电磁场与电磁波课后习题及答案--第四章习题解答

合集下载

电磁场与电磁波(第4版)第4章部分习题参考解答

电磁场与电磁波(第4版)第4章部分习题参考解答
G G G G G G − j(k x + k y + k z ) 故 E (r ) = E0 e − jk ⋅r = E0 e x y z
GG G G G G − j(k x + k y + k z ) ∇ 2 E (r ) = E0∇ 2 e − jk ⋅r = E0∇ 2 e x y z
G ⎛ ∂2 ∂2 ∂ 2 ⎞ − j(k x + k y + k z ) = E0 ⎜ 2 + 2 + 2 ⎟ e x y z ⎝ ∂x ∂y ∂z ⎠ G − j(k x + k y + k z ) G G 2 = (− k x2 − k y − k z2 ) E0 e x y z = − k 2 E (r ) G G G G 代入方程 ∇ 2 E (r ) + ω 2 με E (r ) = 0 ,得 G G − k 2 E + ω 2 με E = 0
G G ω ∂2 ω G (3) ∇ 2 E = ey E0∇ 2 cos(ωt + z ) = ey E0 2 cos(ωt + z ) ∂z c c
ω G ω = −ey ( ) 2 E0 cos(ωt + z ) c c
G ∂2 E G ∂2 ω ω G = e E cos(ωt + z ) = −eyω 2 E0 cos(ωt + z ) y 0 2 2 ∂t ∂t c c G G 1 ∂2 E ω 1 ⎡ G ω ⎤ G ω 2 ∇ E − 2 2 = −ey ( ) 2 E0 cos(ωt + z ) − 2 ⎢ −e yω 2 E0 cos(ωt + z ) ⎥ = 0 c ∂t c c c ⎣ c ⎦

《电磁场与电磁波》(第四版)课后习题解答(全)

《电磁场与电磁波》(第四版)课后习题解答(全)

第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++ 【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c +=即只要满足3b+8c=1就可以使向量错误!未找到引用源。

和向量错误!未找到引用源。

垂直。

(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=-可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3))()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a ) 所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223y z A x yze xy e =+而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y x e x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。

电磁场与电磁波第四章习题及参考答案

电磁场与电磁波第四章习题及参考答案

第四章 习题4-1、 电量为nC 500的点电荷,在磁场)(ˆ2.1T zB =中运动,经过点)5,4,3(速度为 s m y x/ˆ2000ˆ500+ 。

求电荷在该点所受的磁场力。

解:根据洛仑兹力公式B v q F⨯=N x y z y x 4491012ˆ103ˆ2.1ˆ)ˆ2000ˆ500(10500---⨯+⨯-=⨯+⨯⨯= N y x4103)ˆˆ4(-⨯-= 4-2、真空中边长为a 的正方形导线回路,电流为I ,求回路中心的磁场。

解:设垂直于纸面向下的方向为z 方向。

长为a 的线电流I 在平分线上距离为a/2的点上的磁感应强度为aIzB πμ2ˆ01= 因而,边长为a 的正方形导线回路在中心点上的磁感应强度为aIz B B πμ24ˆ401==题4-2图 题4-3图4-3、真空中边长为a 的正三角形导线回路,电流为I ,求回路中心的磁场.解:设垂直于纸面向下的方向为z 方向。

由例4-1知,长为a 的线电流I 在平分线上距离为b 的点上的磁感应强度为2201)2(ˆa b a bIz B +=πμ所以220)2(3ˆa b a bIz B +=πμ ,其中)6(2πtg a b =4-4、真空中导线绕成的回路形状如图所示,电流为I 。

求半圆中心处的磁场。

(c)题4-4 图解:设垂直于纸面向内的方向为z 方向。

由例4-2知,半径为a 的半圆中心处的磁场为aIz B 4ˆ01μ= (1)因为在载流长直导线的延长线上磁场为零,因此aIz B 4ˆ0μ= (2)由例4-1知,本题半无限长的载流长直导线在距离为a 处的磁场为aIz B πμ4ˆ02= 因此本题磁场为半圆环的磁场与两半无限长的直导线的磁场之和)2(4ˆ0+-=ππμaIz B (3)本题磁场为电流方向相反的两不同半径的半圆环的磁场之和,即)11(4ˆ0ba I zB -=μ 4-5、 在真空中将一个半径为a 的导线圆环沿直径对折,使这两半圆成一直角。

电磁场与电磁波课后习题及答案四章习题解答

电磁场与电磁波课后习题及答案四章习题解答

如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为,求槽内的电位函数。

解根据题意,电位满足的边界条件为①②③根据条件①和②,电位的通解应取为题图由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布两平行无限大导体平面,距离为,其间有一极薄的导体片由到。

上板和薄片保持电位,下板保持零电位,求板间电位的解。

设在薄片平面上,从到,电位线性变化,。

题图解应用叠加原理,设板间的电位为其中,为不存在薄片的平行无限大导体平面间(电压为)的电位,即;是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:①②③根据条件①和②,可设的通解为由条件③有两边同乘以,并从0到对积分,得到故得到求在上题的解中,除开一项外,其他所有项对电场总储能的贡献。

并按定出边缘电容。

解在导体板()上,相应于的电荷面密度则导体板上(沿方向单位长)相应的总电荷相应的电场储能为其边缘电容为如题图所示的导体槽,底面保持电位,其余两面电位为零,求槽内的电位的解。

解根据题意,电位满足的边界条件为①题图②③根据条件①和②,电位的通解应取为由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布为一长、宽、高分别为、、的长方体表面保持零电位,体积内填充密度为的电荷。

求体积内的电位。

解在体积内,电位满足泊松方程(1)长方体表面上,电位满足边界条件。

由此设电位的通解为代入泊松方程(1),可得由此可得或(2)由式(2),可得故如题图所示的一对无限大接地平行导体板,板间有一与轴平行的线电荷,其位置为。

求板间的电位函数。

解由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。

而在的分界面上,可利用函数将线电荷表示成电荷面密度。

电位的边界条件为题图①②③由条件①和②,可设电位函数的通解为由条件③,有(1)(2)由式(1),可得(3)将式(2)两边同乘以,并从到对积分,有(4)由式(3)和(4)解得故如题图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷。

工程电磁场与电磁波 丁君版 答案第四章习题答案

工程电磁场与电磁波 丁君版 答案第四章习题答案

工程电磁场与电磁波丁君版答案第四章习题答案第四章习题4-1解:选柱坐标系,在所求无源区内电位函数满足:02=?φφ只和r 相关0=???φ0=??z φ方程化为 0)(1=????rr r r φ21ln C r C +=φ为常数21,C C 由 006.0==φ时r 501.0-==φ时r得 88.27588.9721=-=C C88.275ln 88.97+-=r φr a rE ?188.97=-?=φ4—2:解:图一依据边界条件:?????====021R R R R U φφ0可得:???????--=-=00UR R R B U R R R R A 1211221 ∴()120212021R R U R R R R U R R ---=φ(2) ()R R a RR R U R R a R E ?1?212021?-=??-=-?=φφ (1) 如图一,依据题意可知:电位函数φ满足拉普拉斯方程。

接受球坐标系:2=?φ0=??θφ0=???φR 相关只于φ,方程化为: 0)(122=????R R R R φφ积分得:B RA +?=1φ(3) ()R R R aR R R U R E D ?12102001-?===εε内表 S S d D s Sρ=??内表S S D s ρ=内表∴)(12102R R R U R D s -==ερ内表4—3:解:选择直角坐标如图,由恒定电场的泊松方程可得:xy设两板间距离为d,代入边界条件?????====000U dz z φφ???????+=+==?ερερ22002021d d U d d U C C ∴)2()2(2002ερερφερερφd d U z E zdd U z +-=-?=++-=4—4:解:选择柱坐标系,依据恒定电磁场的拉普拉斯方程,(1) 02=?m φ,m φ只在?方向上有变化,所以:B A r m m+==???φ?φ:,01222积分得由 0=?时:0,0==B m 得φ∴?φA m = l m m a dld Hφφ-=-?=l d H d m?-=φ??-=?-=ππφ2020I l d H d m0,0,2=??=??-=?xy φφερφ方程可化为:,22ερφ-=??z2122:C z C z ++-=ερφ积分得B A I m m+=-==?φφπ?代入,2π2?=-A I π2I A -= ?πφ2Im -= (2) ??π?φφφa rI a d d r a dl d H m l m m21==-=-?=可见,利用拉普拉斯方程与安培环路定理求出来的结果一样。

电磁场与电磁波(第四版)课后答案__谢处方

电磁场与电磁波(第四版)课后答案__谢处方

电磁场 与电磁波(第四版) 课后答案第一章 习 题 解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的 分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。

解 (1)23A x y z +-===+-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由c o sAB θ=11238=A B A B ,得1c o s AB θ-=(135.5= (5)A 在B 上的分 量 B A =A c o s AB θ==A B B (6)⨯=A C 123502xyz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)4x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点 为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。

2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。

3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。

4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。

( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。

( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。

( √ )7、梯度的方向是等值面的切线方向。

(× )8、标量场梯度的旋度恒等于0。

( √ ) 9、习题1.12, 1.16。

第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。

2、在国际单位制中,电场强度的单位是V/m(伏特/米)。

3、静电系统在真空中的基本方程的积分形式是:V V sD d S d V Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。

4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。

5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。

6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。

7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。

8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题解答4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为U ,求槽内的电位函数。

解 根据题意,电位(,)x y ϕ满足的边界条件为 ① (0,)(,)0y a y ϕϕ== ② (,0)0x ϕ= ③0(,)x b U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sinh()sin()n n n y n xx y A a a ππϕ∞==∑由条件③,有01sinh()sin()n n n b n x U A a a ππ∞==∑两边同乘以sin()n x a π,并从0到a 对x 积分,得到002sin()d sinh()an U n xA x a n b a a ππ==⎰02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ⎧=⎪⎨⎪=⎩L L ,故得到槽内的电位分布1,3,5,41(,)sinh()sin()sinh()n U n y n xx y n n b a a a ππϕππ==∑L4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。

上板和薄片保持电位U ,下板保持零电位,求板间电位的解。

设在薄片平面上,从0=y 到d y =,电位线性变化,0(0,)y U y d ϕ=。

a题4.1图解 应用叠加原理,设板间的电位为(,)x y ϕ=12(,)(,)x y x y ϕϕ+其中,1(,)x y ϕ为不存在薄片的平行无限大导体平面间(电压为U )的电位,即10(,)x y U y b ϕ=;2(,)x y ϕ是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为: ①22(,0)(,)0x x b ϕϕ==②2(,)0()x y x ϕ=→∞③002100(0)(0,)(0,)(0,)()U U y y d by y y U U y y d y b d b ϕϕϕ⎧-≤≤⎪⎪=-=⎨⎪-≤≤⎪⎩根据条件①和②,可设2(,)x y ϕ的通解为 21(,)sin()en x bn n n y x y A b ππϕ∞-==∑由条件③有00100(0)sin()()n n U U y y d n y b A U U b y yd y b d b π∞=⎧-≤≤⎪⎪=⎨⎪-≤≤⎪⎩∑两边同乘以sin()n yb π,并从0到b 对y 积分,得到0002211(1)sin()d ()sin()d dbn d U U y n y n y A y y y b b b b d b b ππ=-+-=⎰⎰022sin()()U b n d n d b ππ故得到 (,)x y ϕ=0022121sin()sin()e n x bn U bU n d n y y b d n b b ππππ∞-=+∑4.3 求在上题的解中,除开0U y 一项外,其他所有项对电场总储能的贡献。

并按202U W C ef =定出边缘电容。

解 在导体板(0=y )上,相应于2(,)x y ϕ的电荷面密度题 4.2图002200121sin()e n x by n U n d yd n b πεϕπσεπ∞-==∂=-=-∂∑则导体板上(沿z 方向单位长)相应的总电荷2220d 2d q x x σσ∞∞-∞===⎰⎰001022sin()e d n x b n U n d x n d b πεππ∞∞-=-=∑⎰0022141sin()n U b n d d n b εππ∞=-∑相应的电场储能为20020221211sin()2e n bU n dW q U d n b εππ∞===-∑ 其边缘电容为022210241sin()e f n W b n dC U d n b εππ∞===∑ 4.4 如题4.4图所示的导体槽,底面保持电位U ,其余两面电位为零,求槽内的电位的解。

解 根据题意,电位(,)x y ϕ满足的边界条件为 ① (0,)(,)0y a y ϕϕ==② (,)0()x y y ϕ→→∞ ③0(,0)x U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sin()n n n y a n xx y A e a ππϕ∞-==∑由条件③,有01sin()n n n xU A a π∞==∑两边同乘以sin()n xa π,并从0到a 对x 积分,得到002sin()d an U n x A x a a π==⎰02(1cos )U n n ππ-=04,1,3,5,02,4,6,U n n n π⎧=⎪⎨⎪=⎩L L,故得到槽内的电位分布为1,3,5,41(,)sin()n y a n U n xx y e n a ππϕπ-==∑L题4.4图a4.5 一长、宽、高分别为a 、b 、c 的长方体表面保持零电位,体积内填充密度为()sin()sin()xzy y b ac ππρ=-的电荷。

求体积内的电位ϕ。

解 在体积内,电位ϕ满足泊松方程22222201()sin()sin()x zy y b x y z a c ϕϕϕππε∂∂∂++=--∂∂∂ (1)长方体表面S 上,电位ϕ满足边界条件Sϕ=。

由此设电位ϕ的通解为1111(,,)sin()sin()sin()mnp m n p m x n y p zx y z A a b c πππϕε∞∞∞====∑∑∑代入泊松方程(1),可得222111[()()()]mnp m n p m n p A a b c πππ∞∞∞===++⨯∑∑∑sin()sin()sin()m x n y p z a b c πππ=()sin()sin()x z y y b a c ππ-由此可得mnp A = (1m ≠或1)p ≠222111[()()()]sin()n p n n y A a b c b ππππ∞=++=∑()y y b - (2) 由式(2),可得2221102[()()()]()sin()d bn n n yA y y b y a b c b b ππππ++=-=⎰34()(cos 1)b n b n ππ-=2381,3,5,()02,4,6,b n n n π⎧-=⎪⎨⎪=⎩L L故2532221,3,5,081(,,)sin()sin()sin()11[()()()]n b x n y zx y z n a b c n a b c πππϕπε∞==-++∑L4.6 如题4.6图所示的一对无限大接地平行导体板,板间有一与z 轴平行的线电荷lq ,其位置为),0(d 。

求板间的电位函数。

解 由于在(0,)d 处有一与z 轴平行的线电荷lq ,以0x =为界将场空间分割为0x >和0x <两个区域,则这两个区域中的电位1(,)x y ϕ和2(,)x y ϕ都满足拉普拉斯方程。

而在0x =的分界面上,可利用δ函数将线电荷lq 表示成电荷面密度0()()l y q y y σδ=-。

电位的边界条件为①11(,0)(,)0x x a ϕϕ==22(,0)(,)0x x a ϕϕ==②1(,)0x y ϕ→()x →∞2(,)0x y ϕ→()x →-∞③12(0,)(0,)y y ϕϕ=21()()lx q y d x xϕϕδε=∂∂-=--∂∂由条件①和②,可设电位函数的通解为11(,)sin()n n n x a n y x y A e a ππϕ∞=-=∑ (0)x >21(,)sin()n n n x a n yx y B e a ππϕ∞==∑ (0)x <由条件③,有1sin()nn n y A a π∞==∑1sin()n n n yB a π∞=∑ (1)1sin()n n n n yA a a ππ∞=--∑1sin()n n n n yB a a ππ∞=∑ 0()l q y d δε=- (2)由式(1),可得n nA B = (3)题 4.6图将式(2)两边同乘以sin()m ya π,并从0到a 对y 积分,有n nA B +02()sin()d a lq n y y d y n a πδπε=-=⎰02sin()l q n d n a ππε (4)由式(3)和(4)解得sin()l n n q n dA B n a ππε==故1101(,)sin()sin()ln n x a q n d n y x y e n a a πππϕπε∞=-=∑ (0)x > 2101(,)sin()sin()ln n x a q n d n yx y e n a a πππϕπε∞==∑ (0)x < 4.7 如题4.7图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷lq 。

求槽内的电位函数。

解 由于在),(00y x 处有一与z 轴平行的线电荷lq ,以x x =为界将场空间分割为00x x <<和0x x a<<两个区域,则这两个区),(00y x 域中的电位1(,)x y ϕ和2(,)x y ϕ都满足拉普拉斯方程。

而在0x x =的分界面上,可利用δ函数将线电荷l q 表示成电荷面密度0()()l y q y y σδ=-,电位的边界条件为① 1(0,)0y =ϕ,2(,)0a y ϕ=② 11(,0)(,)0x x b =ϕϕ=22(,0)(,)0x x b =ϕϕ= ③1020(,)(,)x y x y ϕϕ=2100()()lx x q y y x xϕϕδε=∂∂-=--∂∂题4.7图由条件①和②,可设电位函数的通解为11(,)sin()sinh()n n n y n xx y A b b ππϕ∞==∑ )0(0x x << 2(,)x y ϕ=1sin()sinh[()]n n n y n B a x b b ππ∞=-∑ )(0a x x <<由条件③,有0011sin()sinh()sin()sinh[()]n nn n n x n y n y n A B a x b b b b ππππ∞∞===-∑∑ (1) 01sin()cosh()nn n x n n y A b b b πππ∞=-∑01sin()cosh[()]nn n n y n B a x b b b πππ∞=-∑ )(00y y q l -δε= (2)由式(1),可得00sinh()sinh[()]0n n n x n A B a x b b ππ--= (3)将式(2)两边同乘以sin()m yb π,并从0到b 对y 积分,有)](cosh[)cosh(00x a b n B b x n A n n -π+π0002()sin()d b l q n yy y y n b πδπε=-=⎰02sin()l q n y n b ππε (4)由式(3)和(4)解得00021sinh[()]sin()sinh()l n q n y n A a x n a n b b ππππε=-00021sinh()sin()sinh()l n q n x n y B n a b n b bππππε=故101021(,)sinh[()]sinh()ln q n x y a x n n a b b πϕπεπ∞==-∑0sin()sinh()sin()n y n x n yb b b πππ⋅ )0(0x x <<021021(,)sinh()sinh()ln q n x x y n n a b πϕπεπ∞==∑ 0sin()sinh[()]sin()n y n n ya xb b b πππ⋅- )(0a x x << 若以y y =为界将场空间分割为0y y <<和0y y b<<两个区域,则可类似地得到101021(,)sinh[()]sinh()ln q n x y b y n n b a a πϕπεπ∞==-∑ 0sin()sinh()sin()n x n y n xa a a πππ⋅ 0(0)y y <<021021(,)sinh()sinh()ln q n y x y n n b a a πϕπεπ∞==∑ 0sin()sinh[()]sin()n x n n xb y a a a πππ⋅- 0()y y b <<4.8 如题4.8图所示,在均匀电场00x E E e =中垂直于电场方向放置一根无限长导体圆柱,圆柱的半径为a 。

相关文档
最新文档