3.3有理数的乘方(2)课件
合集下载
有理数的乘方ppt课件

分数幂运算是指底数为分数的幂运 算,例如(1/2)的3次方等于1/8。分 数幂运算需要使用分数的性质进行 计算。
根式与乘方的关系
根式与乘方的转换
根式可以看作是幂运算的另一种 形式,它表示某个数被开方多次 的结果。因此,根式与乘方之间 存在一定的转换关系。
根式与乘方的性质
根式具有相同的性质,如根式的 加减法、乘除法等都与乘方具有 相同的性质。
负整数乘方的数学表示为:a^-n,其 中a是底数,n是指数。
零乘方的定义
零乘方是指将0与任何正整数相 乘。例如,0的4次方是0 × 0 × 0 × 0,表示4个0相乘。
零乘方的数学表示为:0^n, 其中n是指数。
根据乘方的定义,我们可以得 出以下结论
零乘方的定义
01
02
03
04
正整数的任何正整数次幂都是 正数;
负整数的偶数次幂是正数,奇 数次幂是负数;
任何非0数的0次幂都是1;
0的任何正整数次幂都是0。
03
有理数乘方的性质
正整数乘方的性质
正整数乘方始终为正 数
正整数的n次方的值 ,在n为正整数时, 可以表示为无限个更 小的正整数的和
正整数的n次方,其 值随着指数n的增大 而增大
ห้องสมุดไป่ตู้
负整数乘方的性质
负整数乘方的值始终为负数
负整数的n次方,其值随着指数n的增大而减小
负整数的n次方的值,在n为正整数时,可以表示为无限个更小的正整数 的积
零乘方的性质
零的任何次方都等于零 任何非零数的0次方都等于1
04
有理数乘方的运算规则
正整数乘方的运算规则
正整数乘方运算结果为正数 正整数乘方运算结果为偶数
例如:2的3次方=8 例如:2的偶次方,4,6,8,10等
根式与乘方的关系
根式与乘方的转换
根式可以看作是幂运算的另一种 形式,它表示某个数被开方多次 的结果。因此,根式与乘方之间 存在一定的转换关系。
根式与乘方的性质
根式具有相同的性质,如根式的 加减法、乘除法等都与乘方具有 相同的性质。
负整数乘方的数学表示为:a^-n,其 中a是底数,n是指数。
零乘方的定义
零乘方是指将0与任何正整数相 乘。例如,0的4次方是0 × 0 × 0 × 0,表示4个0相乘。
零乘方的数学表示为:0^n, 其中n是指数。
根据乘方的定义,我们可以得 出以下结论
零乘方的定义
01
02
03
04
正整数的任何正整数次幂都是 正数;
负整数的偶数次幂是正数,奇 数次幂是负数;
任何非0数的0次幂都是1;
0的任何正整数次幂都是0。
03
有理数乘方的性质
正整数乘方的性质
正整数乘方始终为正 数
正整数的n次方的值 ,在n为正整数时, 可以表示为无限个更 小的正整数的和
正整数的n次方,其 值随着指数n的增大 而增大
ห้องสมุดไป่ตู้
负整数乘方的性质
负整数乘方的值始终为负数
负整数的n次方,其值随着指数n的增大而减小
负整数的n次方的值,在n为正整数时,可以表示为无限个更小的正整数 的积
零乘方的性质
零的任何次方都等于零 任何非零数的0次方都等于1
04
有理数乘方的运算规则
正整数乘方的运算规则
正整数乘方运算结果为正数 正整数乘方运算结果为偶数
例如:2的3次方=8 例如:2的偶次方,4,6,8,10等
北师大版七年级数学上册《有理数的乘方》第2课时示范公开课教学课件

第3次
2根
4根
8根
第n次
2n根
≈106
21=2
22=4
22=8
…
210=1024
24=16
≈103
220
相当于100万呢.
那么221 ≈200万
答:第7次后剩下的木棒有 米.
…
1. 计算.
(1) (2) (3)-53 (4)
(3)-53=-125
2. 探究.
22 -21=2×211×21=2123 -22=2×221×22=2( )24 -23=2×231×23=2( )……
负数的奇次幂是负数,负数的偶次幂是正数.
正数的任何次幂都是正数.
当指数不断增加时,底数为2的幂的增长速度相当快.
教科书第62页习题2.14第1、3题
解:(1)102=10×10=100
103=10×10×10=1000
104=10×10×10×10=10000
(2)(-10)2=(-10)×(-10)=100
(-10)3=(-10)×(-10)×(-10)=-1000
计算:
观察一下,底数为10的幂有什么规律?
-10的奇次幂是负数,-10的偶次幂是正数.
对折2次
22层
对折1次
21层
有一张厚度为0.1 mm的纸,将它对折1次后,厚度为2×0.1 mm.
(2) 假设对折20次,厚度为多少毫米?
对折2,写出第4个等式;(2) 请你找规律,写出第n个等式.
2
3
25-24=2×24-1×24=24
2n+1-2n=2×2n-1×2n=2n
(1) ①的面积是____;②的面积是____; ③的面积是____;④的面积是____; ⑤的面积是____;⑥的面积是____;
2根
4根
8根
第n次
2n根
≈106
21=2
22=4
22=8
…
210=1024
24=16
≈103
220
相当于100万呢.
那么221 ≈200万
答:第7次后剩下的木棒有 米.
…
1. 计算.
(1) (2) (3)-53 (4)
(3)-53=-125
2. 探究.
22 -21=2×211×21=2123 -22=2×221×22=2( )24 -23=2×231×23=2( )……
负数的奇次幂是负数,负数的偶次幂是正数.
正数的任何次幂都是正数.
当指数不断增加时,底数为2的幂的增长速度相当快.
教科书第62页习题2.14第1、3题
解:(1)102=10×10=100
103=10×10×10=1000
104=10×10×10×10=10000
(2)(-10)2=(-10)×(-10)=100
(-10)3=(-10)×(-10)×(-10)=-1000
计算:
观察一下,底数为10的幂有什么规律?
-10的奇次幂是负数,-10的偶次幂是正数.
对折2次
22层
对折1次
21层
有一张厚度为0.1 mm的纸,将它对折1次后,厚度为2×0.1 mm.
(2) 假设对折20次,厚度为多少毫米?
对折2,写出第4个等式;(2) 请你找规律,写出第n个等式.
2
3
25-24=2×24-1×24=24
2n+1-2n=2×2n-1×2n=2n
(1) ①的面积是____;②的面积是____; ③的面积是____;④的面积是____; ⑤的面积是____;⑥的面积是____;
有理数的乘方ppt课件

=
= 个
问 题:达依尔到达要求的是多少麦粒呢?
第1格
第2格
第3格
× =
第4格
× × =
... ...
××...×
=
第64格
个
一共需要:++ + +. . . +
= ,,,,,,
尝试动0次后纸张的厚度,看看
谁是方法更便捷 .(4分钟)
相同的因数
活 动:把一张纸进行对折 ,再对折...思考并回答:
都是乘法运算
=��
( 1 ) 对折1次有几层?
( 2 ) 对折2次有几层?
× =
( 3 ) 对折3次有几层?
× × =
有理数的乘方
理解有理数乘方的意义和表示方法;
能够利用乘方意义进行有理数的乘方运算;
通过几个探索规律的问题情景,进一步理解
乘方的意义和运算,感受底数大于1时,乘方
运算的结果增长得很快 .
世界第一高峰——珠穆朗玛峰
活 动 : 把一张纸厚度为 0.1毫米的纸,连续对折 27次
的厚度能超过珠穆朗玛峰的高度。你相信吗?
.
;
;
2.在
是( B )
中,最大的数
3.对任意实数a,下列各式不一定成立的是( B )
“乘”
“幂”
××...×
=
个
有理数
的乘方
意 义:
求n个相同因数a相乘的运算
运算方法:
变“乘”为“幂”
数学思想:
1. 类比、归纳思想
2. 符号感、抽象思维
感谢聆听
年内所产的小麦的总和!
当堂练习
1.填空:
(1)-(-3)2= -9
七年级数学《有理数的乘方(2)》课件

计 算:
(1) 1 100 5 24 4
( 2 ) 23 4 ( 2 )2 3
9
3
( 3 )4 (2)3 5 (0.28) 4
• 【课外探究】 规定一种新的运算:a b a2 b2,
求 2 (3) 的值
课堂小结
通过这节课的学习,你有哪 些收获?
运算
加
减
乘
除 乘方
运算 结果
和
差
积商幂
口答完成下列各题,看谁答得又快又 准? 1、(-23)+(-12)=___3_5_____。
2、(-21)+12=___9______。 3、(-2009)+2009=__0________。
4、0+(-32)=___3_2___。
5、-4-7= __1_1_____。
6、8-(-9)=__1_7______。
7、(-27)×(-3)=__8_1______。
8、(-4)×( -5)×(-6)
=___1_2_0__。
9、12÷( 34)= 16 10、(-2)3=___8___。
11、-(-3)2=___9____。
12、 32
4
=__94______。
13、 (-2)3×3=___2_4____。
练习:
1、在 25 中底数是( 2
)
指数是( 5
)
读作( 2的5次方 )
在 (2)8 中底数是( -2 )
指数是( 8 ) 读作( -2的8次方)
2、计算:
(1) (1)10
(3) (5)3 (5) (1 1 )2
2
(2) 83
(4) 0.13
(6) ( 1 )4 2
有理数乘方第二课时ppt课件

解:列式得: 0.12201000 0.11048 15 07 0 10.8457160 ( 5米)
105335(层)
4、 取一张厚约为0.1毫米的长方形白纸, 将它对折30次之后,厚度为多少米?
能超过珠穆朗玛峰吗?(8848米)
解:对折30次后的厚度为
0.1230 0 .1 1 0 7 3 7 4 1 8 2 4
(1)第①行数按什么规律排列?
解:(1)第①行数是
2 ,(2 )2,(2 )3,(2 )4, .
例4 观察下面三行数:
-2,4,-8,16,-32,64,…;① 0, 6,-6,18,-30,66,…;② -1,2,-4, 8,-16,32,… ③
(2)第② ③行数与第①行数分别有什么关系? 解:(2)第②行数是第①行相应的数加2,即
=-8 +(-3)× 18 + 4.5
=-8 – 54 + 4.5
=-57.5
算算有几种运算,
并说明运算次序
(1)10 2(2)34
解:原式= 1 ×2+(-8) ÷4 =2+(-2)
=0
(5)3 3(1)4 2
1
解:原式= (-125)-3 × 16
125 3 16
11(11) 35 5 3 2 114 解:原式= 11(1) 34 - 2
5 6 11 5 25
( 1 ) 4 0 ( 4 ) 2 ( 3 3 2 ) 2
解:原式= 10000+[16-12 ×2] =10000-8 =9992
例4 观察下面三行数:
-2,4,-8,16,-32, 64…① 0, 6,-6,18,-30, 66…② -1,2,-4, 8,-16, 32…③
105335(层)
4、 取一张厚约为0.1毫米的长方形白纸, 将它对折30次之后,厚度为多少米?
能超过珠穆朗玛峰吗?(8848米)
解:对折30次后的厚度为
0.1230 0 .1 1 0 7 3 7 4 1 8 2 4
(1)第①行数按什么规律排列?
解:(1)第①行数是
2 ,(2 )2,(2 )3,(2 )4, .
例4 观察下面三行数:
-2,4,-8,16,-32,64,…;① 0, 6,-6,18,-30,66,…;② -1,2,-4, 8,-16,32,… ③
(2)第② ③行数与第①行数分别有什么关系? 解:(2)第②行数是第①行相应的数加2,即
=-8 +(-3)× 18 + 4.5
=-8 – 54 + 4.5
=-57.5
算算有几种运算,
并说明运算次序
(1)10 2(2)34
解:原式= 1 ×2+(-8) ÷4 =2+(-2)
=0
(5)3 3(1)4 2
1
解:原式= (-125)-3 × 16
125 3 16
11(11) 35 5 3 2 114 解:原式= 11(1) 34 - 2
5 6 11 5 25
( 1 ) 4 0 ( 4 ) 2 ( 3 3 2 ) 2
解:原式= 10000+[16-12 ×2] =10000-8 =9992
例4 观察下面三行数:
-2,4,-8,16,-32, 64…① 0, 6,-6,18,-30, 66…② -1,2,-4, 8,-16, 32…③
有理数的乘方通用课件

解决几何问题
有理数的乘方可以用于计算面积和体 积,例如计算圆的面积 $S = pi r^2$ 和球的体积 $V = frac{4}{3}pi r^3$ 。
在日常生活中的应用
01
02
03
金融计算
在金融领域,有理数的乘 方可以用于计算复利、折 旧和摊销等。
购物折扣
在购物时,我们经常遇到 折扣的计算,例如“买一 送一”实际上就是 $2^0 = 1$ 的应用。
感谢您的观看
THANKS
乘方的运算规则
乘方的运算顺序
先进行括号内的运算,然后进行 乘除运算,最后进行加减运算。
乘方的简化
在运算过程中,可以运用指数律 和运算法则简化表达式,例如 a^m*a^n=a^(m+n), (a/b)^n=a^n/b^n等。
乘方的实际应用
有理数的乘方在实际生活中有着 广泛的应用,例如计算面积、体 积、速度、功率等物理量,以及 在金融、统计学等领域中的应用
乘方的性质
乘方的基数性质
当底数a的绝对值小于1时,a^n 的符号与a相同;当底数a的绝对 值大于1时,a^n的符号与n的奇
偶性相同。
乘方的指数性质
当底数a的绝对值小于1时,a^n随 着n的增大而趋近于0;当底数a的 绝对值大于1时,a^n随着n的增大 而趋近于正无穷。
乘方的运算性质
乘方运算满足结合律、交换律和指 数律,即(a^m)^n=a^(m*n), a^m*a^n=a^(m+n), (ab)^n=a^n*b^n。
0的乘方
总结词
0的任何非零次方都等于0。
详细描述
任何非零数与0相乘都等于0,但0的0次方在数学中是未定义的。
04 有理数乘方的应用
《有理数的乘方》PPT课件

34 (3333) 81
3 2
32
4
4
解:
3 2
33
9
4 4 4 16
3 2 33 9
4
4
4
练习3 计算:
23
1 4
2
解: 23
2 2 2
8
解:
1
4
2
1 1 1 1 2 2 2 2
1 16
乘
有
类归 比纳
方 的 定
的理 运数 算乘
义
方
a 底数
n 指数 幂
例如: 24
1
5
3
1 6 4
练习1
- 24读作: -2的4次方 ,底数是 -2 指数是__4___
表示 4个-2相乘 .
1
5
的底数是
1
4 ,指数是
5
,读作___14_的__5_次__方_____
4
1
表示 5个 4 相乘 .
思考:34 与 43 有何不同?它们表示的意义一样吗?
练习2
把下列乘法式子写成乘方的形式:
方的结果叫做幂.
(相同因数)底数
an 指数(相同因数的个数) 幂
读作“a的n次方” 也可读作“a的n次幂”.
a 底数
n 指数 幂
1.指数n取正整数.(本学段)
2.底数a可以是正数、负数、零.
3.一个数可以看做这个数本身的1次方,例如5就是51 , 指数1通常省略不写.
4.乘方书写时要注意:
底数是负数或分数时,要用括号把底数括起来.
记作: (-2)5 读作: -2的5次方
333 3
10个
记作:310
读作:3的10次方
3 2
32
4
4
解:
3 2
33
9
4 4 4 16
3 2 33 9
4
4
4
练习3 计算:
23
1 4
2
解: 23
2 2 2
8
解:
1
4
2
1 1 1 1 2 2 2 2
1 16
乘
有
类归 比纳
方 的 定
的理 运数 算乘
义
方
a 底数
n 指数 幂
例如: 24
1
5
3
1 6 4
练习1
- 24读作: -2的4次方 ,底数是 -2 指数是__4___
表示 4个-2相乘 .
1
5
的底数是
1
4 ,指数是
5
,读作___14_的__5_次__方_____
4
1
表示 5个 4 相乘 .
思考:34 与 43 有何不同?它们表示的意义一样吗?
练习2
把下列乘法式子写成乘方的形式:
方的结果叫做幂.
(相同因数)底数
an 指数(相同因数的个数) 幂
读作“a的n次方” 也可读作“a的n次幂”.
a 底数
n 指数 幂
1.指数n取正整数.(本学段)
2.底数a可以是正数、负数、零.
3.一个数可以看做这个数本身的1次方,例如5就是51 , 指数1通常省略不写.
4.乘方书写时要注意:
底数是负数或分数时,要用括号把底数括起来.
记作: (-2)5 读作: -2的5次方
333 3
10个
记作:310
读作:3的10次方
人教版七年级数学上册《有理数的乘方(第2课时)》示范教学课件

解:(2)对比①③两行中位置对应的数,可以发现:第③行数是第①行相应的数的0.5倍,即-2×0.5,(-2)2×0.5,(-2)3×0.5,(-2)4×0.5,….
例3 观察下面三行数:-2,4,-8,16,-32,64,…;① 0,6,-6,18,-30,66,…;②-1,2,-4, 8,-16,32,….③(3)取每行数的第10个数,计算这三个数的和.
例1 计算:(1)2×(-3)3-4×(-3)+15;(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2).
有理数混合运算要先观察,再转化.进行有理数的混合运算时,要先观察算式中共含有几种运算,再将除法运算转化为乘法运算、减法运算转化为加法运算,最后按运算顺序计算,这体现了数学中的转化思想.
解:(2)对比①②两行中位置对应的数,可以发现:第②行数是第①行相应的数加2,即-2+2,(-2)2+2,(-2)3+2,(-2)4+2,…;
例3 观察下面三行数:-2,4,-8,16,-32,64,…;① 0,6,-6,18,-30,66,…;②-1,2,-4, 8,-16,32,….③(2)第②③行数与第①行数分别有什么关系?
(2)-an表示_______________________,底数是___,指数是___,读作“__________________”.
4.看因数,找底数,定指数要找底数和指数就要先去找“相同的因数”,相同的因数是哪个数,______就是哪个数;有几个相同的因数,______就是几.
n个-a相乘
-a
第一级运算
第三级运算
第二级运算
观察:
5+40÷
32×
乘方运算
乘、除运算
加、减运算
问题
-1.
运算顺序的规定是:
例3 观察下面三行数:-2,4,-8,16,-32,64,…;① 0,6,-6,18,-30,66,…;②-1,2,-4, 8,-16,32,….③(3)取每行数的第10个数,计算这三个数的和.
例1 计算:(1)2×(-3)3-4×(-3)+15;(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2).
有理数混合运算要先观察,再转化.进行有理数的混合运算时,要先观察算式中共含有几种运算,再将除法运算转化为乘法运算、减法运算转化为加法运算,最后按运算顺序计算,这体现了数学中的转化思想.
解:(2)对比①②两行中位置对应的数,可以发现:第②行数是第①行相应的数加2,即-2+2,(-2)2+2,(-2)3+2,(-2)4+2,…;
例3 观察下面三行数:-2,4,-8,16,-32,64,…;① 0,6,-6,18,-30,66,…;②-1,2,-4, 8,-16,32,….③(2)第②③行数与第①行数分别有什么关系?
(2)-an表示_______________________,底数是___,指数是___,读作“__________________”.
4.看因数,找底数,定指数要找底数和指数就要先去找“相同的因数”,相同的因数是哪个数,______就是哪个数;有几个相同的因数,______就是几.
n个-a相乘
-a
第一级运算
第三级运算
第二级运算
观察:
5+40÷
32×
乘方运算
乘、除运算
加、减运算
问题
-1.
运算顺序的规定是:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标教学网()-海量教学资源欢迎下载!
用科学记数法表 示一个数,你发现有 什么规律?
用科学记数法表示一个绝对 值大于10的数时,10的指 数比原数的整数位数少1.
新课标教学网()-海量教学资源欢迎下载!
精讲点拨
解:(1)10 000
=1×104 (3)-56 000 000 =-5.6×107
第3章
有理数的运算
(第二课时)
新课标教学网()-海量教学资源欢迎下载!
交流与发现
根据乘方的意义,填写下表:
你发现了什么规律?
新课标教学网()-海量教学资源欢迎下载!
例:300 000 000 与 149 000 000 000怎样用10 的乘方表示?
(2)800 000 =8×105 (4)-2 030 000 000 =-2.03×109
新课标教学网()-海量教学资源欢迎下载!
下列用科学记数法表示的数,原来是什 么数? (1)2.5×105(2)-5.37×108
解:(1) 2.5×10 =2.5×100000=250000 8 (2) -5.37×10 =-5.37×100000000=-537000000
5
新课标教学网()-海量教学资源欢迎下载!
准确数与近似数
2010年我国国内生产总值为397983亿元, 请用四舍五入法分别取这个数的近似数, 并用科学记数法表示出来。 (1)精确到十亿元;(2)精确到百亿元 (3)精确到千亿元;(4)精确到万亿元
新课标教学网()-海量教学资源欢迎下载!
练
习
解: (1)10 000 000
(2)-6 000
(3)8 500 000
(4)-39 600
解: (1)6.7×103 公顷;5×103 公顷 ;1.5×104 株;1.755×108 株. (2) 5.1×108 吨.
新课标教学网()-海量教学资源欢迎下载!
小
结
新课标教学网()-海量教学资源欢迎下载!
作
业
72页
习题3.3
4.5题
新课标教学网()-海量教学资源源欢迎下载!