生物质谱工作原理及其应用

合集下载

质谱法的应用原理

质谱法的应用原理

质谱法的应用原理1. 质谱法概述质谱法是一种重要的分析技术,广泛应用于生物、医药、环境等领域。

它通过将样品中的化合物分离和离子化,然后根据离子的质量和电荷比,通过质谱仪测量得到离子的相对丰度,从而实现对样品中化合物的定量和定性分析。

2. 质谱仪的基本原理质谱仪是质谱法的核心设备,它包括离子源、质量分析器和离子检测器。

离子源将分离的化合物转化为离子,质量分析器根据离子的质量和电荷比进行分析和测量,离子检测器则测量离子的相对丰度。

3. 质谱法的基本步骤质谱法的基本步骤包括样品制备、离子化、分离、质谱分析和数据解析等。

3.1 样品制备样品制备是质谱法分析的第一步,其目的是将待分析的化合物从复杂的样品基质中提取出来,并进行适当的前处理。

常见的样品制备方法包括溶解、萃取、提取等。

3.2 离子化离子化是质谱法的核心步骤,通过将化合物转化为带电的离子形式,便于在质谱仪中进行分析。

常见的离子化方法有电喷雾离子化、化学电离、表面辅助激光解析电离等。

3.3 分离分离是指将离子化的化合物分离开来,以便进行质谱分析。

常见的分离方法有质谱分析仪器内的质量分析器,如质子传递质谱仪、飞行时间质谱仪等。

3.4 质谱分析质谱分析是指测量离子的质量和相对丰度,以实现对物质的定性和定量分析。

常用的质谱分析方法有质子传递质谱、飞行时间质谱、四级杆质谱等。

3.5 数据解析质谱分析得到的数据一般呈现为质谱图,需要对质谱图进行解析和处理,以获得有关样品中化合物的信息。

数据解析可以通过比对已知标准物质的质谱图进行定性分析,或者通过物质的相对丰度进行定量分析。

4. 质谱法的应用领域质谱法广泛应用于生物、医药、环境等领域。

以下是质谱法在不同领域的应用举例:•生物学领域:质谱法用于蛋白质结构研究、代谢组学研究等。

•医药领域:质谱法用于药物分析、药代动力学研究等。

•环境领域:质谱法用于环境污染物检测、土壤污染评估等。

•食品领域:质谱法用于食品安全检测、食品成分分析等。

生物质谱

生物质谱
80年代初
Barber等人又引入了快原子轰击(fast atom
bombardment,简称FAB)电离技术,并成功地测定了
一个26肽的结构,从而使得质谱技术应用于蛋白质和
肽的结构测定这一设想变为现实。
• 80年代末
John Fenn 发明的电喷雾电离(electrospray ionization,ESI)和Hillenkamp等人发明的基质辅助激 光解吸电离(matrix assisted laser desorption
等形式进行分离;
• 检测器——用来接受、检测和记录被分离后的离子信号。
2.2 离子源
• 离子源的功能是将进样系统引入的气态样品分子 转化成离子。由于离子化所需要的能量随分子不 同差异很大,因此,对于不同的分子应选择不同 的离解方法。 • 给样品较大能量的电离方法为硬电离方法,而给 样品较小能量的电离方法为软电离方法,后一种 方法适用于不稳定或易电离的样品。
≥350 kDA
±0.01%-0.05% to 25 kDA
±0.05%-0.3% to 300 kDA
No
生物质谱两种主要电离方法比较
2.3 质量分析器
• 质量分析器能将带电离子根据其质荷比加以分离,
• 质量分析器的主要技术参数是:
质荷比的范围(质量范围)和分辨率。 • 质量分析器类型: 扇形磁分析器,四极杆分析器 离子阱分析器,飞行时间分析器 傅里叶变换分析器
由于多肽倾向于吸收单一光子,故多肽离子带
单一电荷.这些形成的多肽离子直接进入飞行时间
质量分析仪(TOF mass analyzer)。飞行时间质量
分析仪用于测量多肽离子由分析仪的一端飞抵另一
端探测器所需要的时间。TOF质量分析器被认为是

微生物质谱 快速鉴定

微生物质谱 快速鉴定

微生物质谱快速鉴定微生物是生物学领域中非常重要的一类生物,它们在自然界中起到了关键的作用。

然而,微生物的识别和鉴定一直是一个相对繁琐和耗时的过程。

为了解决这个问题,科学家们开发出了一种高效快速的鉴定方法——微生物质谱。

一、什么是微生物质谱微生物质谱是一种通过分析微生物样品中的质谱图谱来进行鉴定的技术。

质谱是一种通过将物质分子进行离子化,并测量其质荷比来确定其分子结构的方法。

微生物质谱利用质谱技术,能够快速准确地识别和鉴定微生物。

二、微生物质谱的工作原理微生物质谱的工作原理基于微生物在质谱仪中生成的特征质谱图谱。

其过程主要分为样品预处理、质谱测量和数据分析三个步骤。

1. 样品预处理:将待测微生物样品进行分离纯化处理,去除干扰物质。

2. 质谱测量:将预处理后的样品注入质谱仪中,通过化学分析技术将微生物样品中的分子转化为离子,然后利用质谱仪测量这些离子的质荷比。

3. 数据分析:质谱仪将得到的质荷比数据转化为质谱图谱,通过与数据库中的质谱图谱进行比对,确定待测微生物的种属和菌株。

三、微生物质谱的优势相比传统的微生物鉴定方法,微生物质谱具有如下优势:1. 快速:微生物质谱仪能够在几分钟内得出准确的鉴定结果,相比传统的培养方法节省了大量的时间。

2. 高效:不需要纯培养微生物,只需要少量的微生物样品,无需耗费大量的实验室资源。

3. 准确:微生物质谱仪具备较高的鉴定准确度,可以区分微生物亚种和突变株。

4. 全面:微生物质谱技术可以鉴定各种形态的微生物,包括细菌、真菌、病毒等。

四、微生物质谱的应用领域微生物质谱技术已广泛应用于多个领域,包括以下几个方面:1. 医学领域:微生物质谱可用于快速诊断感染性疾病,提供精准的病原菌识别,有助于指导临床治疗。

2. 食品安全领域:微生物质谱技术可以用来检测食品中的微生物污染,保障食品安全,预防食源性疾病的发生。

3. 环境监测领域:微生物质谱技术可用于监测水、空气等环境中的微生物的存在和分布情况,为环境治理提供科学依据。

质谱仪的基本原理和操作步骤

质谱仪的基本原理和操作步骤

质谱仪的基本原理和操作步骤引言:质谱仪是一种广泛应用于化学、生物、环境等领域的分析仪器。

它通过分析样品中分子或原子的质量和结构,提供了重要的数据。

本文将介绍质谱仪的基本原理和操作步骤。

一、质谱仪的原理:1. 电离:质谱仪中,样品首先被电离成带电粒子。

最常用的电离技术是电子轰击电离,即用高能电子轰击样品分子,使其失去电子而带电。

其他常用的电离技术还包括化学电离、光解电离等。

2. 分离:电离后,带电粒子会被引入质谱仪的分离部分。

分离的原理是基于粒子在电场或磁场中的分辨率。

常见的分离技术有时间飞行法和磁扇形法。

时间飞行法基于不同离子飞行时间的差异,将粒子分离。

磁扇形法则是通过施加磁场,使得离子在磁场中的轨迹受到影响,从而实现分离。

3. 检测:分离好的粒子通过检测器进行检测和信号采集。

检测器的种类有很多,最常用的是离子倍增器和光电离器。

它们能够接受质谱仪中离子的信号,并将其转化为电信号。

4. 数据处理:检测到的离子信号经过放大和处理,最终转化为质谱图。

质谱图显示了样品中各种离子的相对丰度和质量。

通过分析质谱图,可以确定样品组分并检测有害物质。

二、质谱仪的操作步骤:1. 准备样品:在进行质谱分析之前,需要准备样品。

样品通常是溶液或气体,要求无害、纯净且浓度适中。

2. 样品引入:样品可以通过气体色谱或液相色谱等分离技术引入质谱仪。

其中,气体色谱质谱联用技术最常用。

样品分子先通过气相色谱分离,再进入质谱仪进行质谱分析。

3. 设置参数:根据所检测的样品类型和目的,需要设置质谱仪的相关参数。

这些参数包括电子能量、离子进入质谱仪的速度、电场强度等。

合理设置这些参数可以提高分析结果的准确性和灵敏度。

4. 开始质谱分析:设置好参数后,开始质谱分析。

样品中的分子将被电离,然后进入质谱仪进行分离和检测。

此时,质谱仪会产生质谱图,并通过电脑进行数据处理和分析。

5. 结果解读:得到质谱图后,需要对其进行解读。

通过比对数据库中已有的质谱图,可以确定样品中的化合物组成;通过对谱峰的相对丰度进行分析,可以定量检测样品中各组分的含量。

质谱基础知识飞行时间质谱仪原理及应用

质谱基础知识飞行时间质谱仪原理及应用
营养成分和功能成分分析
飞行时间质谱仪能够检测食品中的营养成分和功能成分,为食品的 营养评价和功能研究提供依据。
04
质谱技术的发展趋势
高灵敏度质谱技术的发展
灵敏度提升
随着技术的不断进步,质谱仪的 灵敏度不断提高,能够检测到更 低浓度的物质,为痕量物质的分 析提供了可能。
选择性增强
高灵敏度质谱技术通过改进离子 化方法和分离技术,提高了对复 杂样品的选择性,降低了干扰物 质的影响。
质谱的应用领域
01
02
03
04
生物医药
用于蛋白质、核酸等生物大分 子的检测和鉴定。
环境监测
检测空气、水体中的有害物质 和污染物。
食品安全
检测食品中的添加剂、农药残 留等。
化学分析
对有机化合物进行定性和定量 分析,用于化学反应机理研究
等。
02
飞行时间质谱仪原理
飞行时间质谱仪的结构
电离源
用于将样品分子转化为带电离 子,常见电离源有电子轰击、 化学电离、电喷雾等。
飞行管
离子在其中进行无散射的飞行 ,通常由真空密封的管子组成 。
ቤተ መጻሕፍቲ ባይዱ
进样系统
用于将样品引入质谱仪中,通 常采用气相色谱或直接进样方 式。
加速电场
用于加速离子,使其获得足够 的能量进入飞行管。
检测器
用于检测到达终端的离子,通 常采用电子倍增器或微通道板 。
飞行时间质谱仪的工作原理
01
02
03
04
进样系统将样品引入电离源, 电离源将样品分子转化为带电
在化学领域的应用
在化学领域,质谱技术用于研究化合物的结构、组成、反应机理等,可以用于合成路线的确定、反应条件的优化等。

《生物质谱分析技术》课件

《生物质谱分析技术》课件
生物质谱分析技术的应用
生物质谱分析技术在生物学、医学和农业等领域有广泛的 应用,如蛋白质组学、代谢组学、药物筛选和食品安全检 测等。
生物质谱分析技术的原理
生物质谱分析技术的原理是基于质谱原理,通过离子化样 品中的分子,测量其质量/电荷比值,从而确定分子的质 量和结构。
THANKS
感谢观看
临床应用
随着质谱分析技术的发展,其在临床 诊断、药物发现和个性化医疗等领域 的应用将得到进一步拓展。
人工智能与机器学习
人工智能和机器学习技术将进一步优 化和提高质谱数据的解析能力,使生 物质谱分析更加高效和准确。
06
参考文献
参考文献
生物质谱分析技术概述
生物质谱分析技术是一种基于质谱原理的生物分子分析方 法,通过测量生物分子质量,可以用于鉴定、定量和分离 生物分子。
蛋白质组学研究是生物质谱分析技术的重要应用领域之一。通过质谱分析,可以 鉴定蛋白质的成分、结构和功能,进而研究蛋白质之间的相互作用和蛋白质的表 达调控。
质谱分析在蛋白质组学研究中常用于蛋白质鉴定、差异表达分析、蛋白质修饰和 相互作用研究等方面。例如,在研究癌症等疾病过程中,质谱分析可以帮助科学 家发现与疾病相关的差异表达蛋白和蛋白质修饰,为疾病的诊断和治疗提供新的 靶点。
生物质谱分析技术逐渐成熟, 开始广泛应用于蛋白质组学研
究。
21世纪初
随着各种新型质谱仪器的出现 ,生物质谱分析技术的应用领
域不断拓展。
目前
生物质谱分析技术已经成为生 命科学领域的重要研究手段, 不断推动着生命科学的发展。
02
质谱仪的基本原理与构成
质谱仪的工作原理
1 2
离子化
通过电离方式将生物分子转化为带电离子。

谈一谈质谱技术在临床微生物检测中的应用

谈一谈质谱技术在临床微生物检测中的应用

谈一谈质谱技术在临床微生物检测中的应用随着医疗技术水平的不断进步,临床检验中引入了越来越多的高新技术,质谱技术就是其中之一,其主要是一种对蛋白质进行分析的较为强大的工具,其存在高通量、快速准确、自动化、操作简便等优点,所以在临床的微生物检验中应用较为广泛,在鉴定病原体方面具有显著效果。

这一技术从出现到发展对传统检验模式进行了挑战,令检验的实效性和灵敏度得以提升。

因此,为帮助病人们进行了解,下面就来介绍一下质谱技术在临床微生物检测中的主要应用。

一、质谱技术的原理和优点质谱技术的主要工作原理是把基质和样品进行混合,而后将其点在相应的金属靶盘上,构成一个共结晶,而后将激光当做能量的来源对结晶体进行辐射,此时基质分子会对能量进行吸收,令样品开始吸附,而后发生电离反应,形成质荷比不同的带电离子。

而样品离子处于加速的电场下,可以产生相同的动能,而后经过高压的加速和聚焦,进入到飞行时间的质谱分析器中,完成质量分析的操作。

其中,飞行时间的平方和离子质荷比呈现正相关的关系,通过计算机的处理,可以形成质量图谱,经过相关的软件进行分析和比较,可以筛选以及确定特异性的图谱,进而鉴定或者区分菌株以及微生物。

现今的临床微生物实验中,在鉴定细菌方面大都依靠传统生化反应以及形态学技术等,在鉴定细菌方面也需首先进分离纯化,就算利用相关的自动化鉴定仪,也需保证时效性的要求,特别是在检测菌血症这类重症感染的过程中。

而质谱技术一般不要求样品纯度,所以样品检测过程中可以不进分离和纯化,可以进行直接的点样。

该方式的操作较为简便,还可不断扩展数据库,所以可准确且快速地完成检测,还可保证高通量。

二、质谱技术在临床微生物检测中的应用就现今的情况来看,质谱技术现已被广泛应用于临床微生物检测中,主要检测的菌种包括霉菌、酵母菌、分枝杆菌、厌氧菌、需氧菌、革兰氏阴性菌、革兰氏阳性菌等。

1、鉴定及分析细菌质谱技术可对多种细菌进行充分分析,其中,检测的样本既可为进分离培养的一些纯菌落,同样也可为原始的临床样本,其可以被直接用来检测。

质谱的应用原理

质谱的应用原理

质谱的应用原理什么是质谱质谱(Mass Spectrometry,简称MS)是一种在化学、生物学、物理学等领域中广泛应用的分析技术。

它通过将样品中的分子离子化,并通过磁场和电场的作用将离子按质量分离,然后测量离子的质量和丰度,从而获取有关样品组成、结构和性质的信息。

质谱的基本原理质谱的基本原理是利用质谱仪将样品中的分子离子化,并通过磁场和电场的作用将离子按质量分离,最后进行检测。

下面将详细介绍质谱的应用原理。

1.离子化:质谱分析的第一步是将样品中的分子离子化。

常见的离子化方法包括电子轰击离子化(Electron Impact,简称EI)、化学电离(Chemical Ionization,简称CI)和电喷雾离子化(Electrospray Ionization,简称ESI)等。

2.分子分离:离子化之后,离子进入质谱仪中的磁场和电场区域。

磁场作用下,离子按质量-电荷比(m/z)比例受到偏转力的作用,并因此沿轨道进行弯曲。

电场作用下,离子在质谱仪的不同区域获得不同的动能,进一步加快离子的轨道弯曲。

通过调节磁场和电场的参数,可以实现离子按质量分离的目的。

3.检测和记录:分离之后,离子到达质谱仪的检测器。

检测器通常使用电流计或光子探测器来测量离子的质量和丰度。

质谱仪会将这些数据转化为质谱图,并进行电子处理、解析和储存。

质谱的应用领域质谱作为一种高分辨率、高灵敏度的分析技术,在许多领域中有广泛的应用。

以下是质谱的几个主要应用领域:1.药物分析:质谱可以用于药物的结构鉴定、纯度检测和代谢产物分析,帮助药物研发和品质控制,为新药的开发提供重要的支持。

2.环境分析:质谱可以用于环境中有害物质的检测和定量分析,如空气中的污染物、水中的有机物和重金属等。

通过质谱分析,可以快速、准确地确定有害物质的种类和浓度,为环境保护工作提供科学依据。

3.食品安全:质谱可以用于食品中残留农药、重金属、添加剂等物质的检测和分析。

通过质谱技术,可以有效地监测食品安全问题,保障公众的饮食安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电喷雾质谱的优势就是它可以方便地与多种分离技术联合使用,如液一质联用(LC-MS)是将液相色谱与质谱联合而达到检测大分子物质的目的。
2.基质辅助激光解吸附质谱技术
基质辅助激光解吸附质谱技术(MatriXAssistedLaserDesorption /Ionization,MALDI)的基本原理是将分析物分散在基质分子中并形成晶体,当用激光照射晶体时,由于基质分子经辐射所吸收的能量,导致能量蓄积并迅速产热,从而使基质晶体升华,致使基质和分析物膨胀并进入气相。MALDAI所产生的质谱图多为单电荷离子,因而质谱图中的离子与多肽和蛋白质的质量有—一对应关系。
只能提供有关离子的精确质量,从而可以确定样品的元素组成和分子式。而FABMS-MS串联技术的应用可以提供样品较为详细的分子结构信息,从而使其在生物医学分析中迅速发展起来。
同位素质谱是一种开发和应用比较早的技术,被广泛地应用于各个领域,但它在医学领域的应用只是近几年的事。由于某些病原菌具有分解特定化合物的能力,该化合物又易于用同位素标示,人们就想到用同位素质谱的方法检测其代谢物中同位素的含量以达到检测该病原菌的目的,同时也为同位素质谱在医学领域的应用开辟了一条思路。
1.电喷雾质谱技术
电喷雾质谱技术(ElectrosprayIonizsationMassSpectrometry,ESI-MS)是在毛细管的出口处施加一高电压,所产生的高电场使从毛细管流出的液体雾化成细小的带电液滴,随着溶剂蒸发,液滴表面的电荷强度逐渐增大,最后液滴崩解为大量带一个或多个电荷的离子,致使分析物以单电荷或多电荷离子的形式进入气相。电喷雾离子化的特点是产生高电荷离子而不是碎片离子,使质量电荷比(m/z)降低到多数质量分析仪器都可以检测的范围,因而大大扩展了分子量的分析范围,离子的真实分子质量也可以根据质荷比及电行数算出。
三、生物质谱技术的应用
随着质谱技术的不断改进和完善,质谱的应用范围已扩展到生命科学研究的许多领域,特别是质谱在蛋白质、医学检测、药物成分分析及核酸等领域的应用,不仅为生命科学研究提供了新方法,同时也促进了质谱技术的发展。
1.质谱与蛋白质分析
蛋白质分子量的测定蛋白质类生物大分子分子量的测定有着十分重要的意义,如对均一蛋白质一级结构的测定,既要测定蛋白质的分子量,又要测定亚基和寡聚体的分子量及水解、酶解碎片的分子量。常规的分子量测定主要有渗透压法、光散射法、超速高心法、凝胶层析及聚丙烯酸胺凝胶电泳等。这些方法存在样品消耗量大,精确度低易受蛋白质的形状影响等缺点。
论文题目:生物质谱工作原理及其应用
论文要求:
生物质谱技术拥有广泛的应用及广阔的前景。简要概述生物质谱的工作原理及其应用,要求内容充实,论述详细透彻,不少于1000字。
教师评语:
教师签字:
年月日
论文题目:生物质谱工作原理及其应用
一、质谱技术
质谱(MassSPectrometry)是带电原子、分子或分子碎片按质荷比(或质量)的大小顺序排列的图谱。质谱仪是一类能使物质粒子高化成离子并通过适当的电场、磁场将它们按空间位置、时间先后或者轨道稳定与否实现质荷比分离,并检测强度后进行物质分析的仪器。质谱仪主要由分析系统、电学系统和真空系统组成。
2.质谱技术的发展
质谱的开发历史要追溯到20世纪初J.J.Thomson创制的抛物线质谱装置,1919年Aston制成了第一台速度聚焦型质谱仪,成为了质谱发展史上的里程碑。
最初的质谱仪主要用来测定元素或同位素的原子量,随着离子光学理论的发展,质谱仪不断改进,其应用范围也在不断扩大,到20世纪50年代后期已广泛地应用于无机化合物和有机化合物的测定。
随着科学技术的进步,质谱也得到了快速的发展,特别是与生物技术的结合,开创了质谱应用的新领域,质谱已成为生命科学研究中非常重要的工具。其研究成果也将大大非富人类基因组的研究,并将使人类对生命的本质,其发生发展过程的认识达到一个前所未有的新高度。
教师评语
教师签字:
年月日
如何获得高分辨率质的结构特征,使得DNA样品存在某些特殊性,一是其结构中存在着磷酸基团,有形成钠磷化合离子的趋势;二是在激光解吸离子化过程中它的结构不如蛋白质稳定,易形成碎片,这导致峰宽和分子离子的强度变弱,从而使得分辨率下降。
对肽序列的测定往往要通过串联质谱技术才能达到分析目的,它采用不同的质谱技术选择具有特定质荷比的离子,并对其进行碰撞诱导解高,通过推断肽片的断裂,即可导出肽序列。
2.质谱与核酸研究
现代质谱技术自诞生以来在多肽及蛋白质的研究中获得了极大的成功,于是人们开始偿试着特质谱技术用于核酸的研究工作,近年来合成寡核苷酸及其类似物作为反义治疗剂在病毒感染和一些癌症的治疗方面有着良好的前景,寡核苷酸作为药物其结构特征必须进行确证。常规的色谱或电泳技术只能对其浓度和纯度进行分析,而对其碱基组成、序列等结构信息却无能为力。
肽指纹图谱(PePtideMassFingerprinting,PMF)测定是对蛋白酶解或降解后所得多肽混合物进行质谱分析的方法,对质谱分析所得肽片与多肽蛋白数据库中蛋白质的理论肽片进行比较,从而判别所测蛋白是已知还是未知。由于不同的蛋白质具有不同的氨基酸序列,因而不同蛋白质所得肽片具有指纹的特征。
现今,质谱分析的足迹已遍布各个学科的技术领域,在固体物理、冶金、电子、航天、原子能、地球和宇宙化学、生物化学及生命科学等领域均有着广阔的应用。质谱技术在生命科学领域的应用,更为质谱的发展注入了新的活力,形成了独特的生物质谱技术。
二、生物质谱技术
电喷雾质谱技术和基质辅助激光解吸附质谱技术是诞生于80年代末期的两项轨电离技术。这两项技术的出现使传统的主要用于小分子物质研究的质谱技术发生了革命性的变革。它们具有高灵敏度和高质量检测范围,使得在pmol(10-12甚至fmol(10-15的水平上准确地分析分子量高达几万到几十万的生物大分子成为可能,从而使质谱技术真正走入了生命科学的研究领域,并得到迅速的发展。以下主要介绍与生物医学有关的几项质谱技术。
1995年,M.L.Vestal等把离子延迟引出(lonDelayedExtraction, DE)技术应用于MALDI-MS中,不但提高了MALDI-MS的分辨率,而且也开创了质谱应用于DNA研究领域的新局面。国内邓慧敏等也应用DE-MALDI-MS法测定了混合碱基DNA,获得了高分辨率的DNA质谱图。
质谱与临床医学。除了应用于蛋白质和核酸研究以外,质谱还以其灵敏度和高分辨率在临床医学检直中得到了广泛的应用,如对药物代谢产物的动态分析,癌细胞蛋白质的鉴定,同位素标记物的检测等。其中用同位素14C标记的14C-尿素呼吸试验和15N标记的15N-排泄试验已成为临床检测胃幽门螺杆菌(HP)的有效手段。
随着生物工程技术的发展,大量的生物工程产品不断出现,传统的测定分子量及纯度的方法已不能担当此重任,现在人们把MALDI-TOF-MS应用于此领域,得到了很好的效果。蔡耘等用上述技术对重组的人表皮生长因子(hEGF)白细胞介素-3(IL-3)、肿瘤坏死因子(TNF)粒细胞\巨噬细胞集落刺激因子(GM-CSF)、粒细胞集落刺激因子(G—CSF)碱性成纤维生长因子(bFGF)等六种基因工程产品进行了测定,获得了准确的分子量信息及纯度信息,这为基因工程产品的检测研究开辟了一条新途径。
ESI和MALDI质谱技术的出现为寡核苷酸及其类似物的结构和序列分析提供了强有力的方法,它是将被测寡核苷酸样品先用外切酶从3’或5’端进行部分降解,在不同时间内分别取样进行质谱分析,获得寡核苷酸部分降解的分子离子峰信号,通过对相邻两个碎片分子质量进行比较,可以计算出被切割的核苷酸单体分子质量,将其与四个脱氧苷酸的标准分子量进行对照,就可以读出寡核苷酸的序列。由于MALDI技术分辨率的问题,使得其更适合于减基数较少的短链核酸的分析。
1.质谱分析的基本原理
用于分析的样品分子(或原子)在离子源中离化成具有不同质量的单电行分子离子和碎片离子,这些单电荷离子在加速电场中获得相同的动能并形成一束离子,进入由电场和磁场组成的分析器,离子束中速度较慢的离子通过电场后编转大,速度快的偏转小;在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小;当两个场的偏转作用彼此补偿时,它们的轨道便相交于一点。与此同时,在磁场中还能发生质量的分离,这样就使具有同一质荷比而速度不同的离子聚焦在同一点上,不同质荷比的离子聚焦在不同的点上,其焦面接近于平面,在此处用检测系统进行检测即可得到不同质荷比的谱线,即质谱。通过质谱分析,我们可以获得分析样品的分子量、分子式、分子中同位素构成和分子结构等多方面的信息。
蛋白质组研究蛋白质组是指一个基因组、一个细胞或组织所表达的全部蛋白质成分。蛋白质组的研究是从整体水平上研究细胞或有机体内蛋白质的组成及其活动规律,包括细胞内所有蛋白质的分离、蛋白质表达模式的识别、蛋白质的鉴定、蛋白质翻译后修饰的分析及蛋白质组数据库的构建。质谱技术作为蛋白质组研究的三大支撑技术之一,除了用于多肽、蛋白质的质量测定外,还广泛地应用于肽指纹图谱测定以及氨基酸序列恻定等。
采用肽指纹谱的方法已对酵母、大肠杆菌、人心肌等多种蛋白质组进行了研究。对大肠杆菌经PVDF膜转印的蛋白质的研究表明,三个肽片即可达到对蛋白质的正确识别。而采用原位酶解的方法对酵母蛋白质组研究的结果显示,约90%的蛋白质被识别,其中三十多种新蛋白质被发现,而这些蛋白质是酵母基因组研究中未能识别的开放阅读框架。研究显示,肽指纹谱的方法比氨基酸组成分析更为可靠,这是因为MALDI测定肽质量的准确度为99.9%,而氨基酸组成分析的准确度仅为90%。另外MALDI可以耐受少量杂质的存在,对于纯度不是很高的样品也能得到理想的结果。
MALDI产生的离子常用飞行时间(Time-of-Flight,TOF)检测器来检测,理论上讲,只要飞行管的长度足够,TOF检测器可检测分子的质量数是没有上限的,因此MALDI-TOF质谱很适合对蛋白质、多肽、核酸和多糖等生物大分子的研究。
3.快原子轰击质谱技术
快原子轰击质谱技术是一种软电离技术,是用快速惰性原子射击存在于底物中的样品,使样品离子溅出进入分析器,这种软电离技术适于极性强、热不稳定的化合物的分析,特加适用于多肽和蛋白质等的分析研究。
相关文档
最新文档