页岩气开发的原理与工艺

合集下载

页岩气资源勘探开发方案(一)

页岩气资源勘探开发方案(一)

页岩气资源勘探开发方案一、实施背景页岩气是一种新型能源,具有丰富的资源量和广泛的开发前景。

随着我国经济的快速发展和人民生活水平的提高,对能源的需求也越来越大。

而传统能源的开采和利用已经面临着诸多的挑战,因此,发展新能源成为了当务之急。

而页岩气资源的勘探和开发正是产业结构改革的重要方向之一。

本文将从产业结构改革的角度出发,提出一种页岩气资源勘探开发方案,以期推动我国产业结构的转型升级。

二、工作原理页岩气的勘探和开发是一个复杂的过程,需要经过多个环节的实施。

具体的工作原理如下:1.地质勘探:通过对地质构造、地质构造、岩性、地层厚度、地下水、地温、地应力等因素的综合分析,确定页岩气的分布区域和储量。

2.钻探:通过钻探工作,获取地下岩石样本和地质数据,以确定页岩气的储层特征和储量。

3.水平井钻探:水平井钻探是页岩气勘探和开发的重要手段,通过水平井钻探,可以增加储层的接触面积,提高产能。

4.压裂:压裂是页岩气开发的关键技术之一,通过压裂作业,可以破碎储层岩石,增加页岩气的渗透性和产能。

5.生产:通过生产作业,将页岩气从地下输送到地面,以供应市场。

三、实施计划步骤1.确定勘探区域:通过地质勘探,确定页岩气的分布区域和储量。

2.制定勘探计划:根据勘探区域的特点,制定勘探计划,包括钻探方案、水平井钻探方案、压裂方案等。

3.实施勘探作业:按照勘探计划,实施勘探作业,获取地下岩石样本和地质数据。

4.分析数据:通过对勘探数据的分析,确定页岩气的储层特征和储量。

5.制定开发计划:根据勘探结果,制定开发计划,包括压裂方案、生产方案等。

6.实施开发作业:按照开发计划,实施开发作业,将页岩气从地下输送到地面,以供应市场。

四、适用范围本方案适用于我国各地的页岩气资源勘探和开发。

五、创新要点本方案的创新点主要体现在以下几个方面:1.采用先进的勘探技术,提高勘探效率和勘探精度。

2.采用水平井钻探技术,提高储层接触面积,增加产能。

3.采用压裂技术,提高储层渗透性和产能。

页岩气及其勘探开发

页岩气及其勘探开发

中国页岩气产业发展现状
资源丰富
中国拥有全球最大的页岩 气资源潜力,主要分布在 四川盆地、塔里木盆地等 地区。
技术进步
中国在页岩气勘探开发方 面取得重要技术突破,自 主研发的压裂技术和水平 钻井技术取得广泛应用。
政策支持
政府出台了一系列支持页 岩气产业发展的政策,鼓 励企业加大勘探开发力度, 推动产业快速发展。
工作原理
通过向页岩层注入大量高 压水,使页岩层产生裂缝, 增加天然气的渗透性,从 而使其更容易被开采。
应用范围
广泛应用于页岩气田的勘 探和开发,是实现页岩气 商业化开发的关键技术之 一。
多段压裂技术
定义
多段压裂技术是一种将多个压裂段组合在一起进行压裂的方法,以 提高压裂效率和产量。
工作原理
将页岩层分割成多个小段,对每个小段进行单独的压裂处理,使整 个页岩层形成复杂的裂缝网络,提高天然气的渗透性和产量。
美国页岩气田
以得克萨斯州和俄亥俄州为主的美国页岩气田,拥有世界领先的勘探开发技术。 地球物理勘探和钻井勘探在该地区的应用已经非常成熟,为美国成为全球最大 的页岩气生产国奠定了础。
03 页岩气开发技术
水力压裂技术
01
02
03
定义
水力压裂技术是一种利用 高压水将页岩层压裂,使 页岩中的天然气能够释放 出来并被收集的技术。
页岩气产业发展前景与挑战
1 2
前景广阔
随着全球能源需求持续增长,页岩气作为一种清 洁、高效的能源资源,其市场需求将进一步扩大。
技术挑战
页岩气开采技术难度较大,需要不断改进和创新 技术,以提高开采效率和降低成本。
3
环境压力
页岩气开采过程中可能对环境造成一定影响,如 水资源消耗、地震等,需要在环境保护和产业发 展之间寻求平衡。

页岩气勘探技术与进展

页岩气勘探技术与进展

页岩气勘探技术与进展一.页岩气简介页岩气是从页岩层中开采出来的天然气,主体位于暗色泥页岩或高碳泥页岩中,页岩气是主体上以吸附或游离状态存在于泥岩、高碳泥岩、页岩及粉砂质岩类夹层中的天然气,它可以生成于有机成因的各种阶段天然气主体上以游离相态(大约50%)存在于裂缝、孔隙及其它储集空间,以吸附状态(大约50%)存在于干酪根、粘土颗粒及孔隙表面,极少量以溶解状态储存于干酪根、沥青质及石油中天然气也存在于夹层状的粉砂岩、粉砂质泥岩、泥质粉砂岩、甚至砂岩地层中为天然气生成之后,在源岩层内的就近聚集表现为典型的原地成藏模式,与油页岩、油砂、地沥青等差别较大。

与常规储层气藏不同,页岩既是天然气生成的源岩,也是聚集和保存天然气的储层和盖层。

因此,有机质含量高的黑色页岩、高碳泥岩等常是最好的页岩气发育条件。

页岩气发育具有广泛的地质意义,存在于几乎所有的盆地中,只是由于埋藏深度、含气饱和度等差别较大分别具有不同的工业价值。

中国传统意义上的泥页岩裂隙气、泥页岩油气藏、泥岩裂缝油气藏、裂缝性油气藏等大致与此相当,但其中没有考虑吸附作用机理也不考虑其中天然气的原生属性,并在主体上理解为聚集于泥页岩裂缝中的游离相油气。

因此属于不完整意义上的页岩气。

因此,中国的泥页岩裂缝性油气藏概念与美国现今的页岩气内涵并不完全相同,分别在烃类的物质内容、储存相态、来源特点及成分组成等方面存在较大差异。

中国主要盆地和地区页岩气资源量约为15万亿-30万亿立方米,与美国28.3万亿立方米大致相当,经济价值巨大。

另一方面,生产周期长也是页岩气的显著特点。

页岩气田开采寿命一般可达30~50年,甚至更长。

美国联邦地质调查局最新数据显示,美国沃思堡盆地Barnett页岩气田开采寿命可达80~100年。

开采寿命长,就意味着可开发利用的价值大,这也决定了它的发展潜力。

分布北美克拉通盆地、前陆盆地侏罗系、泥盆系-密西西比系富集多种成因、多种成熟度页岩气资源。

非常规油气勘探技术原理与应用

非常规油气勘探技术原理与应用

非常规油气勘探技术原理与应用作为人类社会的主要能源来源,油气资源的勘探和开发一直是各国关注的重点。

然而,随着传统油气资源逐渐枯竭,非常规油气勘探技术逐渐成为开发出路。

本文将着重探讨非常规油气勘探技术的原理和应用。

一、页岩气勘探技术页岩气是一种通过水平井和压裂技术来开采的非常规油气资源。

页岩是一种由泥质、石英、长石和云母等矿物质组成的沉积岩石,内含有丰富的天然气。

水平井是沿着地层方向钻探出去的,与垂直井相比更能够在水平方向上提高油气流量。

同时,页岩气是储存在页岩中的,只有通过压裂技术才能开采。

压裂通常是通过使用高压液体将岩石中的裂缝扩大,同时在其中注入高压液体,使天然气流到水平的井口。

二、煤层气勘探技术煤层气是一种在煤层中储存的燃气资源。

煤层气勘探技术是通过钻探井,将井进入煤层中并注入水压,使煤层产生开裂,便于天然气从煤层中释放出来。

在煤层气勘探过程中,通常使用井下裂缝治理技术来增加产量。

这种技术通过掌握储层的物理和化学特性来选择和使用适当的注入物质,使得注入物质可以渗透到煤层中,从而改良煤层渗透性和产量。

三、致密油气勘探技术致密油气是一种难以开采的油气资源,其开采技术主要包括水平钻井和压裂技术。

由于过于致密,致密油气储藏层不具备多孔性和渗透性,因此需要通过高水平钻探和压裂技术来打开储层,使得油气顺利流出。

四、深水油气勘探技术深水油气勘探技术是一种通过钻井在深海上进行,从深海中开采油气资源的技术。

这种技术通常使用半潜式钻井平台,钻出深度超过一千米的井,从而获得深水油气储藏。

深水油气勘探存在的挑战主要来自于技术和成本问题。

对于技术问题,钻井的深度和压力都要比陆地更加复杂,因此需要使用先进的技术和装备。

而对于成本问题,则主要来自于深海环境下的作业复杂度,以及维护钻井平台的高昂成本。

总之,随着非常规油气资源逐渐成为能源勘探和开发的主流,各种非常规油气勘探技术也在逐渐发展和完善。

这些技术的成熟和应用,将极大地推动油气储藏资源的开发和利用,为人类社会的发展和进步带来更持久、更丰富的能源保障。

页岩气的开发原理

页岩气的开发原理

页岩气的开发原理页岩气是一种以页岩(即含有丰富有机质的沉积岩)为储集岩层的天然气资源。

开发页岩气的原理主要包括勘探与评价、井筒设计与压裂、气井生产以及田间开发等环节。

首先是勘探与评价阶段。

页岩气勘探主要通过地质、物理、化学等多种研究方法来评价储层的有利物性和有机质含量。

地质勘探方法主要包括地震勘探、钻井勘探和地质分析。

地震勘探通过记录地震波在地下岩石中的传播速度和反射特征,推断储层性质和分布。

钻井勘探则通过钻取岩心样品和记录钻井岩石属性及压力等参数,来确定岩石的组成和性质。

地质分析则是在上述资料基础上,对勘探区域的地质条件和含有机质页岩的分布进行综合分析和评价。

接下来是井筒设计与压裂阶段。

在页岩气的开发中,由于储层岩石的低渗透性和不透水性,需要通过井筒设计与压裂技术来提高天然气的采集效果。

井筒设计涉及到井身结构、井底位置和井眼直径等因素的确定。

而压裂技术则是指通过泵送高压液体(通常是水和砂)进入井内,使岩石发生裂缝和微裂缝,从而增加储层的渗透性和产能。

具体过程中,要根据岩石性质、孔隙度、裂缝特征等因素来确定适合的压裂液配方和压裂参数,以达到最佳的裂缝效果。

然后是气井生产阶段。

气井生产是指从地下抽取页岩气的过程,主要通过注水、抽采和加压降温等操作来提高气井的产能。

注水是为了提高储层的渗透性,使天然气能够更容易流出;抽采是通过抽取地下气体和与之相连的水来减少井中储层的压力,从而增加气井的产能;而加压降温则是为了控制井口的温度和压力,以保证气井的安全运行。

此外,还可以通过人工举升、引压和改造井眼等技术手段来进一步提高气井的产能。

最后是田间开发阶段。

一旦证实页岩气可开发,就需要进行田间开发来实现商业化生产。

田间开发主要包括建设抽采设施、建设管网、处理废水和气体、进行环境保护等方面。

建设抽采设施的主要任务是建造生产井和相应的设施,以实现天然气的生产和输送。

建设管网则是为了将生产的天然气运输到市场,同时建设相关的处理设施和环境保护设施,以保护环境。

页岩气

页岩气

1.吸附机理
页岩气赋存机理
4、裂缝、孔隙: 裂缝、孔隙会使 孔隙度增高,增 大页岩中颗粒的 比表面积。 5、压力:从吸 附等温线上可以 看出,岩石中的 吸附气含量随压 力的增加而增大。
总甲烷含量、吸附甲烷含量与压力的关系
2.游离机理
页岩气赋存机理
游离状态的页岩气存在于页岩的孔隙或裂隙中,气体可以自由 流动,其数量的多少决定于页岩内自由的空间(当气体分子满足 了吸附后,多余的气体分子一部分就以游离状态进入岩石孔隙和 裂隙中)。
(二)页岩气赋存机理
页岩气是典型的自生自储模式,因而无运移或极短距离运移, 就导致了其就近赋存的特点。页岩气主体上表现为吸附(干酪 根和粘土颗粒表面)或游离(天然裂缝和粒间孔隙)状态,甚 至在干酪根和沥青质中以溶解状态存在。
页岩气赋存机理
1、吸附机理 2、游离机理 3、溶解机理 4、综合机理
页岩气是由烃源岩连续生成 的生物化学成因气、热成因 气或两者的混合,在烃源岩 系统( 页岩系统:页岩及页岩中
游离或溶解方式赋存的天然 气。(张金川教授)
夹层状的粉砂岩、粉砂质泥岩、泥 质粉砂岩、甚至砂岩 )中以吸附、
储集页岩气的泥页岩
Page 3
2.页岩气的分布
据2005 年RHS的 统计,全球 页岩气资源 量为456 万亿立方米, 主要分布在 北美(最 多)、亚洲、 欧洲和非洲 等地。
浅谈页岩气
主讲人:
主要内容
一、页岩气的概述
1、页岩气的定义 2、页岩气的分布
二、页岩气的成藏机理
1、页岩气生成机理 2、页岩气赋存机理 3、页岩气运聚机理 4、页岩气产出机理
三、页岩气的勘探和开发
1、页岩气的勘探 2、页岩气的开发

页岩气开发环保技术系列-二氧化碳干法加砂压裂技术

页岩气开发环保技术系列-二氧化碳干法加砂压裂技术
8. 原材料来源于工厂尾气,可重复回收利用,是一项节水、节能、绿色、可循 环增产改造技术。
CO2压裂裂缝尺寸模拟
CO2注入后的岩样裂缝透视图
7
7
02 技术原理及特点
Technical Principles and Characteristics
通过多年的持续推进,突破2项关键技术(CO2增粘剂开发和密闭混砂装置研
31℃
9
02 技术原理及特点
Technical Principles and Characteristics
采用数值模拟方法,对CO2压裂的裂缝特征进行了分析,模拟结果显示:与 水、滑溜水压裂液相比,CO2压裂液会产生更长但较窄的裂缝。
室内物模实验结果显示,与常规压裂相比,CO2压裂的人工裂缝网络发达, 形态更加复杂。
准化的施工步骤,用于指导现场施工作业;对不同类型的井层,提出了施工参
数设计建议。
(1)标准地面流程
(2)标准施工步骤 第一步、将液态CO2储罐运至 井场 第二步、设备摆放及联接 第三步、氮气泵车试压 第四步、冷却地面管线及压裂 设备 第五步、压裂施工 第六步、关井 第七步、放喷
12
02 技术原理及特点
支撑剂速冷技术
氮气增压技术

压裂装备
储、运、泵、控系列装备

标准规范
工艺、产品、装置系列标准
8
02 技术原理及特点
Technical Principles and s
1、实验研究了压裂中CO2的相态特征及变化
通过下入井下压力计的方式,监测了压裂施工过程中的井下压力、温度变 化情况,监测结果显示: p井筒中的CO2前期为超临界态,中后期为液态。以2.0-4.0m3/min的排量注入液 态CO2计140m3后,井底温度由98 ℃降低至31℃,井底CO2的相态由超临界态变为 液态。 p地层中的CO2以普遍为超临界态。关井后井底温度在10min内迅速由20 ℃上升 至31℃以上 。

页岩气开采原理

页岩气开采原理

页岩气开采原理
页岩气是一种非常重要的天然气资源,它存在于页岩岩石中,开采难度大,但是储量丰富。

页岩气开采的原理主要包括地质勘探、水平钻井、压裂技术和天然气采收等环节。

首先,地质勘探是页岩气开采的第一步。

地质勘探通过对地下岩层的勘探和分析,确定页岩气的分布、储量和开采条件。

这一步骤的准确性和全面性对后续的开采工作至关重要,只有通过科学的勘探手段,才能找到潜在的页岩气储层。

其次,水平钻井是页岩气开采的关键技术之一。

由于页岩气储层通常位于地下几千米深处,传统的垂直钻井技术已经无法满足开采需求。

水平钻井技术可以在地下岩层中钻出水平井眼,从而有效地提高了页岩气的开采效率。

接下来,压裂技术是页岩气开采的另一个关键环节。

由于页岩岩石的渗透性较差,天然气难以从岩层中释放出来。

压裂技术通过向岩层注入高压液体,使岩石发生裂缝,从而增加了天然气的释放量和开采效率。

最后,天然气采收是页岩气开采的最终环节。

通过管道输送和加工处理,将开采出来的天然气运送到市场上,供应给广大用户。

天然气采收环节需要高效的输送和处理设备,以确保天然气的质量和供应稳定。

综上所述,页岩气开采的原理包括地质勘探、水平钻井、压裂技术和天然气采收等环节。

这些环节相互配合,共同构成了页岩气开采的整个过程。

随着技术的不断进步和完善,页岩气开采将会成为未来能源领域的重要支柱,为人类社会的发展做出重要贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

页岩气在哪里?
• 孔隙中 • 有机质中
@2011 HALLIBURTON ALL RIGHTS RESERVED
6
产量下降趋势
75 year life? 50% decline in two weeks
@2011 HALLIBURTON ALL RIGHTS RESERVED
7
短期产量与长期产量的线性关系
6 to 19 10,000 4000 80 6,500 to 8,700 2.5 FR-water Linear gel Crosslink 100-mesh 40/70 Sand 30/50 Sand
6 to 12 17,000 3500 70 to 90 5,000 to 13,000 1
5 to 37 1,800 1,500 15 to 20 2,800 to 8,000 2.0 to 2.5
SRV (10 ft3)
6
影响产量的因素:水平井长度
@2011 HALLIBURTON ALL RIGHTS RESERVED
15
水平井逐年增多
@2011 HALLIBURTON ALL RIGHTS RESERVED
16
影响产量的因素:水平井走向
@2011 HALLIBURTON ALL RIGHTS RESERVED
碳酸盐
Energy Information Administration, Office of Oil and Gas, Reserves and Production Division, November 2006
@2011 HALLIBURTON ALL RIGHTS RESERVED
石英
粘土
4
2000
SRV和产量的关系
1000
SPE 119890
0 Northing (ft)
SRV vs. 6-month Average All Wells
4000 3500
-1000
-2000
SRV= Stimulated Area x Net Pay
-3000
6 -M o n th A v e ra g e (M C F D )
页岩气储藏的认知
常规气
密封 储藏
砂岩 石灰岩 和 白云岩 岩溶 和 裂缝 达西
103 100 10 1 .1 .01
//
非常规气
较弱 密封 过压密封
毛细作用 顶部密封
致密气砂岩 (粉砂岩)
含气页岩
超密封~=零渗透率
渗透过10米页岩气藏所需时间 300年 3000年 30万年
毫达西
10-3 10-4
Barnett Shale Completion Roadmap
90 700
1500 10000 1000
80
5000 500
70
排量
600
0 1999 2000 2001 2002 2003 Year 2004 2005 2006 2007 2008
0
60
500
Avg. BPM
40
300

Barnett Marcellus
Haynesville
Barnett Marcellus Haynesville
@2011 HALLIBURTON ALL RIGHTS RESERVED
12
Barnett页岩的复杂裂缝系统
1500 1000 500
2001 Barnett Shale Vertical (SPE 90051) Observation Well Multi-directional networks Interaction with natural fracs One mile long 1,200 ft wide Killed offset wells
17
影响产量的因素:作业体积
Gallons per foot gross VS 12 month GAS CUM
500000
400000
300000
200000
100000
0 1800 2000 2200 2400 2600 2800
gal/ft gross
@2011 HALLIBURTON ALL RIGHTS RESERVED
页岩气开发的原理与工艺
王强 哈里伯顿中国
提纲 北美页岩气发展概述 页岩气储层特点介绍 页岩开发工艺简述 压裂完井 环境保护
@2011 HALLIBURTON ALL RIGHTS RESERVED
2
北美页岩分布
@2011 HALLIBURTON ALL RIGHTS RESERVED
3000 2500 2000 1500 1000 500 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-4000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000
Easting (ft)
y = 0.5569x + 356.11 2 R = 0.5486

21


案例:Barnett Shale
1970 – 5 口井 1981 – 1 口井 (CO2 压裂) 1984 – 11 口井 (交联液,3ppg 砂 , N2) 1985 – 32 口井 (XL Gel) 1988 – 13 口井 (Denton 郡) 1991 - 第一口水平井 1993 – 42 口井 1995 – 85 口井 (将交联液减到20#,2口水平井) 1997 – 83 口井 (将交联液减到12.5#) 1999 – 211 口井 (包括上 Barnett) 2000 – 375 口井 (测试井密度) 2001 – 717 口井 (200 口二次压裂) 2002 - 941 口井 2003 – 754 口井 2004 - 150 口水平井 2005 - 超过 600口水平井 2006 – 1000口水平井 2007- 1500口水平井 2008 – 超过 5500 口水平井,开始在一个井场上打多口井 截止2009年,共有超过13000 口井 目前的课题:二次压裂,同步压裂,回流水再利用
From Barnett Shale Data
18
影响产量的因素:支撑剂用量
SPE 133874
Production by foot, proppant per foot (Miller et al. 2008)
19
@2011 HALLIBURTON ALL RIGHTS RESERVED
在北美有页岩气的地方就有哈里伯顿
@2011 HALLIBURTON ALL RIGHTS RESERVED
20
北美各种页岩压裂总结
SPE 133874
TVD, ft Horizontal length, ft. Number of stages bbl/Stage sk/Stage Rate, bbl/min Avg. psi Avg. lbm/gal Fluid type Barnett
特点:水平最大主应力和最 小主应力差别小,容易形成 复杂网络裂缝系统
趋势
Barnett Shale Completion Roadmap
35000 4500
4000 30000 3500 25000 3000 20000
每段砂量
sks/stage
bbl/stage
2500
15000
2000
每段液量
微达西
10-5 10-6 10-7
纳达西
10-8 10-9 10-10 10-11
渗透率(达西) (1 cP = 9.8692 x 10-9 cm2
5
@2011 HALLIBURTON ALL RIGHTS RESERVED
-- actually cm3 (atm2 – atm1) / cm sec )
7,450 to 11,010 4,000 to 10,000
ord
8,500 to 14,000 3,000 to 5,000
4 to 6 17,100 3500 70 to 80 3,000 to 5,000 0.57
10 to 18 10,600 3500 70 10,500 to 14,000 2.5 FR-water Linear gel Crosslink 100-mesh 40/70 ISP 40/70 RCP 30/50 ISP
7,000 to 8,000 3,000 to 5,000
Haynesville
10,000 to 13,500 4,000 to 7,600
Marcellus
6,500 to 7,500 4,000 to 5,500
Woodford
7,000 to 13,000 3,000 to 5,000
Bakken
FR-water Linear gel 100-mesh 40/70 Sand 40/70 CRC
Hybrid Crosslink 100-mesh 20/40 Sand 40/70 Sand 20/40 Ceramic
Proppant type
30/50 Sand

@2011 HALLIBURTON ALL RIGHTS RESERVED
砂量在增加 液量在减少 排量先增加,进几年在减少 每段长度摇摆不定
25
30
每段长度
200
20 100 10
0 1999 2000 2001 2002 2003 year 2004 2005 2006 2007 2008
0
@2011 HALLIBURTON ALL RIGHTS RESERVED
相关文档
最新文档