴△AEF ∽△BCF ,∴xx xx =xx xx,∴3x 9=9x +129x +27, 解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点中BD 下方时,此时只有DF=DG ,过点D 作DH ⊥FG .设AE=3x ,则EG=4x ,AG=5x ,DG=4x+12,∴FH=GH=DGcos ∠DGB=(4x+12)×45=16x +485, ∴GF=2GH=32x +965, ∴AF=GF ﹣AG=7x +965, ∵AC ∥DG ,∴△ACF ∽△GEF ,∴xx xx =xx xx, ∴124x =7x +96532x +965, 解得x=12√147或﹣12√147(舍弃), ∴腰长GD=4x+12=84+48√147, 如图5中,当点D 中线段CB 的延长线上时,此时只有DF=DG ,作DH ⊥AG 于H . 设AE=3x ,则EG=4x ,AG=5x ,DG=4x ﹣12,∴FH=GH=DGcos ∠DGB=16x −485, ∴FG=2FH=32x −965, ∴AF=AG ﹣FG=96−7x 5, ∵AC ∥EG ,∴△ACF ∽△GEF ,∴xx xx =xx xx, ∴124x =96−7x 532x 965,解得x=12√147或﹣12√147(舍弃),∴腰长DG=4x﹣12=−84+48√147,综上所述,等腰三角形△DFG的腰长为4或20或84+48√147或−84+48√147.【点评】本题考查四边形综合题、正方形的性质、矩形的性质、相似三角形的判定和性质、锐角三角函数、平行线的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。

2022年浙江省金华市中考数学真题(解析版)

2022年浙江省金华市中考数学真题(解析版)

数学卷Ⅰ说明:本卷共有1大题,10小题.一、选择题(本题有10小题)1.在12,2-中,是无理数的是()A.2-B.12C.D.2【答案】C 【解析】【分析】根据无理数的定义判断即可;【详解】解:∵-2,12,2故选:C .【点睛】本题考查了无理数的定义:无限不循环小数叫做无理数,如开方开不尽的数的方根、π.2.计算32a a ⋅的结果是()A.a B.6a C.6aD.5a 【答案】D 【解析】【分析】根据同底数幂的乘法法则计算判断即可.【详解】∵32a a ⋅=5a ,故选D .【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.3.体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16320000吨,数16320000用科学记数法表示为()A.4163210⨯ B.71.63210⨯ C.61.63210⨯ D.516.3210⨯【答案】B 【解析】【分析】在用科学记数法表示的大于10的数时,10n a ⨯的形式中a 的取值范围必须是110,a ≤<10的指数比原来的整数位数少1.【详解】解:数16320000用科学记数法表示为71.63210.⨯故选:B.【点睛】本题考查科学记数法,对于一个写成用科学记数法写出的数,则看数的最末一位在原数中所在数位,其中a是整数数位只有一位的数,10的指数比原来的整数位数少1.4.已知三角形的两边长分别为5cm和8cm,则第三边的长可以是()A.2cmB.3cmC.6cmD.13cm 【答案】C【解析】【分析】先确定第三边的取值范围,后根据选项计算选择.【详解】设第三边的长为x,∵角形的两边长分别为5cm和8cm,∴3cm<x<13cm,故选C.【点睛】本题考查了三角形三边关系定理,熟练确定第三边的范围是解题的关键.5.观察如图所示的频数直方图,其中组界为99.5~124.5这一组的频数为()A.5B.6C.7D.8【答案】D【解析】【分析】用总人数减去其他三组的人数即为所求频数.【详解】解:20-3-5-4=8,故组界为99.5~124.5这一组的频数为8,故选:D.【点睛】本题考查频数分布直方图,能够根据要求读出相应的数据是解决本题的关键.6.如图,AC 与BD 相交于点O ,,OA OD OB OC ==,不添加辅助线,判定ABO DCO △≌△的依据是()A.SSSB.SASC.AASD.HL【答案】B 【解析】【分析】根据OA OD =,OB OC =,AOB COD ∠=∠正好是两边一夹角,即可得出答案.【详解】解:∵在△ABO 和△DCO 中,OA OD AOB COD OB OC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABO DCO ≌△△,故B 正确.故选:B .【点睛】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键.7.如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是()A.超市B.医院C.体育场D.学校【答案】A【解析】【分析】根据学校和体育场的坐标建立直角坐标系,利用勾股定理求出各点到原点的距离,由此得到答案.【详解】解:根据学校和体育场的坐标建立直角坐标系,=,=,=,=故选:A.【点睛】此题考查了根据点坐标确定原点,勾股定理,正确理解点坐标得到原点的位置及正确展望勾股定理的计算是解题的关键.8.如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A. B.C. D.【答案】C 【解析】【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:∵AB 为底面直径,∴将圆柱侧面沿AC “剪开”后,B 点在长方形上面那条边的中间,∵两点之间线段最短,故选:C .【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.9.一配电房示意图如图所示,它是一个轴对称图形,已知6m BC =,ABC α∠=,则房顶A 离地面EF 的高度为()A.(43sin )m α+B.(43tan )m α+C.34m sin α⎛⎫+⎪⎝⎭D.34m tan a ⎛⎫+⎪⎝⎭【答案】B 【解析】【分析】过点A 作AD ⊥BC 于D ,根据轴对称图形得性质即可得BD =CD ,从而利用锐角三角函数正切值即可求得答案.【详解】解:过点A 作AD ⊥BC 于D ,如图所示:∵它是一个轴对称图形,∴132BD DC BC ===m ,tan 3AD ADBD α∴==,即3tan AD α=,∴房顶A 离地面EF 的高度为(43tan )m α+,故选B .【点睛】本题考查了解直角三角形,熟练掌握利用正切值及一条直角边求另一条直角边是解题的关键.10.如图是一张矩形纸片ABCD ,点E 为AD 中点,点F 在BC 上,把该纸片沿EF 折叠,点A ,B 的对应点分别为A B A E ''',,与BC 相交于点G ,B A ''的延长线过点C .若23BF GC =,则ADAB的值为()A.B.5C.207D.83【答案】A 【解析】【分析】令BF =2x ,CG =3x ,FG =y ,易证CGA CFB ''△∽△,得出CG A GCF B F'=',进而得出y =3x ,则AE =4x ,AD =8x ,过点E 作EH ⊥BC 于点H ,根据勾股定理得出EH=,最后求出ADAB的值.【详解】解:过点E 作EH ⊥BC 于点H ,又四边形ABCD 为矩形,∴∠A =∠B =∠D =∠BCD =90°,AD =BC ,∴四边形ABHE 和四边形CDEH 为矩形,∴AB =EH ,ED =CH ,∵23BF GC =,∴令BF =2x ,CG =3x ,FG =y ,则CF =3x +y ,2B F x '=,52x yA G -'=,由题意,得==90CA G CB F ''︒∠∠,又GCA '∠为公共角,∴CGA CFB ''△∽△,∴CG A GCF B F'=',则53232x yx x y x-=+,整理,得()()30x y x y +-=,解得x =-y (舍去),y =3x ,∴AD =BC =5x +y =8x ,EG =3x ,HG =x ,在Rt △EGH 中EH 2+HG 2=EG 2,则EH 2+x 2=(3x )2,解得EH=x ,EH=-x (舍),∴AB=,∴AD AB ==.故选:A .【点睛】本题考查了矩形的判定和性质,相似三角形的判定和性质,勾股定理求边长等知识,借助于相似三角形找到y =3x 的关系式是解决问题的关键.卷Ⅱ说明:本卷共有2大题,14小题二、填空题(本题有6小题)11.因式分解:29x -=______.【答案】()()33x x +-【解析】【分析】根据平方差公式()()22a b a b a b -=+-直接进行因式分解即可.【详解】解:29x -223x =-()()33x x =+-,故答案为:()()33x x +-.【点睛】本题考查利用公式法分解因式,熟练掌握平方差公式是解决问题的关键.12.若分式23x -的值为2,则x 的值是_______.【答案】4【解析】【分析】根据题意建立分式方程,再解方程即可;【详解】解:由题意得:223x =-去分母:()223x =-去括号:226x =-移项,合并同类项:28x =系数化为1:4x =经检验,x =4是原方程的解,故答案为:4;【点睛】本题考查了分式方程,掌握解分式方程的步骤是解题关键.13.一个布袋里装有7个红球、3个白球,它们除颜色外都相同.从中任意摸出1个球,摸到红球的概率是______.【答案】710【解析】【分析】先确定所有等可能性的数量,再确定红球事件的可能性数量,根据公式计算即可.【详解】∵所有等可能性有10种,红球事件的可能性有7种,∴摸到红球的概率是710,故答案为:710.【点睛】本题考查了简单的概率计算,熟练掌握概率计算公式是解题的关键.14.如图,在Rt ABC 中,90,30,2cm ACB A BC ∠=︒∠=︒=.把ABC 沿AB 方向平移1cm ,得到A B C '''V ,连结CC ',则四边形AB C C ''的周长为_____cm .【答案】8+【解析】【分析】通过勾股定理,平移的特性,特殊角的三角函数,分别计算出四边形的四条边长,再计算出周长即可.【详解】解:∵90,30,2cm ACB A BC ∠=︒∠=︒=,∴AB =2BC =4,∴==∵把ABC 沿AB 方向平移1cm ,得到A B C '''V ,∴1CC '=,=4+1=5AB ',=2B C BC ''=,∴四边形的周长为:1528+++=+故答案为:8+【点睛】本题考查勾股定理,平移的特性,特殊角的三角函数,能够熟练掌握勾股定理是解决本题的关键.15.如图,木工用角尺的短边紧靠⊙O 于点A ,长边与⊙O 相切于点B ,角尺的直角顶点为C ,已知6cm,8cm AC CB ==,则⊙O 的半径为_____cm .【答案】253##183【解析】【分析】设圆的半径为r cm ,连接OB 、OA ,过点A 作AD ⊥OB ,垂足为D ,利用勾股定理,在Rt △AOD 中,得到r 2=(r −6)2+82,求出r 即可.【详解】解:连接OB 、OA ,过点A 作AD ⊥OB ,垂足为D ,如图所示:∵CB 与O 相切于点B ,∴OB CB ⊥,∴90CBD BDA ACB ∠=∠=∠=︒,∴四边形ACBD 为矩形,∴8AD CB ==,6BD AC ==,设圆的半径为r cm ,在Rt △AOD 中,根据勾股定理可得:222OA OD AD =+,即r 2=(r −6)2+82,解得:253r =,即O 的半径为253cm .故答案为:253.【点睛】本题主要考查了切线的性质,矩形的判定和性质,勾股定理,作出辅助线,构造直角三角形,利用勾股定理列出关于半径r 的方程,是解题的关键.16.图1是光伏发电场景,其示意图如图2,EF 为吸热塔,在地平线EG 上的点B ,B '处各安装定日镜(介绍见图3).绕各中心点(),A A '旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F 处.已知1m,8m,AB A B EB EB ='==''=,在点A 观测点F 的仰角为45︒.(1)点F 的高度EF 为______m .(2)设,DAB D A B αβ''∠'=∠=,则α与β的数量关系是_______.【答案】①.9②.7.5αβ-=︒【解析】【分析】(1)过点A 作AG ⊥EF ,垂足为G ,证明四边形ABEG 是矩形,解直角三角形AFG ,确定FG ,EG 的长度即可.(2)根据光的反射原理画出光路图,清楚光线是平行线,运用解直角三角形思想,平行线的性质求解即可.【详解】(1)过点A 作AG ⊥EF ,垂足为G .∵∠ABE =∠BEG =∠EGA =90°,∴四边形ABEG 是矩形,∴EG =AB =1m ,AG =EB =8m ,∵∠AFG =45°,∴FG =AG =EB =8m ,∴EF =FG +EG =9(m ).故答案为:9;(2)7.5αβ-=︒.理由如下:∵∠A 'B 'E =∠B 'EG =∠EG A '=90°,∴四边形A 'B 'EG 是矩形,∴EG =A 'B '=1m ,A 'G =E B '=,∴tan ∠A 'FG =838A G FG '=∴∠A 'FG =60°,∠F A 'G =30°,根据光的反射原理,不妨设∠FAN =2m ,∠F A 'M =2n ,∵光线是平行的,∴AN ∥A 'M ,∴∠GAN =∠G A 'M ,∴45°+2m =30°+2n ,解得n -m =7.5°,根据光路图,得90,90DAB m D A B n αβ'∠==-∠==-'' ,∴9090m n n m αβ-=--+=- ,故7.5αβ-=︒,故答案为:7.5αβ-=︒.【点睛】本题考查了解直角三角形的应用,矩形的判定和性质,特殊角的三角函数值,光的反射原理,熟练掌握解直角三角形,灵活运用光的反射原理是解题的关键.三、解答题(本题有8小题,各小题都必须写出解答过程)17.计算:0(2022)2tan 45|2|--︒+-.【答案】4【解析】【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式12123=-⨯++1223=-++4=;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.18.解不等式:2(32)1x x ->+.【答案】1x >【解析】【分析】按照解不等式的基本步骤解答即可.【详解】解:2(32)1x x ->+,641x x ->+,641x x ->+,55x >,∴1x >.【点睛】本题考查了一元一次不等式的解法,熟练掌握不等式解法的基本步骤是解题的关键.19.如图1,将长为23a +,宽为2a 的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a 的代数式表示图2中小正方形的边长.(2)当3a =时,该小正方形的面积是多少?【答案】(1)3a +(2)36【解析】【分析】(1)分别算出直角三角形较长的直角边和较短的直角边,再用较长的直角边减去较短的直角边即可得到小正方形面积;(2)根据(1)所得的小正方形边长,可以写出小正方形的面积代数式,再将a 的值代入即可.【小问1详解】解:∵直角三角形较短的直角边122a a =⨯=,较长的直角边23a =+,∴小正方形的边长233a a a =+-=+;【小问2详解】解:22(3)69S a a a =+=++小正方形,当3a =时,2(33)36S =+=小正方形.【点睛】本题考查割补思想,属性结合思想,以及整式的运算,能够熟练掌握割补思想是解决本题的关键.20.如图,点A 在第一象限内,AB x ⊥轴于点B ,反比例函数(k 0,x 0)ky x=≠>的图象分别交,AO AB 于点C ,D .已知点C 的坐标为(2,2),1BD =.(1)求k 的值及点D 的坐标.(2)已知点P 在该反比例函数图象上,且在ABO 的内部(包括边界),直接写出点P 的横坐标x 的取值范围.【答案】(1)4k =,(4,1);(2)24x ≤≤;【解析】【分析】(1)由C 点坐标可得k ,再由D 点纵坐标可得D 点横坐标;(2)由C 、D 两点的横坐标即可求得P 点横坐标取值范围;【小问1详解】解:把C (2,2)代入k y x=,得22k=,4k =,∴反比例函数函数为4y x=(x >0),∵AB ⊥x 轴,BD =1,∴D 点纵坐标为1,把1y =代入4y x=,得4x =,∴点D 坐标为(4,1);【小问2详解】解:∵P 点在点C (2,2)和点D (4,1)之间,∴点P 的横坐标:24x ≤≤;【点睛】本题考查了反比例函数解析式,坐标的特征,数形结合是解题关键.21.学校举办演讲比赛,总评成绩由“内容、表达、风度、印象”四部分组成.九(1)班组织选拔赛,制定的各部分所占比例如图,三位同学的成绩如表.请解答下列问题:演讲总评成绩各部分所占比例的统计图:三位同学的成绩统计表:(1)求图中表示“内容”的扇形的圆心角度数.(2)求表中m 的值,并根据总评成绩确定三人的排名顺序.(3)学校要求“内容”比“表达”重要,该统计图中各部分所占比例是否合理?如果不合理,如何调整?【答案】(1)108︒;(2)7.6,三人成绩从高到低的排名顺序为:小亮,小田,小明;(3)班级制定的各部分所占比例不合理,见解析;【解析】【分析】(1)由“内容”所占比例×360°计算求值即可;(2)根据各部分成绩所占的比例计算加权平均数即可;(3)根据“内容”所占比例要高于“表达”比例,将“内容”所占比例设为40%即可;【小问1详解】---=,解:∵“内容”所占比例为115%15%40%30%=︒⨯=︒;∴“内容”的扇形的圆心角36030%108【小问2详解】m=⨯+⨯+⨯+⨯=,解:830%740%815%815%7.6>>,∵7.857.87.6∴三人成绩从高到低的排名顺序为:小亮,小田,小明;【小问3详解】解:各部分所占比例不合理,“内容”比“表达”重要,那么“内容”所占比例应大于“表达”所占比例,∴“内容”所占百分比应为40%,“表达”所占百分比为30%,其它不变;【点睛】本题考查了扇形圆心角的计算,加权平均数的计算,掌握相关概念的计算方法是解题关键.22.如图1,正五边形ABCDE内接于⊙O,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF;②以F为圆心,FO为半径作圆弧,与⊙O交于点M,N;③连接,,AM MN NA.∠的度数.(1)求ABC是正三角形吗?请说明理由.(2)AMN(3)从点A开始,以DN长为半径,在⊙O上依次截取点,再依次连接这些分点,得到正n边形,求n的值.【答案】(1)108︒(2)是正三角形,理由见解析n=(3)15【解析】【分析】(1)根据正五边形的性质以及圆的性质可得 BC CD DE AE AB ====,则AOC ∠(优弧所对圆心角)372216︒︒=⨯=,然后根据圆周角定理即可得出结论;(2)根据所作图形以及圆周角定理即可得出结论;(3)运用圆周角定理并结合(1)(2)中结论得出14412024NOD ∠=︒-︒=︒,即可得出结论.【小问1详解】解:∵正五边形ABCDE .∴ BCCD DE AE AB ====,∴360725AOB BOC COD DOE EOA ︒∠=∠=∠=∠=∠==︒,∵ 3AEC AE =,∴AOC ∠(优弧所对圆心角)372216︒︒=⨯=,∴1121610822AOC ABC ∠=⨯︒=∠=︒;【小问2详解】解:AMN 是正三角形,理由如下:连接,ON FN ,由作图知:FN FO =,∵ON OF =,∴ONOF FN ==,∴OFN △是正三角形,∴60OFN ∠=︒,∴60AMN OFN ∠=∠=︒,同理60ANM ∠=︒,∴60MAN ∠=︒,即AMN ANM MAN ∠=∠=∠,∴AMN 是正三角形;【小问3详解】∵AMN 是正三角形,∴2120A N A N M O =∠=︒∠.∵ 2AD AE =,∴272144AOD ∠=⨯︒=︒,∵ DN AD AN=-,∴14412024NOD ∠=︒-︒=︒,∴3601524n ==.【点睛】本题考查了圆周角定理,正多边形的性质,读懂题意,明确题目中的作图方式,熟练运用圆周角定理是解本题的关键.23.“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量1y (吨)关于售价x (元/千克)的函数图象可以看成抛物线,其表达式为21y ax c =+,部分对应值如表:售价x (元/千克)…2.533.54…需求量1y (吨)…7.757.2 6.55 5.8…②该蔬菜供给量2y (吨)关于售价x (元/千克)的函数表达式为21y x =-,函数图象见图1.③1~7月份该蔬菜售价1x (元/千克),成本2x (元/千克)关于月份t 的函数表达式分别为11=22x t +,2213342x t t =-+,函数图象见图2.请解答下列问题:(1)求a,c的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.【答案】(1)1,95a c=-=(2)在4月份出售这种蔬菜每千克获利最大,见解析(3)该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元【解析】【分析】(1)运用待定系数法求解即可;(2)设这种蔬菜每千克获利w 元,根据w x x =-售价成本列出函数关系式,由二次函数的性质可得结论;(3)根据题意列出方程,求出x 的值,再求出总利润即可.【小问1详解】把3,7.2x y =⎧⎨=⎩,4,5.8x y =⎧⎨=⎩代入2y ax c =+需求可得97.2,16 5.8.a c a c +=⎧⎨+=⎩①②②-①,得7 1.4a =-,解得15a =-,把15a =-代入①,得9c =,∴1,95a c =-=.【小问2详解】设这种蔬菜每千克获利w 元,根据题意,有211323242w x x t t ⎛⎫=-=+--+ ⎪⎝⎭售价成本,化简,得221121(4)344w t t t =-+-=--+,∵10,44t -<=在17t ≤≤的范围内,∴当4t =时,w 有最大值.答:在4月份出售这种蔬菜每千克获利最大.【小问3详解】由y y =需求供给,得21195x x -=-+,化简,得25500x x +-=,解得125,10x x ==-(舍去),∴售价为5元/千克.此时,14y y x ==-=需求供给(吨)4000=(千克),把5x =代入122x t =+售价,得6t =,把6t =代入21214w t t =-+-,得13626124w =-⨯+⨯-=,∴总利润240008000w y =⋅=⨯=(元).答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.【点睛】此题主要考查了函数的综合应用,结合函数图象得出各点的坐标,再利用待定系数法求出函数解析式是解题的关键.24.如图,在菱形ABCD 中,310,sin 5AB B ==,点E 从点B 出发沿折线B C D --向终点D 运动.过点E 作点E 所在的边(BC 或CD )的垂线,交菱形其它的边于点F ,在EF 的右侧作矩形EFGH .(1)如图1,点G 在AC 上.求证:FA FG =.(2)若EF FG =,当EF 过AC 中点时,求AG 的长.(3)已知8FG =,设点E 的运动路程为s .当s 满足什么条件时,以G ,C ,H 为顶点的三角形与BEF 相似(包括全等)?【答案】(1)见解析(2)7AG =或5(3)1s =或3225s =或327s =或1012s ≤≤【解析】【分析】(1)证明△AFG 是等腰三角形即可得到答案;(2)记AC 中点为点O .分点E 在BC 上和点E 在CD 上两种情况进行求解即可;(3)过点A 作AM BC ⊥于点M ,作AN CD ⊥于点N .分点E 在线段BM 上时,点E 在线段MC 上时,点E 在线段CN 上,点E 在线段ND 上,共四钟情况分别求解即可.【小问1详解】证明:如图1,∵四边形ABCD 是菱形,∴BA BC =,∴BAC BCA ∠=∠.∵FG BC ,∴FGA BCA ∠=∠,∴BAC FGA ∠=∠,∴△AFG 是等腰三角形,∴FA FG =.【小问2详解】解:记AC 中点为点O .①当点E 在BC 上时,如图2,过点A 作AM BC ⊥于点M ,∵在Rt ABM 中,365AM AB ==,∴8BM ===.∴6,2FG EF AM CM BC BM ====-=,∵,OA OC OE AM =∥,∴112122CE ME CM ===⨯=,∴1AF ME ==,∴167AG AF FG =+=+=.②当点E 在CD 上时,如图3,过点A 作AN CD ⊥于点N .同理,6,2FG EF AN CN ====,112AF NE CN ===,∴615AG FG AF=-=-=.∴7AG =或5.【小问3详解】解:过点A 作AM BC ⊥于点M ,作AN CD ⊥于点N .①当点E 在线段BM 上时,08s <≤.设3EF x =,则4,3BE x GH EF x ===,ⅰ)若点H 在点C 的左侧,810s +≤,即02s <≤,如图4,10(48)24CH BC BH x x =-=-+=-.∵GHC FEB △∽△,∴GH CH EF BE=,∴GH EF CH BE=,∴33244x x =-,解得14x =,经检验,14x =是方程的根,∴41s x ==.∵GHC BEF △∽△,∴GH CH BE EF=,∴GH BE CH EF=,∴34243x x =-,解得825x =,经检验,825x =是方程的根,∴32425s x ==.ⅱ)若点H 在点C 的右侧,810s +>,即28s <≤,如图5,(48)1042CH BH BC x x =-=+-=-.∵GHC FEB △∽△,∴GH CH EF BE=,∴GH EF CH BE=,∴33424x x =-,此方程无解.∵GHC BEF △∽△,∴GH CH BE EF=,∴GH BE CH EF=,∴34423x x =-,解得87x =,经检验,87x =是方程的根,∴3247s x ==.②当点E 在线段MC 上时,810s <≤,如图6,6,8,EF EH BE s ===.∴8,2BH BE EH s CH BH BC s =+=+=-=-.∵GHC FEB △∽△,∴GH CH EF BE=,∴GH EF CH BE=,∴662s s =-,此方程无解.∵GHC BEF △∽△,∴GH CH BE EF=,∴GH BE CH EF=,∴626s s =-,解得1s =±经检验,1s =±∵810s <≤,∴1s =③当点E 在线段CN 上时,1012s ≤≤,如图7,过点C 作⊥CJ AB 于点J ,在Rt BJC △中,10,6,8BC CJ BJ ===.8,EH BJ JF CE ===,∴BJ JF EH CE +=+,∴CH BF =,∵,90GH EF GHC EFB =∠=∠=︒,∴GHC EFB △≌△,符合题意,此时,1012s ≤≤.④当点E 在线段ND 上时,1220s <<,∵90EFB ∠>︒,∴GHC 与BEF 不相似.综上所述,s 满足的条件为:1s =或3225s =或327s =或1012s ≤≤.【点睛】此题考查了相似三角形的性质、菱形的性质、勾股定理、等腰三角形的判定和性质、矩形的性质、锐角三角函数等知识,分类讨论方法是解题的关键.。

(中考精品)浙江省金华市中考数学真题(解析版)

(中考精品)浙江省金华市中考数学真题(解析版)

数学卷Ⅰ说明:本卷共有1大题,10小题.一、选择题(本题有10小题)1.在12,2-中,是无理数的是( )A. 2-B. 12C. D. 2 【答案】C【解析】【分析】根据无理数定义判断即可;【详解】解:∵-2,12,2故选: C .【点睛】本题考查了无理数的定义:无限不循环小数叫做无理数,如开方开不尽的数的方根、π.2. 计算32a a ⋅的结果是( )A. aB. 6aC. 6aD. 5a 【答案】D【解析】【分析】根据同底数幂的乘法法则计算判断即可.【详解】∵ 32a a ⋅=5a ,故选D .【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键. 3. 体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16320000吨,数16320000用科学记数法表示为( )A. 4163210⨯B. 71.63210⨯C. 61.63210⨯D. 516.3210⨯【答案】B【解析】【分析】在用科学记数法表示的大于10的数时,10n a ⨯的形式中a 的取值范围必须是110,a ≤<10的指数比原来的整数位数少1.【详解】解:数16320000用科学记数法表示为71.63210.⨯的故选:B .【点睛】本题考查科学记数法,对于一个写成用科学记数法写出的数,则看数的最末一位在原数中所在数位,其中a 是整数数位只有一位的数,10的指数比原来的整数位数少1. 4. 已知三角形的两边长分别为5cm 和8cm ,则第三边的长可以是( )A. 2cmB. 3cmC. 6cmD. 13cm【答案】C【解析】【分析】先确定第三边的取值范围,后根据选项计算选择.【详解】设第三边的长为x ,∵ 角形的两边长分别为5cm 和8cm ,∴3cm <x <13cm ,故选C .【点睛】本题考查了三角形三边关系定理,熟练确定第三边的范围是解题的关键. 5. 观察如图所示的频数直方图,其中组界为99.5~124.5这一组的频数为( )A. 5B. 6C. 7D. 8【答案】D【解析】【分析】用总人数减去其他三组的人数即为所求频数.【详解】解:20-3-5-4=8,故组界为99.5~124.5这一组频数为8,故选:D .【点睛】本题考查频数分布直方图,能够根据要求读出相应的数据是解决本题的关键.的6. 如图,AC 与BD 相交于点O ,,OA OD OB OC ==,不添加辅助线,判定ABO DCO △≌△的依据是( )A. SSSB. SASC. AASD. HL【答案】B【解析】【分析】根据OA OD =,OB OC =,AOB COD ∠=∠正好是两边一夹角,即可得出答案. 【详解】解:∵在△ABO 和△DCO 中,OA OD AOB COD OB OC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABO DCO ≌△△,故B 正确.故选:B . 【点睛】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键.7. 如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A. 超市B. 医院C. 体育场D. 学校【答案】A【解析】【分析】根据学校和体育场的坐标建立直角坐标系,利用勾股定理求出各点到原点的距离,由此得到答案.【详解】解:根据学校和体育场的坐标建立直角坐标系,=,=,=,=故选:A.【点睛】此题考查了根据点坐标确定原点,勾股定理,正确理解点坐标得到原点的位置及正确展望勾股定理的计算是解题的关键.8. 如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A. B.C. D.【答案】C【解析】【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:∵AB 为底面直径,∴将圆柱侧面沿AC “剪开”后, B 点在长方形上面那条边的中间,∵两点之间线段最短,故选: C .【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.9. 一配电房示意图如图所示,它是一个轴对称图形,已知6m BC =,ABC α∠=,则房顶A 离地面EF 的高度为( )A. (43sin )m α+B. (43tan )m α+C. 34m sin α⎛⎫+ ⎪⎝⎭ D. 34m tan a ⎛⎫+ ⎪⎝⎭【答案】B【解析】【分析】过点A 作AD ⊥BC 于D ,根据轴对称图形得性质即可得BD =CD ,从而利用锐角三角函数正切值即可求得答案.【详解】解:过点A 作AD ⊥BC 于D ,如图所示:∵它是一个轴对称图形, ∴132BD DC BC ===m , tan 3AD AD BD α∴==,即3tan AD α=, ∴房顶A 离地面EF 的高度为(43tan )m α+,故选B .【点睛】本题考查了解直角三角形,熟练掌握利用正切值及一条直角边求另一条直角边是解题的关键.10. 如图是一张矩形纸片ABCD ,点E 为AD 中点,点F 在BC 上,把该纸片沿EF 折叠,点A ,B 的对应点分别为A B A E ''',,与BC 相交于点G ,B A ''的延长线过点C .若23BF GC =,则AD AB的值为( )A. C. 207 D. 83【答案】A【解析】【分析】令BF =2x ,CG =3x ,FG =y ,易证CGA CFB ''△∽△,得出CG A G CF B F '=',进而得出y =3x ,则AE =4x ,AD =8x ,过点E 作EH ⊥BC 于点H ,根据勾股定理得出EH=x ,最后求出ADAB 的值.【详解】解:过点E 作EH ⊥BC 于点H ,又四边形ABCD 为矩形,∴∠A =∠B =∠D =∠BCD =90°,AD =BC ,∴四边形ABHE 和四边形CDEH 为矩形,∴AB =EH ,ED =CH , ∵23BF GC =,∴令BF =2x ,CG =3x ,FG =y ,则CF =3x +y ,2B F x '=,52x y A G -'=,由题意,得==90CA G CB F ''︒∠∠,又GCA '∠为公共角,∴CGA CFB ''△∽△, ∴CGA GCF B F '=', 则53232x yxx y x-=+,整理,得()()30x y x y +-=,解得x =-y (舍去),y =3x ,∴AD =BC =5x +y =8x ,EG =3x ,HG =x ,在Rt △EGH 中EH 2+HG 2=EG 2,则EH 2+x 2=(3x )2,解得EH=x , EH=-(舍),∴AB=,∴AD AB ==.故选:A .【点睛】本题考查了矩形的判定和性质,相似三角形的判定和性质,勾股定理求边长等知识,借助于相似三角形找到y =3x 的关系式是解决问题的关键.卷Ⅱ说明:本卷共有2大题,14小题二、填空题(本题有6小题)11. 因式分解:29x -=______.【答案】()()33x x +-【解析】【分析】根据平方差公式()()22a b a b a b -=+-直接进行因式分解即可. 【详解】解:29x -223x =-()()33x x =+-,故答案为:()()33x x +-.【点睛】本题考查利用公式法分解因式,熟练掌握平方差公式是解决问题的关键. 12. 若分式23x -的值为2,则x 的值是_______. 【答案】4【解析】【分析】根据题意建立分式方程,再解方程即可; 【详解】解:由题意得:223x =- 去分母:()223x =-去括号:226x =-移项,合并同类项:28x =系数化为1:4x =经检验,x =4是原方程的解,故答案为:4;【点睛】本题考查了分式方程,掌握解分式方程的步骤是解题关键.13. 一个布袋里装有7个红球、3个白球,它们除颜色外都相同.从中任意摸出1个球,摸到红球的概率是______. 【答案】710【解析】【分析】先确定所有等可能性的数量,再确定红球事件的可能性数量,根据公式计算即可.【详解】∵ 所有等可能性有10种,红球事件的可能性有7种, ∴摸到红球的概率是710, 故答案:710. 【点睛】本题考查了简单的概率计算,熟练掌握概率计算公式是解题的关键. 14. 如图,在Rt ABC 中,90,30,2cm ACB A BC ∠=︒∠=︒=.把ABC 沿AB 方向平移1cm ,得到A B C '''V ,连结CC ',则四边形AB C C ''的周长为_____cm .【答案】8+【解析】【分析】通过勾股定理,平移的特性,特殊角的三角函数,分别计算出四边形的四条边长,再计算出周长即可.【详解】解:∵90,30,2cm ACB A BC ∠=︒∠=︒=,∴AB =2BC =4,∴==∵把ABC 沿AB 方向平移1cm ,得到A B C '''V ,∴1CC '=,=4+1=5AB ', =2B C BC ''=,∴四边形的周长为:1528++=+为故答案为:8+.【点睛】本题考查勾股定理,平移的特性,特殊角的三角函数,能够熟练掌握勾股定理是解决本题的关键.15. 如图,木工用角尺的短边紧靠⊙O 于点A ,长边与⊙O 相切于点B ,角尺的直角顶点为C ,已知6cm,8cm AC CB ==,则⊙O 的半径为_____cm .【答案】253##183【解析】 【分析】设圆的半径为r cm ,连接OB 、OA ,过点A 作AD ⊥OB ,垂足为D ,利用勾股定理,在Rt △AOD 中,得到r 2=(r −6)2+82,求出r 即可.【详解】解:连接OB 、OA ,过点A 作AD ⊥OB ,垂足为D ,如图所示:∵CB 与O 相切于点B ,∴OB CB ⊥,∴90CBD BDA ACB ∠=∠=∠=︒,∴四边形ACBD 为矩形,∴8AD CB ==,6BD AC ==,设圆的半径为r cm ,在Rt △AOD 中,根据勾股定理可得:222OA OD AD =+, 即r 2=(r −6)2+82, 解得:253r =, 即O 的半径为253cm .故答案为:253. 【点睛】本题主要考查了切线的性质,矩形的判定和性质,勾股定理,作出辅助线,构造直角三角形,利用勾股定理列出关于半径r 的方程,是解题的关键.16. 图1是光伏发电场景,其示意图如图2,EF 为吸热塔,在地平线EG 上的点B ,B '处各安装定日镜(介绍见图3).绕各中心点(),A A '旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F 处.已知1m,8m,AB A B EB EB ='==''=,在点A 观测点F 的仰角为45︒.(1)点F 的高度EF 为______m . (2)设,DAB D A B αβ''∠'=∠=,则α与β的数量关系是_______.【答案】 ①. 9②.7.5αβ-=︒【解析】【分析】(1)过点A 作AG ⊥EF ,垂足为G ,证明四边形ABEG 是矩形,解直角三角形AFG ,确定FG ,EG (2)根据光的反射原理画出光路图,清楚光线是平行线,运用解直角三角形思想,平行线的性质求解即可.【详解】(1)过点A 作AG ⊥EF ,垂足为G . ∵∠ABE =∠BEG =∠EGA =90°,∴四边形ABEG 是矩形,∴EG =AB =1m ,AG =EB =8m , ∵∠AFG =45°, ∴FG =AG =EB =8m , ∴EF =FG +EG =9(m ). 故答案为:9;(2)7.5αβ-=︒.理由如下: ∵∠A 'B 'E =∠B 'EG =∠EG A '=90°, ∴四边形A 'B 'EG 是矩形,∴EG =A 'B '=1m ,A 'G =E B '=,∴tan ∠A 'FG =A G FG '= ∴∠A 'FG =60°,∠F A 'G =30°,根据光的反射原理,不妨设∠FAN =2m ,∠F A 'M =2n , ∵ 光线是平行的, ∴AN ∥A 'M , ∴∠GAN =∠G A 'M , ∴45°+2m =30°+2n , 解得n -m =7.5°,根据光路图,得90,90DAB m D A B n αβ'∠==-∠==-'' , ∴9090m n n m αβ-=--+=- , 故7.5αβ-=︒,故答案为:7.5αβ-=︒ .【点睛】本题考查了解直角三角形的应用,矩形的判定和性质,特殊角的三角函数值,光的反射原理,熟练掌握解直角三角形,灵活运用光的反射原理是解题的关键.三、解答题(本题有8小题,各小题都必须写出解答过程)17. 计算:0(2022)2tan 45|2|--︒+-. 【答案】4 【解析】【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式12123=-⨯++1223=-++4=;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键. 18. 解不等式:2(32)1x x ->+. 【答案】1x > 【解析】【分析】按照解不等式的基本步骤解答即可. 【详解】解:2(32)1x x ->+,641x x ->+,641x x ->+, 55x >,∴1x >.【点睛】本题考查了一元一次不等式的解法,熟练掌握不等式解法的基本步骤是解题的关键.19. 如图1,将长为23a +,宽为2a 的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a 的代数式表示图2中小正方形的边长. (2)当3a =时,该小正方形的面积是多少? 【答案】(1)3a +(2)36 【解析】【分析】(1)分别算出直角三角形较长的直角边和较短的直角边,再用较长的直角边减去较短的直角边即可得到小正方形面积;(2)根据(1)所得的小正方形边长,可以写出小正方形的面积代数式,再将a 的值代入即可. 【小问1详解】解:∵直角三角形较短的直角边122a a =⨯=, 较长的直角边23a =+,∴小正方形的边长233a a a =+-=+;【小问2详解】解:22(3)69S a a a =+=++小正方形, 当3a =时,2(33)36S =+=小正方形.【点睛】本题考查割补思想,属性结合思想,以及整式的运算,能够熟练掌握割补思想是解决本题的关键.20. 如图,点A 在第一象限内,AB x ⊥轴于点B ,反比例函数(k 0,x 0)ky x=≠>的图象分别交,AO AB 于点C ,D .已知点C 的坐标为(2,2),1BD =.(1)求k 的值及点D 的坐标.(2)已知点P 在该反比例函数图象上,且在ABO 的内部(包括边界),直接写出点P 的横坐标x 的取值范围. 【答案】(1)4k =,(4,1);(2)24x ≤≤; 【解析】【分析】(1)由C 点坐标可得k ,再由D 点纵坐标可得D 点横坐标; (2)由C 、D 两点的横坐标即可求得P 点横坐标取值范围; 【小问1详解】解:把C (2,2)代入k y x=,得22k=,4k =,∴反比例函数函数为4y x=(x >0), ∵AB ⊥x 轴,BD =1, ∴D 点纵坐标为1,把1y =代入4y x=,得4x =, ∴点D 坐标为(4,1); 【小问2详解】解:∵P 点在点C (2,2)和点D (4,1)之间, ∴点P 的横坐标:24x ≤≤;【点睛】本题考查了反比例函数解析式,坐标的特征,数形结合是解题关键.21. 学校举办演讲比赛,总评成绩由“内容、表达、风度、印象”四部分组成.九(1)班组织选拔赛,制定的各部分所占比例如图,三位同学的成绩如表.请解答下列问题: 演讲总评成绩各部分所占比例的统计图:三位同学的成绩统计表: 内容 表达 风度 印象 总评成绩 小明 8 7 8 8 m 小亮 7 8 8 9 785小田 79777.8(1)求图中表示“内容”的扇形的圆心角度数.(2)求表中m 的值,并根据总评成绩确定三人的排名顺序.(3)学校要求“内容”比“表达”重要,该统计图中各部分所占比例是否合理?如果不合理,如何调整? 【答案】(1)108︒;(2)7.6,三人成绩从高到低的排名顺序为:小亮,小田,小明;.(3)班级制定的各部分所占比例不合理,见解析;【解析】【分析】(1)由“内容”所占比例×360°计算求值即可;(2)根据各部分成绩所占的比例计算加权平均数即可;(3)根据 “内容”所占比例要高于“表达”比例,将“内容”所占比例设为40%即可;【小问1详解】---=,解:∵“内容”所占比例为115%15%40%30%=︒⨯=︒;∴“内容”的扇形的圆心角36030%108【小问2详解】m=⨯+⨯+⨯+⨯=,解:830%740%815%815%7.6>>,∵7.857.87.6∴三人成绩从高到低的排名顺序为:小亮,小田,小明;【小问3详解】解:各部分所占比例不合理,“内容”比“表达”重要,那么“内容”所占比例应大于“表达”所占比例,∴“内容”所占百分比应为40%,“表达”所占百分比为30%,其它不变;【点睛】本题考查了扇形圆心角的计算,加权平均数的计算,掌握相关概念的计算方法是解题关键.22. 如图1,正五边形ABCDE内接于⊙O,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF;②以F为圆心,FO为半径作圆弧,与⊙O交于点M,N;③连AM MN NA.接,,∠的度数.(1)求ABC是正三角形吗?请说明理由.(2)AMN(3)从点A开始,以DN长为半径,在⊙O上依次截取点,再依次连接这些分点,得到正n边形,求n的值.【答案】(1)108︒(2)是正三角形,理由见解析(3)15n = 【解析】【分析】(1)根据正五边形的性质以及圆的性质可得 BC CD DE AE AB ====,则AOC ∠(优弧所对圆心角)372216︒︒=⨯=,然后根据圆周角定理即可得出结论;(2)根据所作图形以及圆周角定理即可得出结论;(3)运用圆周角定理并结合(1)(2)中结论得出14412024NOD ∠=︒-︒=︒,即可得出结论. 【小问1详解】解:∵正五边形ABCDE .∴ BC CD DE AE AB ====,∴360725AOB BOC COD DOE EOA ︒∠=∠=∠=∠=∠==︒, ∵ 3AEC AE =,∴AOC ∠(优弧所对圆心角)372216︒︒=⨯=, ∴1121610822AOC ABC ∠=⨯︒=∠=︒; 【小问2详解】解:AMN 是正三角形,理由如下: 连接,ON FN ,由作图知:FN FO =, ∵ON OF =, ∴ON OF FN ==, ∴OFN △是正三角形, ∴60OFN ∠=︒,∴60AMN OFN ∠=∠=︒, 同理60ANM ∠=︒,∴60MAN ∠=︒,即AMN ANM MAN ∠=∠=∠, ∴AMN 是正三角形;【小问3详解】 ∵AMN 是正三角形, ∴2120A N A N M O =∠=︒∠. ∵ 2AD AE =,∴272144AOD ∠=⨯︒=︒,∵ DN AD AN =-,∴14412024NOD ∠=︒-︒=︒, ∴3601524n ==. 【点睛】本题考查了圆周角定理,正多边形的性质,读懂题意,明确题目中的作图方式,熟练运用圆周角定理是解本题的关键.23. “八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量1y (吨)关于售价x (元/千克)的函数图象可以看成抛物线,其表达式为21y ax c =+,部分对应值如表:②该蔬菜供给量2(吨)关于售价x (元/千克)的函数表达式为2,函数图象见图1.③1~7月份该蔬菜售价1x (元/千克),成本2x (元/千克)关于月份t 的函数表达式分别为11=22x t +,2213342x t t =-+,函数图象见图2.请解答下列问题:(1)求a,c的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.【答案】(1)1,95a c=-=(2)在4月份出售这种蔬菜每千克获利最大,见解析(3)该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元【解析】【分析】(1)运用待定系数法求解即可;(2)设这种蔬菜每千克获利w 元,根据w x x =-售价成本列出函数关系式,由二次函数的性质可得结论;(3)根据题意列出方程,求出x 的值,再求出总利润即可. 【小问1详解】 把3,7.2x y =⎧⎨=⎩,4,5.8x y =⎧⎨=⎩代入2y ax c =+需求可得97.2,16 5.8.a c a c +=⎧⎨+=⎩①② ②-①,得7 1.4a =-, 解得15a =-, 把15a =-代入①,得9c =, ∴1,95a c =-=. 【小问2详解】设这种蔬菜每千克获利w 元,根据题意, 有211323242w x x t t t ⎛⎫=-=+--+ ⎪⎝⎭售价成本, 化简,得221121(4)344w t t t =-+-=--+, ∵10,44t -<=在17t ≤≤的范围内, ∴当4t =时,w 有最大值.答:在4月份出售这种蔬菜每千克获利最大. 【小问3详解】由y y =需求供给,得21195x x -=-+, 化简,得25500x x +-=,解得125,10x x ==-(舍去), ∴售价为5元/千克.此时,14y y x ==-=需求供给(吨)4000=(千克), 把5x =代入122x t =+售价,得6t =,把6t =代入21214w t t =-+-,得13626124w =-⨯+⨯-=, ∴总利润240008000w y =⋅=⨯=(元).答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.【点睛】此题主要考查了函数的综合应用,结合函数图象得出各点的坐标,再利用待定系数法求出函数解析式是解题的关键.24. 如图,在菱形ABCD 中,310,sin 5AB B ==,点E 从点B 出发沿折线B C D --向终点D 运动.过点E 作点E 所在的边(BC 或CD )的垂线,交菱形其它的边于点F ,在EF 的右侧作矩形EFGH .(1)如图1,点G 在AC 上.求证:FA FG =.(2)若EF FG =,当EF 过AC 中点时,求AG 的长.(3)已知8FG =,设点E 的运动路程为s .当s 满足什么条件时,以G ,C ,H 为顶点的三角形与BEF 相似(包括全等)?【答案】(1)见解析(2)7AG =或5 (3)1s =或3225s =或327s =或1012s ≤≤ 【解析】【分析】(1)证明△AFG 是等腰三角形即可得到答案;(2)记AC 中点为点O .分点E 在BC 上和点E 在CD 上两种情况进行求解即可;(3)过点A 作AM BC ⊥于点M ,作AN CD ⊥于点N .分点E 在线段BM 上时,点E 在线段MC 上时,点E 在线段CN 上,点E 在线段ND 上,共四钟情况分别求解即可.【小问1详解】证明:如图1,∵四边形ABCD 是菱形,∴BA BC =,∴BAC BCA ∠=∠.∵FG BC ,∴FGA BCA ∠=∠,∴BAC FGA ∠=∠,∴△AFG 是等腰三角形,∴FA FG =.【小问2详解】解:记AC 中点为点O .①当点E 在BC 上时,如图2,过点A 作AM BC ⊥于点M ,∵Rt ABM 中,365AM AB ==,∴8BM ===.∴6,2FG EF AM CM BC BM ====-=,∵,OA OC OE AM =∥, ∴112122CE ME CM ===⨯=, ∴1AF ME ==,∴167AG AF FG =+=+=.②当点E 在CD 上时,如图3,在过点A 作AN CD ⊥于点N .同理,6,2FG EF AN CN ====,112AF NE CN ===, ∴615AG FG AF =-=-=.∴7AG =或5.【小问3详解】解:过点A 作AM BC ⊥于点M ,作AN CD ⊥于点N .①当点E 在线段BM 上时,08s <≤.设3EF x =,则4,3BE x GH EF x ===, ⅰ)若点H 在点C 的左侧,810s +≤,即02s <≤,如图4,10(48)24CH BC BH x x =-=-+=-.∵GHC FEB △∽△, ∴GH CH EF BE=, ∴GH EF CH BE=, ∴33244x x =-,解得14x =, 经检验,14x =是方程的根, ∴41s x ==.∵GHC BEF △∽△, ∴GH CH BE EF=, ∴GH BE CH EF=, ∴34243x x =-, 解得825x =, 经检验,825x =是方程的根, ∴32425s x ==. ⅱ)若点H 在点C 的右侧,810s +>,即28s <≤,如图5,(48)1042CH BH BC x x =-=+-=-.∵GHC FEB △∽△, ∴GH CH EF BE=, ∴GH EF CH BE=, ∴33424x x =-, 此方程无解.∵GHC BEF △∽△,∴GH CH BE EF=, ∴GH BE CH EF=, ∴34423x x =-, 解得87x =, 经检验,87x =是方程的根, ∴3247s x ==. ②当点E 在线段MC 上时,810s <≤,如图6,6,8,EF EH BE s ===.∴8,2BH BE EH s CH BH BC s =+=+=-=-.∵GHC FEB △∽△, ∴GH CH EF BE=, ∴GH EF CH BE=, ∴662s s =-, 此方程无解.∵GHC BEF △∽△, ∴GH CH BE EF=, ∴GH BE CH EF=, ∴626s s =-,解得1s =±经检验,1s =±∵810s <≤,∴1s =±③当点E 在线段CN 上时,1012s ≤≤,如图7,过点C 作⊥CJ AB 于点J ,在Rt BJC △中,10,6,8BC CJ BJ ===.8,EH BJ JF CE ===,∴BJ JF EH CE +=+,∴CH BF =,∵,90GH EF GHC EFB =∠=∠=︒,∴GHC EFB △≌△,符合题意,此时,1012s ≤≤.④当点E 在线段ND 上时,1220s <<,∵90EFB ∠>︒,∴GHC 与BEF 不相似.综上所述,s 满足的条件为:1s =或3225s =或327s =或1012s ≤≤. 【点睛】此题考查了相似三角形的性质、菱形的性质、勾股定理、等腰三角形的判定和性质、矩形的性质、锐角三角函数等知识,分类讨论方法是解题的关键。

2023年浙江省金华市中考数学试卷原卷附解析

2023年浙江省金华市中考数学试卷原卷附解析

2023年浙江省金华市中考数学试卷原卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,连接BC ,若∠ABC=45°,则下列结论正确的是( )A .AC >ABB .AC=ABC .AC <ABD .AC=12BC 2.随机掷两枚硬币,落地后全部正面朝上的概率是( ) B .21 C .31 D .41 A .1于反比例函数6y x =,当6x -≤时,y 的取值范围是( ) 3.对A .y ≥1-B .y ≤1-C .1-≤y <0D .y ≥14.如图,在△ABC 中,P 为 AB 上一点,在下列四个条件中,①∠ACP=∠B ;②∠APC=∠ACB ;③A 2AC AP AB =⋅;④AB CP AP CB ⋅=⋅,其中能满足△APC 和△ACB 相似的条件是( )A .①②④B .①③④C .③③④D .①②③5.抛物线y =(x -1)2+2的对称轴是( )A .直线x =-1B .直线x =1C .直线x =-2D .直线x =26.关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值为( ) A .1 B .-1 C .1或-1 D .217.已知Rt △ABC 斜边上的中线是2,则这个三角形两直角边的平方和是 ( )A .2B .4C .8D .16 8.在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表: m1 2 3 4 v0.01 2.9 8.03 15.1 则m A .v =2m 一2 B .v =m 2一1C .v =3m 一3D .v =m 十1 9.下列选项中的三角形全等的是( )A BO C 45°A .两角及其夹边对应相等的两个三角形B .有两个角对应相等的两个三角形C .面积相等的两个三角形D .都是锐角三角形的两个三角形10. 在边长为a 的正方形中挖掉一个边长为b 的小正方形 (a b >),把余下的部分剪拼成 一个矩形 (如图). 根据图示可以验证的等式是( )A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .2()a ab a a b -=-11.由132x y -=可以得到用x 表示y 的式子的是( ) A .223x y -= B .2133x y =- C . 223x y =- D .223x y =- 12.当2x =时,代数式2ax -的值是4;那么当2x =-时,这个代数式的值是( )A . -4B . -8C .8D . 213.某种话梅原零售价每袋3元,凡购买2袋以上(包括2袋),商场推出两种优惠销售办法.第一种:1袋话梅按原价,其余按原价的七折销售;第二种:全部按原价的八折销售.你在购买相同数量话梅的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买话梅( )A .4袋B .5袋C .6袋D .7袋二、填空题14.如图,1∠的正切值等于 .15.如图,在△ABC 中, 内接正方形EFGH ,BC=16,AD ⊥BC 于D ,AD=8,则正方形EFGH 的边长为 .16. ,则a-b b的值是 . 17.写出一个两实数根符号相反的一元二次方程:__________________.18. 在实数范围内定义一种运算“*”,其规则为22a b a b *=-,根据这个规则,方程(2)50x +*=的解为 . 19.若 b(b ≠0)是方程20x cx b ++=的根,则b c +的值为 .20.一次函数(26)5y m x =-+中,y 随x 增大而减小,则m 的取值范围是 .21.数据98,l00,101,102,99的标准差是 .22.某班a 名同学参加植树活动,其中男生b 名(b<a ),若只由男生完成,每人需植树15棵;若只由女生完成,则每人需植树_________棵.23.当x =__________时,分式x 2-9x -3的值为零. 24.如图所示,直线AD 交△ABC 的BC 边于D 点,且AB=AC .(1)若已知D 为BC 中点,则可根据 ,说明△ABD ≌△ACD ;(2)若已知AD 平分∠BAC ,可以根据 说明△ABD ≌△ACD ;(3)若AD 是BC 的中垂线,则可以根据 ,说明△ABD ≌△ACD ,还可以根据 说明△ABD ≌△ACD .25.如图,当图中的∠1 和∠2满足 条件时,能使OC ⊥OD(只要填一个条件即可).26.某教室要换新桌椅,教室中共有(1n +)行桌椅,其中每行 7 人的有n 行,另有一行有 8 人,共需 套新桌椅;当6n =时,共需 套新桌椅.三、解答题27.如图,⊙O 为四边形ABCD 的外接圆,圆心O 在AD 上,OC ∥AB .(1)求证:AC 平分DAB ∠;(2)若AC=8,⌒AC :⌒CD =2:1,试求⊙O 的半径;若点B 为⌒AC 的中点,试判断四边形ABCD 的形状. (3)DAO28.如图所示,AB,CD相交于点0,AC∥DB,A0=B0,E,F分别是0C,OD的中点.求证:四边形AEBF是平行四边形.29.约分:(1)2322()4()x x yy x y--;(2)2222444y xx xy y--+-30.在第26届国际奥林匹克运动会上,获得金牌前七名的国家的奖牌情况如下:国家金牌银牌铜牌美国443225俄罗斯262116德国201827中国162212法国15715意大利131012澳大利亚9923(1)?(2)你从这些数据中获得了关于比赛的哪些信息和结论?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.D5.B6.B7.D8.B9.A10.A11.CB13.A二、填空题14.1315. 16316. 25- 17. 012=-x (答案不惟一)18.13x =,27x =-19.1-20.m <321..15b a b -23. 3-=x 24.(1)SSS ;(2)SAS ;(3)SAS ,SSS25.答案不唯一,如∠1 与∠2互余26.78n +,50三、解答题27.(1)略;(2)338;(3)等腰梯形. 28.证明△AOC ≌△BOD ,得OC=OD ,由已知可得0E=OF ,则四边形AEBF 是平行四边形(1)2()2x x yy-;(2)22x yx y+-30.(1)统计员通过观察或调查得到表中的数据 (2)例:金牌最多的国家为美国,奖牌数最多的国家为美国,按金牌数的排序前三名依次为美国、俄罗斯、德国。

浙江省金华市中考数学真题试题(含解析)

浙江省金华市中考数学真题试题(含解析)

浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.初数4的相反数是()A. B. -4 C. D. 4【答案】 B【考点】相反数及有理数的相反数【解析】【解答】∵4的相反数是-4.故答案为:B.【分析】反数:数值相同,符号相反的两个数,由此即可得出答案.2.计算a6÷a3,正确的结果是()A. 2B. 3aC. a2D. a3【答案】 D【考点】同底数幂的除法【解析】【解答】解:a6÷a3=a6-3=a3故答案为:D.【分析】同底数幂除法:底数不变,指数相减,由此计算即可得出答案.3.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A. 1B. 2C. 3D. 8【答案】 C【考点】三角形三边关系【解析】【解答】解:∵三角形三边长分别为:a,3,5,∴a的取值范围为:2<a<8,∴a的所有可能取值为:3,4,5,6,7.故答案为:C.【分析】三角形三边的关系:两边之和大于第三边,两边之差小于第三边,由此得出a的取值范围,从而可得答案.4.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是()A. 星期一B. 星期二C. 星期三D. 星期四【答案】 C【考点】极差、标准差【解析】【解答】解:依题可得:星期一:10-3=7(℃),星期二:12-0=12(℃),星期三:11-(-2)=13(℃),星期四:9-(-3)=12(℃),∵7<12<13,∴这四天中温差最大的是星期三.故答案为:C.【分析】根据表中数据分别计算出每天的温差,再比较大小,从而可得出答案.5.一个布袋里装有2个红球,3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.【答案】 A【考点】等可能事件的概率【解析】【解答】解:依题可得:布袋中一共有球:2+3+5=10(个),∴搅匀后任意摸出一个球,是白球的概率P= .故答案为:A.【分析】结合题意求得布袋中球的总个数,再根据概率公式即可求得答案.6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A. 在南偏东75°方向处B. 在5km处C. 在南偏东15°方向5km处D. 在南75°方向5km处【答案】 D【考点】钟面角、方位角【解析】【解答】解:依题可得:90°÷6=15°,∴15°×5=75°,∴目标A的位置为:南偏东75°方向5km处.故答案为:D.【分析】根据题意求出角的度数,再由图中数据和方位角的概念即可得出答案.7.用配方法解方程x2-6x-8=0时,配方结果正确的是()A. (x-3)2=17B. (x-3)2=14C. (x-6)2=44D. (x-3)2=1【答案】 A【考点】配方法解一元二次方程【解析】【解答】解:∵x2-6x-8=0,∴x2-6x+9=8+9,∴(x-3)2=17.故答案为:A.【分析】根据配方法的原则:①二次项系数需为1,②加上一次项系数一半的平方,再根据完全平方公式即可得出答案.8.如图,矩形ABCD的对角线交于点O,已知AB=m,∠BAC=∠α,则下列结论错误的是()A. ∠BDC=∠αB. BC=m·tanαC. AO=D. BD=【答案】 C【考点】锐角三角函数的定义【解析】【解答】解:A.∵矩形ABCD,∴AB=DC,∠ABC=∠DCB=90°,又∵BC=CB,∴△ABC≌△DCB(SAS),∴∠BDC=∠BAC=α,故正确,A不符合题意;B.∵矩形ABCD,∴∠ABC=90°,在Rt△ABC中,∵∠BAC=α,AB=m,∴tanα= ,∴BC=AB·tanα=mtanα,故正确,B不符合题意;C.∵矩形ABCD,∴∠ABC=90°,在Rt△ABC中,∵∠BAC=α,AB=m,∴cosα= ,∴AC= = ,∴A O= AC=故错误,C符合题意;D.∵矩形ABCD,∴AC=BD,由C知AC= = ,∴BD=AC= ,故正确,D不符合题意;故答案为:C.【分析】A.由矩形性质和全等三角形判定SAS可得△ABC≌△DCB,根据全等三角形性质可得∠BDC=∠BAC=α,故A正确;B.由矩形性质得∠ABC=90°,在Rt△ABC中,根据正切函数定义可得BC=AB·tanα=mtanα,故正确;C.由矩形性质得∠ABC=90°,在Rt△ABC中,根据余弦函数定义可得AC= = ,再由AO=AC即可求得AO长,故错误;D.由矩形性质得AC=BD,由C知AC= = ,从而可得BD长,故正确;9.如图物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A. 2B.C.D.【答案】 D【考点】圆锥的计算【解析】【解答】解:设BD=2r,∵∠A=90°,∴AB=AD= r,∠ABD=45°,∵上面圆锥的侧面积S= ·2πr· r=1,∴r2= ,又∵∠ABC=105°,∴∠CBD=60°,又∵CB=CD,∴△CBD是边长为2r的等边三角形,∴下面圆锥的侧面积S= ·2πr·2r=2πr2=2π× = .故答案为:D.【分析】设BD=2r,根据勾股定理得AB=AD= r,∠ABD=45°,由圆锥侧面积公式得·2πr· r=1,求得r2= ,结合已知条件得∠CBD=60°,根据等边三角形判定得△CBD是边长为2r的等边三角形,由圆锥侧面积公式得下面圆锥的侧面积即可求得答案.10.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF的面积相等,则的值是()A. B. -1 C. D.【答案】 A【考点】剪纸问题【解析】【解答】解:设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,如图,依题可得:NM= a,FM=GN= ,∴NO= = ,∴GO= = ,∵正方形EFGH与五边形MCNGF的面积相等,∴x2= + a2,∴a= x,∴ = = .故答案为:A.【分析】设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,根据题意可得,NM=a,FM=GN= ,NO= = ,根据勾股定理得GO= ,由题意建立方程x2= + a2,解之可得a= x,由,将a= x代入即可得出答案.二、填空题(本题有6小题,每小题4分,共24分)11.不等式3x-6≤9的解是________.【答案】x≤5【考点】解一元一次不等式【解析】【解答】解:∵3x-6≤9,∴x≤5.故答案为:x≤5.【分析】根据解一元一次不等式步骤解之即可得出答案.12.数据3,4,10,7,6的中位数是________.【答案】 6【考点】中位数【解析】【解答】解:将这组数据从小到大排列为:3,4,6,7,10,∴这组数据的中位数为:6.故答案为:6.【分析】中位数:将一组数据从小到大排列或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位数;由此即可得出答案.13.当x=1,y= 时,代数式x2+2xy+y2的值是________.【答案】【考点】代数式求值【解析】【解答】解:∵x=1,y=- ,∴x2+2xy+y2=(x+y)2=(1- )2= .故答案为:.【分析】先利用完全平方公式合并,再将x、y值代入、计算即可得出答案.14.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪。

2023年浙江省金华市中考数学真题试卷附解析

2023年浙江省金华市中考数学真题试卷附解析

2023年浙江省金华市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12 B.9 C.4 D.32.小帆走路时发现自己的影子越来越长,这是因为()A.走到路灯下,离路灯越来越近 B.从路灯下走开,离路灯越来越远C.路灯的灯光越来越亮 D.人与路灯的距离与影子的长短无关3.在一个晴朗的好天气里,小明向正北方向走路时,发现自己的身影向右偏,则小明当时所处的时间是()A.上午 B.中午 C.下午 D.无法确定4.如图,AC 是⊙O的直径,点 B.D在⊙O上,图中等于12∠BOC的角有()A.1 个B. 2 个C.3 D.45.下列图形不是中心对称图形的是()A.圆B.平行四边形C.菱形D.等腰梯形6.如图所示,下列条件中,不能判定AB∥CD的是()A.∠PEB=∠EFD B.∠AEG=∠DFH C.∠BEF+∠EFD=180°D.∠AEF=∠EFD7.数据3,19,35,26,26,97,96的极差为()A.94 B.77 C.9 D.无法确定8.在x轴上的点的横坐标是()A.0 B.正数C.负数D.实数9.将点M(-3,-5)向上平移7个单位得到点N的坐标为()A .(-3,2)B .(-2,-l2)C (4,-5)D .(-10,-5)10.如图所示,一 块正方形铁皮的边长为 a ,如果一边截去6,另一边截去 5,那么所剩铁皮的面积( 阴影部分)表示成:①(5)(6)a a --;②256(5)a a a ---;③265(6)a a a ---;④25630a a a --+其中正确的有( )A .1 个B . 2 个C .3 个D . 4 个 11.下列用词中,与“一定发生”意思一致的是( ) A . 可能发生B . 相当可能发生C .有可能发生D . 必然发生 12.下列各式中,变形不正确的是( ) A .2233x x =-- B .66a a b b -=- C .3344x x y y -=- D .5533n n m m --=- 13.下列说法正确的是( )A .一个数的偶次幂一定是正数B .一个正数的平方比原数大C .一个负数的立方比原数小D .互为相反数的两个数的立方仍互为相反数14.若a 、b 是整数,且12ab =,则a b +的最小值是( )A .-13B .-7C .8D . 7 15.在数12-,0,4.5,9,-6.79中,属于正数的有( )A .2个B .3个C .4个D .5个二、填空题16.如图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数有 个.17.如图,⊙O 的直径为 10,弦AB= 8,P 是 AB 上的一个动点,那么OP 长的取值范围是 .18.计算题: (1) 12-18-5.0+31 (2) ⎪⎪⎭⎫ ⎝⎛-÷1213112 (3)221811139134187⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-19.某种药品的说明书贴有如下标签,则一次服用这种药品的剂量范围是 mg~ mg.20.已知三角形的三边长为 3、1x +,4,则x 的取值范围是 .21.把一转盘先分成两个半圆,再把其中一个半圆等分成三等份,并标上数字如图所示,任意转动转盘,当转盘停止时,指针落在偶数区域的概率是 .22.计算:2133m m m--=-- . 23.如图,∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .三、解答题24.如图,△ABC 中,∠A=30°,∠B=45°,CD 为高,以直线 AB 为轴旋转一周得一几何体,则以 AC 为母线的圆锥的侧面积与以 BC 为母线的圆锥的侧面积之比是多少?25.如图,正方形ABCD的边长为l,G为CD边上的一个动点(点G与C,D不重合),以CG 为一边向正方形ABCD外作正方形GCEF,连结DE交BG的延长线于H.(1)求证:①△BCG≌△DCE;②BH⊥DE.26.如图所示,□ABCD 中,E,F分别是CD,AB上的点,且AF=CE.求证:∠BFD=∠BED.27.如图所示,是由同样大小的小正方体叠在一起所形成的图形,你能数出图形中小正方体一共有多少块吗?28.如图,已知图形“”和点0,以点O为旋转中心,将图形按顺时针方向旋转90°,作出经旋转变换后的像,经几次旋转变换后的像可以与原图形重合?29.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆.”乙同学说:“四环路比三环路车流量每小时多2000辆.”丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.”请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少.30.将2627-,206207-,20062007-按从小到大的顺序排列起来.200620626 200720727 -<-<-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.C4.C5.D6.B7.A8.D9.A10.D11.DD13.D14.A15.A二、填空题16.517.3≤OP ≤518. ⑴227337-; ⑵12; ⑶ 0. 19.15,2020.0<x<621.2322. -123.360°三、解答题24.25.(1)略;(2)距C 点1)处26.先证明DE ∥BF ,DE=BF ,四边形DFBE 为平行四边形,则∠BFD=∠BED 27.28.图略,经4次旋转变换29.高峰时段三环路、四环路的车流量分别是每小时11000辆和每小时13000辆.30.200620626-<-<-200720727。

浙江省金华市中考数学试卷带答案(含答案解析版)

浙江省金华市中考数学试卷带答案(含答案解析版)

浙江省金华市中考数学试卷带答案(含答案解析版)浙江省金华市中考数学试卷带答案(含答案解析版)第一部分:选择题(共40小题,每小题2分,共计80分)1. 根据题意计算下列各式的值:(1)A. 5B. -5C. 6D. -62. 某裙子原价800元,现降价25%,现价是多少元?A. 600B. 700C. 750D. 8503. 一个边长为a的正方形的面积是多少?A. aB. a²C. 2aD. 2a²4. 若正整数a的个位数是2,十位数是3,百位数是4,则a/64的值是多少?A. 0.0143B. 0.2437C. 0.0375D. 0.018755. 已知直线L与平面α垂直,而直线L⊥x轴,交点为A(3,0,0),则直线L的方程是:A. x=3B. y=3C. z=3D. x-y+z-3=06. 扔了7次硬币,下图是正面朝上的情况。

如果扔第8次硬币,它正面朝上的可能性与反面朝上的可能性相等,那么第7次正面朝上的概率是多少?A. 1/8B. 2/8C. 3/8D. 4/87. 设集合A={1,2,3,4,5},集合B={3,4,5,6,7},则A∩(A∩B')'的值为:A. {1,2,3,4,5}B. {1,2}C. {1,2,3}D. {4,5}8. a、b都是正数,且a+b=10,则a²+b²的最小值是多少?A. 20B. 25C. 48D. 509. 已知点A(1,2)和点B(-2,3),则线段AB的中点坐标为:A. (-2,1/2)B. (-1/2,5/2)C. (-1/2,5/4)D. (1/2,5/2)10. 如图,在△ABC中,有AD//BC,AD=4,BD=6,CD=8,则AB的长度是多少?A. 8B. 10C. 12D. 1411. 在平面直角坐标系中,抛物线y=ax²+bx+c(a≠0)的对称轴方程为x=2,则参数a的值为:A. -2B. -1C. 1D. 2……(省略部分内容)第四部分:填空题(共6小题,每小题3分,共计18分)26. 如果m∩n={∅},那么m- (m- n)等于_________。

最新浙江省金华市中考数学试卷原卷附解析

最新浙江省金华市中考数学试卷原卷附解析

浙江省金华市中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 如图所示,立方体图中灰色的面对着你,那么它的主视图是( )A .B .C .D .2.球体的三种视图是( )A .三个圆B .两个圆和一个长方形C .两个圆和一个半圆D .一个圆和两个半圆3.如图,梯形 ABCD 中,AB ∥CD ,AC 与BD 交于0,下列结论正确的是( )A .△AOD ∽△BOCB .△ACD ∽△BDC C . △ABD ∽△BAC D . △AOB ∽△COD4. 已知二次函数2(3+4y x =--),当一 1≤x ≤时,下列关于最大值与最小值的说法正确的是( )A .有最大值、最小值分别是 3、0B .只有最大值是 4,无最小值C .有最小值是-12,最大值是 3D .有最小值是-12,最大值是 45.在□ABCD 中,若∠A=60°,则∠C 的度数为( )A .30°B .60°C .90°D .120°6.方程0232=+-x x 的实数根有( )A .4个B .3个C .2个D .1个7.在A 33-),B (22,-2),C (-222 D 23-)四个点中,在第四象限的点的个数为( )A .1个B .2个C .3个D .4个 8.等腰三角形的周长为l3,各边长均为自然数,这样的三角形有( )A .0个B .l 个C . 2个D .3个 9.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( )A .①和②B .②和③C .①和③D .①②③10.有下列说法:①气象台预报明天阴有雨,所以明天下雨是必然事件;②9月份有30天是必然事件;③若a<0,则│a │=-a 是必然事件;④在只装有白球的口袋里摸出一个黑球,是不可能事件;其中说法正确的个数是( )A .4个B .3个C .2个D .1个二、填空题11.一个三角形的边长为 3、4、5,另一个和它相似的三角形的最小边长是 6,则另一个三角形的大边长是 .12.如图,l 1反映了某公司的销售收入与销量的关系,l 2 反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入大于成本)时,销售量必须____________.13.在平面直角坐标系中,将直线21y x =-向上平移动4个单位长度后,所得直线的解析式为 .14.已知三个不相的正整数的平均数、中位数都是3,则这三个数分别为 .15.:y x -y -x x -y=__________. 16.在423=+y x 中,用含x 的代数式表示y ,可得 .17.若分式||4()(4)x x l x -+-的值为零,则x 的值是 . 18.数轴上到原点的距离等于4的点所表示的数是 .三、解答题19.田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹,每匹马赛一次,赢得两局者为胜.看样子田忌似乎没有什么胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马要强 … …( 1 )如果齐王将马按上中下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜? ( 2 )如果齐王将马按上中下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)20.已知:如图AB BC AC AD DE AE==,求证:∠1 =∠2.21.已知抛物线y=-ax2(a≠0)与直线y=2x+3交于点(1,b),求抛物线y=-ax2与直线y=5的两个交点及顶点所构成的三角形的面积.S△=5.22.一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离y(m)与时间 x(s)的数据如下表所示:时间 x (s)01234…距离 y(m)0281832…(1)画出 y关于x 的函数图象;(2)求出 y关于x 的函数解析式.23.如图所示,已知平行四边形ABCD中,E是CD边的中点,连结BE并延长与AD的延长线交于点F.求证:BC=DF.24.计算:(1)11(27)(1245)35-;11328222(3)(⋅;(4)25.已知关于x 的方程5(2)324(1)x k x k +-=--的解为正数,试确定k 的取值范围. 6k <-26.计算:(1)25xy 3÷(-5y ) (2)(2a 3b 4)2÷(-3a 2b 5)(3)(2x -y )6÷(y -2x )427.程组⎩⎨⎧3x +4y =102x -3y =1⎩⎨⎧==12y x28.已知 a ,b ,c 是△ABC 的三边长,请确定代数式222222()4a b c a b +--的值的正负.29.在一张由复印机印出来的纸上,一个多边形的一条边由原来的1 cm 变成了4 cm ,那么这次复印放缩比例是多少?这个多边形的周长发生了怎样的变化?30.如图所示,△ABC 与△DEF 是关于直线l 的轴对称图形,请说出它们的对应线段和对应角.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.D4.D5.B6.A7.C8.D9.C10.B二、填空题1012.大于413.32+=x y 14.1,3,5或2,3,415.-116.x y 5.12-= 17.-418.4±三、解答题19.(1)田忌按下上中的顺序出阵比赛才能获胜;(2)P=61 20.在△ABC 和△ADE 中,AB BC AC AD DE AE==,∴△ABC ∽△ADE. ∴∠BAC=∠DAE,∴∠BAD=∠CAE .在△ABD 和△ACE 中,AB AC AD AE=,∠BAD=∠CAE,∴△ABC ∽△CAE,∴∠1=∠2 21.22.(1)(2)由(1)设2y ax =,把x= 1,y=2代入得a=2.∴这个函数梓析式为22y x =.证△DEF ≌△CEB(AAS)即可24.(123)4)25.6k <-26.(1)-5xy 2,(2)-43a 4b 3,(3)4x 2-4xy+y 2 27.⎩⎨⎧==12y x 28. 是负值29.1:4,扩大到原来的4倍30.AC 和DE ,AB 和DF ,BC 和FE ;∠A 和∠D ,∠C 和∠E ,∠B 和∠F。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省金华市2018年中考数学真题试题
考生须知:
1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用开卷形式.
2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应位置上.
3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.
4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑.
5.本次考试不得使用计算器.
卷 Ⅰ
说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.
一、选择题(本题有10小题,每小题3分,共30分)
1.在0,1,12-,-1四个数中,最小的数是( ▲ )
A. 0
B.1
C. 12
- D. -1 2.计算()3
a a -÷结果正确的是( ▲ )
A. 2
a B. 2
a - C. 3
a - D. 4
a -
3.如图,∠B 的同位角可以是( ▲ )
A.∠1
B.∠2
C.∠3
D.∠4
4.若分式
3
3
x x -+的值为0,则x 的值是( ▲ ) A.3 B.3- C.3或3- D.0 5.一个几何体的三视图如图所示,该几何体是( ▲ )
A. 直三棱柱
B. 长方体
C. 圆锥
D.立方体 6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°. 让转盘自由转动,指针停止后落在黄色区域的概率是( ▲ ) A .
61 B .41 C .31 D .12
7
7.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如
图所示的平面直角坐标系.若坐标轴的单位长度取1mm ,则图中转折点P 的坐标表示正确的是( ▲ )
A.(5,30)
B.(8,10)
C.(9,10)
D.(10,10)
第5题图 第6题图 第7题图 红 黄
单位:mm
30
10 16 50 主视图 左视图
俯视图
A B D C E
1 2
3
4 第3题图
8.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( ▲ )
A. tan tan αβ
B. sin sin βα
C. sin sin αβ
D. cos cos βα
9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A,D,E 在同一条直线上,∠ACB =20°,则∠ADC 的度数是( ▲ )
A.55°
B.60°
C.65°
D.70°
10.某通讯公司就上宽带网推出A,B,C 三种月收费方式.这三种收费方式每月所需的费用y (元)与上网时间x (h )的函数关系如图所示,则下列判断错误..的是( ▲ ) A.每月上网时间不足25 h 时,选择A 方式最省钱
B.每月上网费用为60元时,B 方式可上网的时间比A 方式多
C.每月上网时间为35h 时,选择B 方式最省钱
D.每月上网时间超过70h 时,选择C 方式最省钱
卷 Ⅱ
说明:本卷共有2大题,14小题,共90分.请用黑色字迹钢笔或签字笔将答案写在答题纸的相应位置上.
二、填空题 (本题有6小题,每小题4分,共24分) 11.化简()()11x x -+的结果是 ▲ .
12.如图,△ABC 的两条高AD,BE 相交于点F ,请添加一个条件,使得△ADC ≌△BEC (不添加其他字母及辅助线),你添加的条件是 ▲ .
13.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 ▲ .
14.对于两个非零实数x ,y ,定义一种新的运算:a b
x y x y
*=+.若()1
12*-=,则()22-*

值是 ▲ . 15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E,F 分别在边AB,BC 上,三角形①的边GD 在边AD 上,则
AB
BC
的值是 ▲ . A B D C E 第8题图 第9题图
第12题图 第13题图 第15题图 B
A D
C E F α
β A B D
C E F 图1 图2
D F 2013~2017年国内生产总值增长速度统计图 2013年 2014年 2015年 2016年
2017年
16.如图1是小明制作的一副弓箭, 点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC =60cm.沿AD 方向拉弓的过程中,假设弓臂BAC 始
终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30cm,
∠B 1D 1C 1=120°.
(1)图2中,弓臂两端B 1,C 1的距离为 ▲ cm.
(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为 ▲ cm. 三、解答题 (本题有8小题,共66分,各小
题都必须写出解答过程) 17.(本题6分)
+0
(2018)--4sin45°+2-.
18.(本题6分)
解不等式组:232+23(1).x
x x x +<-⎧⎪⎨⎪
⎩,

≥②
19.(本题6分)
为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图. 请根据图中信息解答下列问题:
(1)求参与问卷调查的总人数. (2)补全条形统计图.
(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数. 20.(本题8分)
如图,在6×6的网格中,每个小正方形的边长为1,点A 在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.
第19题图 各种支付方式的扇形统计图 A 支付宝支付 B 微信支付
C 现金支付
D 其他 C 15% A 40% B D
10%
图1:以点A 为顶点的三角形
图3:以点A 为对角线交 点的平行四边形
图2:以点A 为顶点的 平行四边形
各种支付方式中不同年龄段人数条形统计图
支付方式 第16题图
1
图 1 图2 图3 A D A C B D A 2 D
21.(本题8分)
如图,在Rt △ABC 中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆,分别与BC,AB 相交于点D ,E ,连结AD .已知∠CAD=∠B . (1)求证:AD 是⊙O 的切线. (2)若BC =8,tan B =
1
2
,求⊙O 的半径.
22.(本题10分)
如图,抛物线2
y ax bx =+(a ≠0)过点E (10,0), 矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C,D 在抛物线上.设A (t ,0),当t =2时,AD=4. (1)求抛物线的函数表达式. (2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少? (3)保持t =2时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H ,且直线..GH 平分矩形的面积时,求抛物线平移的距离.
23.(本题10分)
如图,四边形ABCD 的四个顶点分别在反比例函数y x
m
=
与y x n
=
(x >0,0<m <n )的图象上,
对角线BD ∥y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为4. (1)当m =4,n =20时.
①若点P 的纵坐标为2,求直线AB 的函数表达式.
②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由. (2)四边形ABCD 能否成为正方形?若能,
求此时m,n 之间的数量关系;若不能,试说明理由.
24.(本题12分)
在Rt△ABC 中,∠ACB =90°,AC =12.点D 在直线CB 上,以CA,CD 为边作矩形ACDE ,直线AB 与直线CE ,DE 的交点分别为F,G .
(1)如图,点D 在线段CB 上,四边形ACDE 是正方形. ①若点G 为DE 中点,求FG 的长. ②若DG=GF ,求BC 的长. (2)已知BC =9,是否存在点D ,使得△DFG 是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.
A B D
C F G E
第24题图
第23题备用图
第23题图。

相关文档
最新文档