相机需要重新标定的原因
第11章 HALCON标定方法

HALCON编程基础与工程应用
相机坐标系到图像坐标系
从相机坐标系到图像坐标系属于透视投影变换关系,即将3D图像信 息转换成2D图像信息。其中点P是相机坐标系中的点,点p(x,y)是像 极坐标系中的点P在图像坐标系上的投影点。
ABOC ~ oCOC
AB AOC PB XC ZC YC oC oOC pC x f y
R(
)
0
1
0
sin 0 cos
cos sin 0
R( ) sin cos 0
0
0 1
总的旋转矩阵,也就是三者的乘积。
R(, , ) R()R( )R( )
平移矩阵T (tx,ty ,tz ) ,tx、ty、tz 是世界坐标系原点与相机坐标系目标点
第11章 HALCON标定方法
◆ 11.1 标定的目的 ◆ 11.2 标定理论 ◆ 11.3 HALCON标定流程 ◆ 11.4 HALCON标定助手 ◆ 11.5 标定应用例程之二维测量
HALCON编程基础与工程应用
11.1 标定的目的
相机需要标定的原因之一就是镜头畸变。所有光学相机镜头都存 在畸变的问题,畸变属于成像的几何失真,它是由于焦平面上不同 区域对影像的放大率不同而形成的画面扭曲变形现象,这种变形的 程度从画面中心至画面边缘依次递增,主要在画面边缘反映的较为 明显。所以相机标定就是为了消除相机镜头在拍摄过程中产生的畸 变。和梯 形畸变。
HALCON编程基础与工程应用
11.3 HALCON标定流程 相机参数确定 HALCON标定板规格 生成标定板
HALCON编程基础与工程应用
1、相机参数确定
PT0018_相机标定及图像畸变矫正原理和实现-----计算机学习实战

➢ 得到空间坐标系和图像坐标系的对应关系。
相机标定的意义
随着相机在成像分辨率、图像采样速率、图像处理速率的提高,在诸如视
觉检测、运动测量及航空航天领域,都需要提高测量精度,这就需要对相机进
点之间有差异,造成图像产生畸变。
图像畸变
畸变矫正原理
图像畸变会随着视场增大而迅速增大,虽然并不影响图像清晰度,但是光学系统的畸
变却直接影响成像的几何位置精度。由于畸变的存在,空间中的一条直线就会在图像中以
曲线的形式呈现,这就造成图像的失真。在视场较小的光学系统中畸变不明显,但在大视
场光学系统就必须采取措施来消除畸变带来的影响。
变化成矩阵相乘形式(如第n个像素点):
( − 0, )(2 + 2 ) ( − 0, )((2 + 2 ))2 1
ො −
=
ො −
( − 0, )(2 + 2 ) ( − 0, )((2 + 2 ))2 2
当有N幅图像的方程组叠加组合时,这样就可以简化Dk=d,利用线性最小二乘的方法解出径向
ො = + [1 2 + 2 + 2 2 + 2 2 ]
ො = + [1 2 + 2 + 2 2 + 2 2 ]
(,
ො )为校正后的图像坐标,(x,y)为校正前的图像坐标,
ො
1 ,2 为径向畸变系数。同时可将
连续图像坐标系的畸变方程组推至像素坐标系中得到:
相机标定及图像畸变矫正
相机标定是什么?
基本任务之一是从相机获取的图像信息获得三维空间中的物体的几何信息,重
相机标定的来龙去脉(详解标定原理、畸变矫正原理、使用经验)

相机标定的来龙去脉(详解标定原理、畸变矫正原理、使用经验)1、相机标定的意义在机器视觉领域,相机的标定是一个关键的环节,它决定了机器视觉系统能否有效的定位,能否有效的计算目标物。
相机的标定基本上可以分为两种,第一种是相机的自标定;第二种是依赖于标定参照物的标定方法。
前者是相机拍摄周围物体,通过数字图像处理的方法和相关的几何计算得到相机参数,但是这种方法标定的结果误差较大,不适合于高精度应用场合。
后者是通过标定参照物,由相机成像,并通过数字图像处理的方法,以及后期的空间算术运算计算相机的内参和外参。
这种方法标定的精度高,适用于对精度要求高的应用场合。
本文主要写一写后者,至于前者,是一个研究的难点和热点,以后有空再写。
2、坐标系的变换2.1、小孔成像的原理小孔成像的原理可以用下图来说明:2.2、各个坐标系的定义为了说明白,建议先介绍图像的坐标系,再逐步推广到世界坐标系,最后说明各个坐标系是如何变化的,从而给出相机的内参和外参。
2.2.1、像素坐标系像素坐标就是像素在图像中的位置。
一般像素坐标系的左上角的顶点就是远点,水平向右是u,垂直向下是v轴。
例如,在上图中,任意一个像素点的坐标可以表示为(ui,vi)。
2.2.2、图像坐标系在像素坐标系中,每个像素的坐标是用像素来表示的,然而,像素的表示方法却不能反应图像中物体的物力尺寸,因此,有必要将像素坐标转换为图像坐标。
将像素坐标系的原点平移到图像的中心,就定为图像坐标系的原点,图像坐标系的x轴与像素坐标系的u轴平行,方向相同,而图像坐标系的y轴与像素坐标系的v轴平行,方向相同。
在图中,假设图像中心的像素坐标是(u0,v0),相机中感光器件每个像素的物力尺寸是dx * dy,那么,图像坐标系的坐标(x,y)与像素坐标系的坐标(u,v)之间的关系可以表示为:写成矩阵的形式就为改写为齐次坐标的形式2.2.3、相机坐标系相机坐标系是以相机的光轴作为Z轴,光线在相机光学系统的中心位置就是原点Oc(实际上就是透镜的中心),相机坐标系的水平轴Xc与垂直轴Yc分别于图像坐标系的X轴和Y轴平行。
鱼眼相机标定原理

鱼眼相机标定原理鱼眼相机是一种具有广角视野的特殊相机,它能够捕捉到更大范围的景象。
然而,由于鱼眼镜头的特殊形状,它会引起图像的畸变。
为了纠正这种畸变并获得准确的图像信息,我们需要对鱼眼相机进行标定。
鱼眼相机标定的原理是通过建立相机模型,将图像坐标与世界坐标进行映射,从而实现对图像畸变的校正。
常用的鱼眼相机模型有两种:圆柱投影模型和正交投影模型。
圆柱投影模型是最常用的鱼眼相机模型之一。
它假设鱼眼相机的镜头形状为圆柱体,并将图像坐标映射到一个圆柱体上。
在这个模型中,通过建立图像坐标和世界坐标之间的映射关系,可以实现对图像畸变的校正。
正交投影模型是另一种常用的鱼眼相机模型。
它假设鱼眼相机的镜头形状为正方体,并将图像坐标映射到一个正方体上。
与圆柱投影模型类似,通过建立图像坐标和世界坐标之间的映射关系,可以实现对图像畸变的校正。
鱼眼相机标定的过程可以分为两个步骤:内参数标定和外参数标定。
内参数标定是指确定相机的内部参数,包括焦距、主点坐标和畸变系数等。
为了进行内参数标定,我们需要采集一组已知的图像和对应的世界坐标。
通过对这些数据进行处理,可以得到相机的内部参数。
外参数标定是指确定相机的外部参数,包括相机的位置和朝向。
为了进行外参数标定,我们需要采集一组已知的图像和对应的世界坐标。
通过对这些数据进行处理,可以得到相机的外部参数。
在鱼眼相机标定的过程中,我们需要使用特殊的标定板。
这个标定板上通常会有一些特殊的标记点,以便于相机进行识别。
通过将标定板放置在不同的位置和角度,然后采集对应的图像和世界坐标,我们可以得到一组用于标定的数据。
在实际的标定过程中,我们需要使用相机标定的软件。
这个软件可以帮助我们进行数据的采集和处理,从而得到相机的内外参数。
在标定过程中,我们还需要注意一些细节,比如保证标定板和相机保持平行、避免阴影和反射等。
一旦完成了鱼眼相机的标定,我们就可以使用得到的参数对图像进行畸变校正。
通过将图像坐标映射到世界坐标,并使用内外参数进行逆映射,我们可以得到校正后的图像。
相机标定的名词解释

在摄影领域,相机标定是一个关键的概念和过程,旨在准确地测定相机的内部参数和外部参数,以提高图像的质量和精度。相机标定使用一系列已知的参考点或平面,通过测量这些点在图像中的位置,来确定相机的特性和畸变情况。本文将深入解释相机标定的定义、步骤、重要性以及实际应用。
一、相机标定的定义
相机标定是一种通过测量相机内部参数(例如焦距、主点位置等)和外部参数(例如相机位置和姿态)的过程,以便精确计算图像中物体的位置和尺寸。它是计算机视觉、机器人技术、虚拟现实等领域中不可或缺的工具。通过相机标定,我们能够纠正由于透镜畸变、镜头投影差异和相机姿态变化等因素引起的图像失真。
1.计算机视觉:相机标定是目标检测、人脸识别、物体跟踪等计算机视觉任务的基础,能够提高算法的准确性和稳定性。
2.机器人技术:相机标定对于机器人导航、地图构建和目标抓取具有重要意义,可以提高机器人的自主性和操作精度。
3.虚拟现实:相机标定可以提供准确的虚拟相机参数,用于虚拟场景的生成和渲染,使得用户能够获得更真实的虚拟体验。
二、相机标定的步骤
相机标定通常由以下几个步骤组成:
1.收集标定板:标定板是一个已知尺寸和形状的平面,通常使用黑白方格或圆点的校准板。在拍摄标定板的过程中,需要尽量覆盖相机视野内的不同区域,以获得更准确的标定结果。
2.摄像机设置:在拍摄标定板之前,需要设置相机的参数,包括曝光时间、ISO感光度和白平衡等。合适的摄像机设置可以提供更准确的图像。
3.目标检测与跟踪:相机标定可以将图像上的像素点映射到实际世界的坐标系,从而实现对目标的精确检测和跟踪。
4.机器人导航和自动驾驶:相机标定可以为机器人导航系统和自动驾驶系统提供定位和环境感知的能力,从而提高机器人的导航精度和自动驾驶的安全性。
为什么要进行相机标定-相机标定有何意义-

为什么要进行相机标定?相机标定有何意义?01为什么要进行相机标定随着(机器视觉)的迅猛发展,我们已经不满足于使用摄像机进行监控、抓拍这种较为简单的功能。
更多的用户青睐于它在非接触三维尺寸测量上的应用。
我们所谓的三维测量是广义的三维测量,它不仅包括三维物体的重构与测量,还包括在三维空间中识别任意二维平面上的尺寸以及位置。
这种技术目前已被应用在(高精度)的(工业)模具以及装配测量中,其中任意二维平面上的尺寸(检测)技术应用得更为广泛。
图一如图1当被测平面和像平面平行且成像模型为理想的小孔成像模型,我们设焦距为、工作距离为,则被测物和它的像关系可简单的表示为:但是在实际应用中并非如此,我们无法严格控制像平面和被测平面的位置,所用的镜头也不是严格的小孔模型。
如果直接使用【1】式计算将会产生极大的误差。
因此,为了获取更高的测量精度,我们需要通过标定来实现坐标平面的转换以及图像的校正。
02什么是相机标定在实际应用中,被测平面的不确定性以及镜头的畸变使我们已经无法简单的使用【1】式计算出实际距离,但是我们可以将目前能够获得的数据进行转换,使这些数据符合【1】式的使用条件。
也就是将任意坐标平面通过旋转和平移映射到理想坐标平面上,对有畸变的图像进行校正,让它成为符合小孔成像模型的像平面。
有了这种方法,我们只要确定转换(算法)、校正算法以及【1】式中的参数就可以实现三维空间中任意平面上尺寸与位置的测量。
我们将这种确定参数的过程称之为标定。
03相机单目标定相机标定的方法根据摄像机的数目可分为单目标定、双目标定以及多目标定。
其中单目相机标定是双目标定的基础,而多目相机的标定则是双目相机的扩展。
因此,我们今天首先来为大家介绍单目标定。
在平面测量中影响我们拍摄图像形变的因素有两个:镜头和相机姿态。
根据这两个因素我们将摄像机的参数分为两组,相机内参和相机外参。
3.1 相机内参内参一般包括镜头的焦距、镜头畸变参数、光轴中心坐标以及像元尺寸,当摄像机和镜头确定时,这些参数唯一确定。
定标过程容易出现的问题

定标过程容易出现的问题主要包括以下几个方面:
1. 未按中标候选人顺序定标:在实际项目中,招标人可能未按照评审排名顺序确定中标人,这可能导致与招标文件中招标人委托评委会推荐中标候选人的相关规定矛盾,也违背了招标程序的逻辑性和严谨性。
如果招标人未能给出充分的定标理由,这种做法可能违背了公开与公平原则。
2. 标定板问题:标定板的制作精度对标定结果有很大影响,精度低的标定板可能导致误差较大。
此外,标定板的亮度、均匀性、成像尺寸等因素也可能对标定结果产生影响。
3. 相机问题:在标定过程中,相机的稳定性、清洁度、焦距等因素都可能对标定结果产生影响。
例如,相机稍微移动或镜头有污点都可能导致需要重新标定。
4. 标定图片数量和质量问题:标定图片的数量和质量对标定结果也有很大影响。
图片数量太少或质量太差可能导致标定参数不准确。
5. 光源问题:光源对标定结果也有重要影响。
如果标定板亮度不足或不均匀,可能导致特征提取不准确,从而影响标定结果。
6. 定标斜率问题:在某些应用中,定标斜率可能因电极老化、污染等原因而下降,导致定标失败。
此时,需要对电极进行处理或更换电极。
为了避免这些问题,建议在定标过程中严格按照规范操
作,确保标定板、相机、光源等因素都符合要求,并注意检查标定结果的质量和准确性。
同时,对于可能出现的问题,应提前制定相应的解决方案和预防措施。
相机内参标定原理

相机内参标定原理随着计算机视觉技术的不断发展,相机标定已经成为了计算机视觉领域中非常重要的一部分。
相机标定的目的是确定相机的内部参数,这些内部参数包括相机的焦距、主点位置、畸变系数等,相机标定是计算机视觉中的一个基础问题,它在机器人视觉、三维重建、虚拟现实等领域中都有着广泛的应用。
相机标定的原理是利用已知的物体特征点和对应的图像特征点,通过数学方法求解出相机的内部参数。
相机标定的过程可以分为两个部分:外部参数和内部参数的标定。
外部参数是指相机在世界坐标系中的位置和方向,内部参数是指相机的焦距、主点位置、畸变系数等。
相机内部参数的标定是利用已知的图像特征点和其对应的世界坐标系中的特征点,通过数学方法求解相机的内部参数。
在相机内部参数的标定中,主要有以下几个问题需要解决:1. 相机的畸变问题在实际应用中,相机的成像并不是完美的,图像中的物体会出现一些畸变现象,主要有径向畸变和切向畸变两种。
径向畸变是指图像中的直线在相机的成像平面上不再是直线,而是弯曲的,这是由于相机透镜的形状和位置不完美造成的。
切向畸变是指图像中的直线在相机成像平面上不再是垂直于相机光轴的,而是有一定的倾斜角度,这是由于相机感光元件和透镜不完全平行造成的。
为了解决相机的畸变问题,我们需要对相机进行畸变校正。
畸变校正的方法主要有两种:一种是利用相机的畸变模型进行校正,另一种是利用校正板进行校正。
2. 相机的内部参数相机的内部参数包括焦距、主点位置、像素尺寸等。
相机的内部参数对于相机成像的质量和精度有着非常重要的影响。
在相机标定的过程中,我们需要通过数学方法求解出相机的内部参数。
3. 相机的坐标系在相机标定的过程中,我们需要确定相机的坐标系。
相机的坐标系有两种:一种是相机坐标系,另一种是世界坐标系。
相机坐标系是以相机为原点建立的坐标系,世界坐标系是以物体为原点建立的坐标系。
在相机标定的过程中,我们需要将相机坐标系和世界坐标系进行转换,从而确定相机的外部参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相机需要重新标定的原因
相机需要重新标定的原因主要有以下几点:
1. 相机的内部参数和外部参数会随着时间的推移发生变化,如相机的光学系统老化、相机部件的磨损等,导致相机的成像质量下降。
重新标定可以更新相机的参数,恢复其成像质量。
2. 当相机的位置或姿态发生变化时,如相机的移动、旋转或振动等,会导致相机的外部参数发生变化,进而影响其成像效果。
重新标定可以调整相机的姿态和位置,以获得更准确的成像效果。
3. 标定过程中可能存在误差,如标定板的位置和姿态的测量误差、相机内部参数的估计误差等,这些误差会影响相机的标定结果。
重新标定可以修正这些误差,提高相机的标定精度。
4. 在不同的应用场景下,相机需要不同的参数设置才能获得最佳的成像效果。
例如,在拍摄风景时需要调整相机的焦距和光圈等参数,而在拍摄微距时需要调整相机的放大倍数和景深等参数。
重新标定可以根据实际应用场景调整相机的参数,以满足不同的拍摄需求。
总之,相机需要重新标定的原因主要包括相机内部和外部参数的变化、标定过程中存在的误差以及实际应用场景的变化等。
通过重新标定,可以更新相机的参数、修正误差和调整参数设置,以提高成像质量和满足不同的拍摄需求。